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Abstract. Seamlessness, reversibility, and software contracting have been pro-
posed as important, if not essential, techniques to be supported by object-oriented
modeling languages and methods. These techniques are used to provide a frame-
work for the comparison of two modeling languages, the Business Object Nota-
tion (BON)–which has been designed to support the techniques–and the Unified
Modeling Language (UML). Elements of the UML and its constraint language,
OCL, that do not support these techniques are discussed. Suggestions for further
improvements to both BON and UML are described.

1 Introduction

. . . There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies, and the other way is
to make it so complicated that there are no obvious deficiencies.

C.A.R. Hoare,Turing Award Lecture 1980.

As described by Brooks [2], the key factor in producing quality software is specify-
ing, designing and implementing the conceptual construct that underlies the program.
This conceptual construct is usually complex, invisible, and highly changeable — it
consists of interlocking data sets, relationships among data items, algorithms, and in-
vocations of functions. This conceptual construct is abstract but has many different
representations. The complexity of the conceptual construct underlying software is an
essential property, not an accidental one. Hence, descriptions of a software entity that
abstract away its complexity often abstract away its essence.

A suitable notation is needed to describe the conceptual construct, its design and
implementation. A satisfactory description of the conceptual construct for an industrial-
strength software system prior to its construction or renovation is as essential as having
a blueprint for a bridge or a large building.

In 1995, there were between 20 and 50 such description languages and notations.
Often users had to choose from among many similar modeling languages with minor
differences in overall expressive power. But in a landmark meeting in Silicon Valley in
1995, methodologists and tools producers agreed that users needed a worldwide stan-
dard for metamodeling and notation. At that moment UML was born, and it has been
embraced by leading software developers.



This paper conjects that the standardization on UML is premature and perhaps even
counter-productive. The reason we use the word ‘conject’ is that a rational critique of
UML would first require building a theory of software quality and then developing
metrics for measuring the quality of software developed via a particular method or
notation. Such a theory and consequent metric is not currently available and we must
thus resort to a more qualitative, and hence more subjective, analysis.

When the C++ language first became widespread, a significant segment of the soft-
ware industry converted to C++ from C, at a substantial cost in re-training. How solidly
grounded was this decision to switch to C++? One case study [10], in which a product
was developed by the same experienced team, once in C and again in C++, showed
that the maintenance cost of the product written in C++ was significantly larger. This is
counterintuitive to the standard intuition that OO (at least in C++) should significantly
reduce maintenance costs. We may ask the same kind of question about the move to
UML.

In the absence of a scientific theory of quality, our starting point will be the remarks
of Hoare quoted at the beginning of this paper. Our main goal will be simplicity of
method. But we will need a criteria which will allow us to reject a feature of a notation
as being excessive.

We define quality software as software that isreliable andmaintainable. Reliable
software must becorrect: it must behave according to specification; and, it must be
robust:it must respond appropriately to exceptions outside of the domain of the specifi-
cation. Maintainable software must beextendible:that is, easy to change with changing
requirements; andreusable:that is, it can be re-used in different applications.

Reliability is obviously the key quality requirement. If the software does not work
correctly and supply the required functionality it is unusable despite having other qual-
ities such as a fancy GUI or blindingly fast execution. Maintainability is the other key
requirement because maintenance often accounts for 70% or even more of the cost of
the product.

In order to asses UML’s contribution to quality, we will compare it to the BON
notation and method. The BON approach to quality is to stress three factors:design by
contract, as a contribution towards reliability; andseamlessnessandreversibility, as a
contribution towards maintainability. These terms are defined as follows.

– Seamlessness.Seamlessness allows the mapping of abstractions in the problem
space to abstractions in the solution space without changing notation. BON was
designed to work seamlessly with Eiffel, but it has also been used successfully with
a number of other OO languages. In development using BON, systems are specified
using classes giving interfaces of abstractions in the problem space; design intro-
duces new solution space classes; and implementation introduces effective classes
that implement all the deferred behavior. No translation is required in this process;
progress occurs by adding more classes, or defining or implementing class behav-
ior.

– Reversibility. Changes made during one stage of development can be automatically
reflected back to earlier stages. So a modification made to, e.g., an Eiffel implemen-
tation class can be reflected in changes to a BON design class. CASE tools exist to
support such reversibility for BON and Eiffel, namely, EiffelCase.



– Design by contract.Design by contract is a practical, efficient technique for pro-
ducing reliable, maintainable, and reusable software. BON was designed to support
contracting, and this coupled with support in programming languages like Eiffel
helps to satisfy the seamlessness and reversibility requirements.

With the above definitions now in place, we will look for the simplest set of concepts
that will allow us to describe the conceptual construct underlying our software. The
following concepts will be rejected:

– Any concept that militates against contracting, seamlessness or reversibility.
– Any concept that duplicates a concept already in the notation.
– Any concept that is in the notation merely because a competing notation has it.

The notation summary for UML (version 1.3) is 161 pages, whereas the summary for
BON is one page; see [16]. Further, BON has only one classifier (the class), while
UML has an additional seven classifiers (e.g., datatype, use case). Among the UML
classifiers, a case can be made for redundancy; e.g., datatypes and interfaces can both
be encompassed by class. We fail to see why all of the UML classifiers are needed.
The power of using only the class as a classifier is that it unifies modules (information
hiding) with hierarchical subtyping, and this abets seamlessness.

There are three ways to defeat our arguments.

1. Develop a scientific theory of software quality, and do suitable studies to show the
efficacy of UML.

2. Disagree with the notion of software quality, as defined above (although we feel
that most developers will want to have reliability and maintainability figure promi-
nently).

3. Prove that UML does at least as good a job as BON/Eiffel at reliability and main-
tainability.

The rest of the paper will focus on point 3. We hope to show that BON does a signifi-
cantly better job than UML. We also suggