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Abstract

We propose an approach for matching deformed shapes using dynamic pro-

gramming. Our algorithms handle noise and shape distortionsby allowing match-

ing of merged sequences of consecutive small segments in a shape, with larger

segments of another shape. Our proposed algorithms handle occlusion while be-

ing invariant to translation, scale and orientation transformations of shapes. We
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illustrate the effectiveness of our algorithms in retrieval of shapes on two differ-

ent two-dimensional datasets, one of static hand gesture shapes and another of

marine life shapes. Our evaluations are based on human relevance judgements

and the results are a good support to our claims of accuracy.

Index Terms: shape matching, occlusion, dynamic programming, shape retrieval,

image database, query by example.

1 Introduction

Shape matching is a central problem in pattern recognition and computer vision re-

search and has received considerable attention in the literature [1]. Most approaches

to object recognition aremodel-based[2], emphasizing the accuracy of recognition.

They are limited to specific image types and require that all shapes are preprocessed

and labeled prior to storage. However, the increasing amounts of image data in many

application domains has generated additional interest for real-time management and

retrieval of shapes [3, 4]. There, the emphasis is not only on accuracy, but also on

efficiency (i.e., speed) of retrieval. Little or no emphasis is given to preprocessing and

labeling in this case.

A wide range of shape recognition approaches have been proposed, such as struc-

tural (e.g., methods organizing local features into graphs [5], trees [6] or strings [7]),

fuzzy or probablistic (e.g., relaxation methods [8]), statistical (e.g., methods based on

moments [9]), methods that work on some transform domain (e.g., Fourier [10] or

Hough [11]), and methods based on Neural Networks [12, 13]. An important class of

contour tracking and matching methods relies on physical models of the deformation

and is based on minimization of an energy function, without first extracting a symbolic

representation of the shapes [14, 15, 16, 17, 18].

Multiscale methods are considered the most promising, due to their ability to take

into account variations in shapes due to different degrees of smoothness. Various forms
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of scale space descriptions have been proposed [19, 20, 21]. In an earlier approach

[22], matching is performed through“interval trees” which are computed by tracking

the“Curvature Scale Space” (CSS)representation [19] from coarser to finer scales. In

[23] only the maxima of theCSScurves are used. In [24] it is demonstrated, however,

that small shape changes may cause major structural changes in the interval tree and

this may lead to matching errors. Recently, multiscale methods have been combined

with Dynamic Programming (DP) [24, 25].

Regarding image database retrieval by shape content, experiments have been re-

ported with traditional shape representation and matching methods (i.e., Fourier de-

scriptors, moment-based methods, combinations of such methods) on 500 trademark

images [3] . More recently, the effectiveness of such shape methods in conjunction

with color features is investigated in [4] using 1,100 trademark images taken from two

different datasets. In [25] we demonstrate the superiority of a multiscale DP matching

method over Fourier and moment-based methods, on two different datasets, one of 980

static hand gesture shapes and another of 1,100 marine life species. However, none of

these methods handle occluded objects.

In this work we focus on DP programming methods and we propose shape match-

ing algorithms for occluded and deformed shapes. If the two shapes are scaled with

respect to each other, the algorithm determines the appropriate scale for matching. The

algorithms find thebestassociation between segments of one shape and segments of

the other shape. This is formulated as a minimization problem which is solved ef-

ficiently by dynamic programming: A table of partial costs is built and the optimal

complete matching is searched in the form of a path in the DP table that minimizes

a total dissimilarity cost. Our algorithms are optimal, that is, they always find the

least cost path. We report experimental results of our algorithms on a data set of 980

two-dimensional hand gesture shapes and on a marine life database with 1,500 shapes.

We assume that shape contours have been already extracted from images. Au-

tomatic shape contour extraction from images (e.g., via region segmentation or edge

following) is a non-trivial problem, and it is outside the scope of this paper. For our
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hand gesture dataset, contours are extracted from images by taking the polygonal ap-

proximation of the hand boundary after thresholding. The shapes of the marine dataset

are already available in polygonal form.

The major problem with segmented representations is that small perturbations to

the shape can yield large changes in the segmentation. Therefore, the matching al-

gorithm must be robust to segmentation changes. A standard fix is to represent the

shape at multiple scales of resolution (smoothing), and either use a full scale-space

representation for matching [22], or have the algorithm choose the appropriate scales

for different parts of the shape [24]. Our approach is to favor the merging of small

segments into larger segments which are more likely to match single segments of the

appropriate size in the less noisy shape.

The rest of this report is organized as follows: In Section 2 we review work re-

lated to Dynamic Programming for shape matching and to the shape representations

used. Background information, such as basic notations and definition of cost func-

tions, is given in Section 3. Our shape matching algorithm is presented in Section 4.

The database set-up, the evaluation criteria along with the experimental results are

presented in Section 5. Conclusions and issues for future research are discussed in

Section 6.

2 Related Work

In the following, we review work on dynamic programming for shape matching and

the underlying representations.

Recently, matching of contours, together with detection of contours in image se-

quences, has been addressed with dynamic programming In [26, 27] dynamic program-

ming is used to minimize a cost function that accounts for displacement of a contour in

a pair of images from an image sequence. In [28, 18], dynamic programming is used

to fit a closed curve template to an image (deformable template matching).

Another class of matching methods relies on symbolic entities extracted from shape
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contours [29, 30, 23]. Dynamic programming has been a popular approach for match-

ing such symbolic entities [31, 32, 33, 34]. In [31] the inability of dynamic program-

ming to combine contour segments is mentioned, as well as the fact that differing reso-

lutions in the matched contours will lead to reduced performance. In [33] deletions and

insertions of features (corners in a polygonal representation) as well as smoothing of

features (i.e. dropping corners) is incorporated in the dynamic programming scheme.

This type of smoothing lends a primitive multiple-scale character to the method. In

[32] dynamic programming is used to guide the application of grammar rules that

transform one shape into another, in the spirit of [35]. In [34], matching proceeds

both forward and backward from a support match between two features (landmark

points) that are maximally similar. Features are extracted based on their persistence

across scales. However, there is no matching of features at multiple scales. Therefore,

multiple scales are used as a preprocessing stage only.

Building upon the previously mentioned work, [24] is a sophisticated dynamic

programming algorithm which can group segments together in order to come up with

appropriate correspondences. This algorithm uses the scale space representation

of [19] to constrain the possible merges (i.e., it accepts merges that are only present

at coarser scales of the scale space representation). The algorithm in [25] is a sub-

stantial extension of the above algorithm to performk-best search as it searches for

best matches in the DP framework while avoiding the expensive computation of zero

crossings in scale space. Both of these algorithms work only for closed shapes and, as

noted in [25], neither algorithm is optimal, that is, they may miss the optimal match.

3 Background

The shape matching algorithm that lies at the core of our methodology takes in two

shapes and computes: (a) Their distance; the more similar the curves are, the lower

the value of the distance function and (b) The correspondences between similar parts

of the two shapes. In retrievals, only distances between shapes are used. However, the
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correspondences help assess the plausibility of the distance computation, if necessary.

3.1 Shape preprocessing

A shape is represented by discrete sample points computed from its surrounding con-

tour. We get a smooth B-spline list approximation of each such point list and we

compute the inflection points (i.e., points of change of curvature) on this spline repre-

sentation. If the shape is open, there is no guarantee that there will be two inflection

points close to its two end points. If not, we get a representation of the part of the orig-

inal shape which is enclosed between its first and last inflection points. To handle this

problem we produce additional inflection points around the two end points by adding

small sin (or cos) curves. The scale ofsin curves is very small compared to shape

length. At most one extra inflection point is kept. Figure 1 shows an example of this

pre-processing. Thesin curves have been enlarged for viewing.

Figure 1:Preprocessing of the shape’s end points.

3.2 Basic notations

Let A andB be the two shapes to be matched. LetA = a1; a2; : : : aM andB =

b1; b2; : : : bN be the sequence ofN andM convex (C) and concave (V ) segments of

the two shapes respectively, withai being the segment between inflection pointspi and

pi+1 andbj the segment between inflection pointsqj andqj+1. Henceforth,a(i�mji),
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m � 0, denotes the sequence of segmentsai�m; ai�m+1; :::; ai; similarly for b(j�njj),

n � 0.

If shapeA (or shapeB) is closed, thenp1 = pM+1 (or q1 = qN+1). This implies

that the number of inflection points in closed shapes equals the number of segments.

If shapeA (or shapeB) is open, thenp1 6= pM+1 (or q1 6= qN+1). This implies that the

number of inflection points of open shapes equals the number of segments plus 1.

3.3 Matching cases

We distinguish among the following three cases of matching:

Both shapes are open:The algorithm will find thebestassociation of all segments

of A to a subsequence of segments ofB (i.e., part of shapeB may be left un-

matched) or vice versa. Because we cannot know in advance which shape is

included within the other one, we run the algorithm twice (i.e., once for each

possibility) and we take the matching with the minimum cost.

ShapeA is open and shapeB is closed: The algorithm will find the best association

of all segments ofA to a subsequence of segments ofB. ShapeA may be con-

tained within shapeB, but not the other way around; this is the only possibility

(part ofB may be left unmatched).

Both shapes are closed:The algorithm will find thebestmapping betweenA andB

so that, no segments remain unassociated in either shape.

We have addressed the third case in [25]. That algorithm is not optimal (i.e., may

miss the least cost match). In this paper, we handle the case withA andB closed by

pretending thatA is open, repeating the algorithm for open and closed shape matching

M times (once for each possible starting point onA), and by taking the least cost

match as the cost of matching. In the following, we focus on the first two cases: shape

A is open and it is included withinB (which can be either open or closed).
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3.4 The Dynamic Programming (DP) table

The algorithm builts a DP table of costs of partial matches and a match betweenA and

B is searched in the form of a path in the DP table that minimizes a total dissimilarity

cost. The DP table hasM rows andN columns, whereM andN are defined based

on the number of segments of the two shapes as follows:

Both shapes are open:M =M + 1 andN = N + 1.

ShapeA is open and shapeB is closed:M = M + 1 andN = 2N . ShapeB is

repeated twice to force the algorithm consider all possible starting points onB.

Both shapes are closed:This case reduces to the previous one as discussed previ-

ously.

The rows of a DP table are indexed byi, 1 � i � M and its columns are indexed

by j, 1 � j � N where,i, j are indices to inflection points ofA andB respectively.

If shapeB is closed, its indices are taken moduloN .

The cell at the intersection of rowi and columnj is referred to ascell(i; j). A link

between cells(iw�1; jw�1) and(iw; jw) denotes the matching of the merged sequence

of segmentsa(iw�1 + 1jiw) with b(jw�1 + 1jjw). A path is a linked sequence of cells

((i0; j0); (i1; j1); :::; (it; jt)), not necessarily adjacent, indicating a partial match, where

i0 < i1 < ::: < it andj0 < j1 < ::: < jt. This path begins at inflection pointpi0 of

shapeA and at inflection pointqj0 of shapeB and tries to match sequences of segments

a(iw�1+1jiw) ofAwith sequencesb(jw�1+1jjw) ofB forw = 1; 2; :::; t. The previous

cell of cell(iw; jw) is denoted bycell(iw�1; jw�1) and is calledparentof cell(iw; jw).

Eachcell(iw; jw) contains the following values:w, g(iw; jw), mw, nw, uw, vw and

�w where,w is the number of matched sequences of segments,g(iw; jw) is the par-

tially accumulated match cost up to that cell,uw andvw denote number of unmatched

segments ofA andB respectively,mw andnw are the indices of the parent cell of

cell(iw; jw) (i.e.,mw = iw�1 andnw = jw�1) and are used to trace back a path. Fi-
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Figure 2: Example of a DP table withM = 6 (shapeA) andN = 8 (shapeB).

S, C andV denote cells in the initialization, computation and complete match areas

respectively.

nally, �w denotes the scale factor corresponding to the parts ofA andB which have

been matched up tocell(iw; jw) and it is defined in Section 3.5.

Figure 2 illustrates an example of a DP table. The DP table consists of three distinct

areas:

Initialization area: It is first row of the DP table. Cost terms in this area are initialized

appropriately. All paths start from cells in this area.

Computation area: It is the area between the first and last row of the DP table. Cells

in this area correspond to incomplete paths.

Complete match area: It is the last row of the DP table. All complete paths end at

cells in this area. The best match corresponds to the path with the least cost.

Notice that about half of the cells of the above DP table are empty; this is because

associations between opposite type segments (i.e.,C and V ) are not allowed. By

convention, the cost of matchingC with V segments is infinite. Notice also that the

first column is empty except the cell in the first row. The reason for this is that we
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do not allow empty merge. Finally, we assumed that both, the first segment ofA and

the first segment ofB have the same polarity; otherwise matching will start from the

second segment ofB.

3.5 Cost of matching

A complete matchis a correspondence between sequences of segments in order, such

that no segments are left unassociated in shapeA and there are no crossovers. A

complete match is characterized by acomplete path((i0; j0); (i1; j1); :::; (iW ; jW )), a

path that starts at the initialization and ends at the complete match area. The cost

D(A;B) of matching shapeA with shapeB is defined as

D(A;B) = min
(iw;jw)

WX
w=1

 (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) : (1)

Function (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) represents the dissimilarity cost of its

two arguments and consists of three additive components:

 (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) =

MergingCost (a(iw�1 + 1jiw)) + (2)

MergingCost (b(jw�1 + 1jjw)) +

� DissimilarityCost (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) :

The first two terms in Equation 2 represent the cost of merging segmentsa(iw�1 +

1jiw) in shapeA and segmentsb(jw�1 + 1jjw) in shapeB respectively while the last

term is the cost of associating the merged sequencea(iw�1 + 1jiw) with the merged

sequenceb(jw�1+1jjw). Constant� represents the relative importance of the merging

and dissimilarity costs. In this work� was set to 1. From the definition of cost com-

ponents below follows that the total cost of any complete path is within the range of

[0; 2 + �].

Requirements for reliable cost computation are the following:
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� Merging should follow the process grammar rules [32] (i.e., each allowable

merging should be a recursive application of the grammar rulesCV C ) C

andV CV ) V ). This is enforced by the DP algorithm.

� Merging a“visually prominent” segment (i.e., a large segment with high cur-

vature) into a merged segment of the opposite type (convex or concave) should

incur a high cost. To specify this requirement, we need to definevisual promi-

nencein geometric terms.

� The partial cost components arising from different features of the shape should

be combined into a total cost in a meaningful way.

pi
tangent 

tangent

segment   a i

area  Ai

θrotation  angle  p
i+1 i

Figure 3: Geometric quantities for defining the prominence of a segment

We define geometric quantities (features) needed in the specification of visual

prominence of a segment according to Figure 3.

Rotation Angle �i is the angle traversed by the tangent to the segment from inflection

pointpi to inflection pointpi+1 and shows how strongly a segment is curved.

Length li is the length of segmentai.

Area Ai is the area enclosed between the chord and the arc between the inflection

pointspi andpi+1.
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3.6 Scale factor

If one of the two shapes is scaled with respect to the other, the length of one of the two

shapes (i.e., shapeB in this work) has to be multiplied by an appropriatescale factor.

This scale factor can be computed as the ratio of the lengths of the matched parts of

shapesA andB respectively. We distinguish between the following two cases:

Global matching: ShapeA matches the whole shapeB. The algorithm consumes all

segments from both shapes. Referring to Figure 2, the cost of matching will be

always that of the rightmost cell of the complete match area. The scale factor is

constant and is computed as

� =
length of A

length of B
: (3)

Equivalently, we can normalize initially both shapes with respect to their perime-

ter. It is easy to accommodate this to our method by omitting all scale terms�

from the algorithm.

Local matching: ShapeA may match either the whole or only a part of shapeB.

This case is more difficult to handle but, it is more general and includes the pre-

vious one when matching the whole shapeB yields the least cost. Although

we know that the matched part of shapeA will be the whole shapeA, the

length of the matched part of shapeB is unknown before the algorithm is com-

pleted. To handle this problem, we compute a scale factor�t for each partial

path((i0; j0); (i1; j1); :::; (it; jt)), corresponding to the matched parts:

�t =

Pt
w=1

Piw
i=iw�1 li(A)Pt

w=1

Pjw
j=jw�1 lj(B)

; (4)

where0 < t � W andli(A) andlj(B) are the lengths ofai andbj respectively.

This value is an approximation of the actual scale factor of a complete match.

Notice that�0 is undefined since the total matched length is 0 for both shapes.

Henceforth, we refer to the second (more general) case, where shape A is open and

B is closed.
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3.7 Dissimilarity cost

The dissimilarity cost of associating a group of segments from shapeA with a group

of segments from shapeB is computed as

DissimilarityCost = W max
all features f

fjdf jg: (5)

The termdf is the cost associated with the difference in featuref (i.e., length, area

or angle). Notice that, forf being angle,df can be negative. The intuition behind

the use ofmax is that it tends to emphasize large differences on any feature.W is a

weight term associated with the dissimilarity of this partial match:W will emphasize

the importance of matching large parts from both shapes similarly to the way humans

pay more attention on large shape parts when judging the quality of matching. Without

W , the matching of very small shape parts contribute to the cost of matching equally

to the matching of very large parts. Specifically, the proportion of the matched shape

length with respect to total length is used to defineW :

W = max

8<
:
Piw

i=iw�1+1 li(A)

length of A
;

Pjw
j=jw�1+1 lj(B)

length of B

9=
; : (6)

Area can also be used instead of the length for the definition ofW . However,

rotation angle should not be used since a large (small) portion of a shape might have a

small (large) rotation angle.

The termdf is defined as

df =
jFa � Sw(f)Fbj

Fa + Sw(f)Fb
; (7)

where,FA =
Piw

i=iw�1+1 jfij, FB =
Pjw

j=jw�1+1 jfjj andSw(f) is a parameter de-

pending on the featuref . SpecificallySw(f) = �w�1 for f being length and�2w�1 for

f being area.�w�1 is computed according to Equation 4 or Equation 3 for local and

global matching respectively. When matching is local and forw = 1, we putdf = 0

since�0 can not be defined (i.e., there is no information to estimate the scale factor).

Forf being rotation angle,Sw(f) = 1 since angle measurements do not depend on the

scale.
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3.8 Merging cost

Let the types of the segments being merged beCV C : : : C. In the following, the

opposite case is obtained by switchingC andV in the formulas. The merging cost is

defined as follows:

MergingCost = max
all features f

fWfCfg; (8)

where subscriptf refers to a feature (length, area or rotation angle).

For all features:

Cf =

P
V segs of group jf jP
all segs of group jf j

: (9)

The intuition behind these formulaes is that they measure the visual prominence

of the features of the absorbed segments (of typeV ) relative to the whole matched

consecutive segments of the group. All costsCf are within the interval[0; 1].

Forf being any feature (length, area, rotation angle) the weight term of the merging

cost is defined as

Wf =

P
V segs of group jf jP
V segs of shape jf j

: (10)

The intuition behind this weight term is to measure the visual prominence of the ab-

sorbed segments within the shape as a whole.

4 The algorithm

In the following, first we outline our algorithm and then we discuss issues related to

optimality and complexity. Finally, we give examples of matching.

4.1 Outline

Figure 4 outlines the algorithm. Thefor loop forjw does not run over all the indicated

values, as convex to concave matches are not possible. In fact, only half of the cells are

used. At each cell, the algorithm computes the optimum cost of the incomplete path

ending at this cell:
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g(iw; jw) = min
mw ;nw

fg(iw�1; jw�1) +  (a(iw�1 + 1jiw); b(jw�1 + 1jjw))g : (11)

Merging always involves an odd number of segments that is(iw�1; jw�1) = (iw �

2mw � 1; jw � 2nw � 1). Then, Equation 11 can be rewritten as

g(iw; jw) = min
mw;nw

fg(iw � 2mw � 1; jw � 2nw � 1) +  (a(iw � 2mwjiw); b(jw � 2nwjjw))g ;

(12)

where0 � mw �
iw�1
2

and0 � nw �
jw�1
2

. Equation 12 determines the minimum

cost transition from cellcell(iw�1; jw�1) to cell(iw; jw). Indices(mw; nw) characterize

this transition. They are stored atcell(iw; jw) and can be used to retrace the path from

cell(iw; jw) back to its starting point.

Matching always starts at the first inflection point ofA (i0 = 1) while any point

of B is a candidate starting point. We initialize the DP table by filling its first row:

Whena1 andbj have the same polarity, theng(1; j);m1; n1; u1; v1 are0; 0; 0;M;N

respectively, implying that each of these cells can act as a starting point. Ifa1 and

bj have different polarity, we setg(1; j) to be1 since the matching of opposite type

segments (C or V ) is not allowed (no path begins at these cells). IfB is closed, then

for N < j � N , we setg(1; j) = 1 since cell indicesj are moduloN (bj = bj�N )

and we don’t have to calculate the same starting point twice.

Notice thatuw > 0 andvw > 0 implies that the match has not consumed neither

shapeA nor shapeB; uw = 0 andvw � 0 implies that the match has consumed all

segments of shapeA and some (or all) segments of shapeB that is, a complete match

has been found. Notice that,uw � 0 andvw � 0 impliesiw �M andjw � N , which

is automatically satisfied when thecell(iw; jw) is in the DP table. It is easy to see that

uw = 0 or vw = 0 implies thatiw =M or jw = N respectively.
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// Initialization: Fill the first row

for jw = 1; 2; :::;N do

fill cell(1; jw) using Equation (2);

calculate�1 using equation (4);

end for

// DP Propagation: Fill from the second to theM-th row

for iw = 2; 3; :::;M do

for jw = 1; 2; :::;N do

fill cell(iw; jw) using�w�1 and Equations (2), (11);

calculate�w using Equation (4);

end for

end for

// Select the least cost complete path

select the least cost complete path from theM-th row;

retrace path usingmw, nw cell values;

Figure 4:Outline of the algorithm.

4.2 Optimality

Now we prove that our shape matching algorithm is optimal, that is, it always finds the

path with the least cost. The proof makes use of the DP table of Figure 5 showing two

alternative complete match paths.

Lemma 1 The algorithm of Section 4 is optimal.

Proof: Let P = ((i0; j0)(i1; j1):::(iW ; jW )) be the best (least cost) complete path

that the algorithm has found. If this is not the least cost path then, let this be path

P 0 = ((i00; j
0

0); :::(iW ; jW )). This path ends at(iW ; jW ) too, since we always select

(iW ; jW ) as the end point of the path with the least cost. The two paths meet at some
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Figure 5:Example of DP table showing two alternative complete match paths.

point(is; js) either before or at(iW ; jW ); otherwise, the algorithm should have selected

pathP 0 instead of pathP since it has less cost. If they meet at(iW ; jW ), then again,

the algorithm should have selectedP 0 instead ofP . If they meet at a point(is; js)

before(iW ; jW ), then the cost ofP 0 at (is; js) should be less than the cost ofP up to

that point. But then, the cost ofP 0 at (iW ; jW ) should be less than the cost ofP which

leads to a contradiction.2

4.3 Both shapes are closed

We address this case in [25]. However, that algorithm is not optimal (i.e., may miss

the least cost match). In this work, we handle the case withA andB closed by pre-

tending thatA is open, repeating the algorithm for open and closed shape matching

M times (for each starting point onA), and by taking the least cost match as the cost

of matching. Notice that, unlike the algorithm of [25], this algorithm is optimal (i.e.,

will always find the least cost match) since the algorithm for open and closed shape

matching is optimal.
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4.4 Complexity

The run-time complexity of our algorithm depends on the time of computing , the

cost of matching two sequences of segments. This is the basic operation of the al-

gorithm. From Equation 12, the cost computation at eachcell(i; j) takes ij

2
time.

Therefore, the time complexity for filling a DP table of sizeM�N is O(M2N2).

This is the time complexity of the algorithm when at least one of the shapes is open. If

both shapes are closed, the algorithm is repeatedM times (i.e., for all starting points

of A) so the time complexity of the algorithm becomesO(M3N2). Notice that the

complexity of thek-best algorithm of [25] isO(kM3N3) (i.e., the algorithm examines

MN

2
starting points instead of justM ) that is, not only it is not optimal but also, it has

higher time complexity.

4.5 Matching examples

Figure 6 illustrates segment correspondences (indicated by consecutive lines con-

necting the starting and ending points of the associated segments) obtained by match-

ing hand silhouettes (left) and fish silhouettes (right). In each example, one of the two

shapes has been shrunk and rotated so as to illustrate the associations between matched

parts of the two shapes. Note the parts of the outer (bigger) shapes that do not match

parts of the inner shapes and have been left unassociated.

5 Shape retrieval

In our experiments we used the following datasets:

� GESTURES1: Consists of 980 open shapes which are generated from a dataset

of 980 closed shapes by editing.

1We have made our database available athttp://www.cs.yorku.ca/˜eem/gesturesDB.
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Figure 6:Segment associations reported by the matching algorithm on representative

matches from the gestures and the marine life databases.

� MARINE2: Consists of 1,500 open shapes of marine species which are generated

from 1,100 closed shapes3.

Each shape is represented by its contour. All contours are preprocessed to contain

between 80-100 points. The fish silhouettes contain much finer contour detail than the

hand silhouettes. To evaluate our algorithm we carefully created 34 queries (17 closed

and 17 open shapes) for each dataset. Each query retrieves the best 50 answers.

2http://www.cs.yorku.ca/˜eem/marineDB?.

3http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html.
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We used human relevance judgements to compute the effectiveness of each method.

Two shapes (i.e., a query and a stored shape) are considered similar if a human judges

that they represent the same figure or that the one is contained within the other. To

measure effectiveness, we computedprecision, that is the percentage of similar shapes

retrieved with respect to the number of retrieved shapes.

5.1 Experimental results

Figure 7 illustrates the average values of precision as a function of the size of the

answer from 1 to 50. The horizontal axis corresponds to the size of the answer and the

vertical axis corresponds to the measured precision. Each dataset is represented by a

curve. Each point of each curve is the average over 34 queries. The total number of

points in each curve is 50 (i.e., we compute precision for answers containing between

1 and 50 shapes). Therefore, the leftmost point of the diagram corresponds to precision

for the best answer (best match), while the rightmost point corresponds to precision

for the entire answer set with 50 retrieved shapes.

For small answer sets, both methods achieve precision higher or close to 0.7, that

is, almost 70% of the answers are correct. However, precision drops to 0.3 for an-

swers containing 50 shapes. This result demonstrates that our method is best suited

for applications where one is interested in retrieving a few best matches. Note that

the algorithm achieves always at least 10% better precision on the GESTURES dataset

than on the MARINE dataset. Presumably, this is because the shapes in the MARINE

dataset have much more shape detail and noise than the shapes in the GESTURES

dataset.

The algorithm requires less than 1 second per shape match on the average on a Pen-

tium PC, 200MHz. In particular, retrievals took approximately 10 minutes per query

on the GESTURES dataset and approximately 20 minutes per query on the MARINE

dataset. Certain optimizations that could speed-up our method are possible, such as

the precomputation and storage of the features of the convex and concave segments
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Figure 7: Average values of precision for the GESTURES and the MARINE datasets

as a function of size of the answer set.

of all shapes in a dataset. In the current implementation these features are computed

anew in real-time during each retrieval. In addition, a smoothing on shape contours

that reduces the number of inflection points below a small predefined constant (e.g.,

20) could speed up time responses significantly.

Certain optimizations that could improve the accuracy of the method are also pos-

sible: For example, we can specify different values of the parameter� of Equation 2

for the two datasets. For example, a value of� < 1 favors merging and this could be

desirable for shapes with noise and much shape detail such as those of the MARINE

dataset.

6 Conclusions

We propose a shape matching algorithm for handling deformed and occluded shape

similarity retrievals in image databases. Our algorithm is based on dynamic program-

ming and performs implicitly at multiple scales by allowing segment merges before
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association. We demonstrate the effectiveness of our algorithm to shape matching and

retrieval using two different datasets with 980 and 1,500 shapes respectively.

Future work includes the experimentation with more datasets and methods, the

handling of combined queries involving more than one feature (e.g., shape, color, text),

the development of indexing methods that could speed up retrievals and the develop-

ment of a graphical user interface on the World Wide Web.
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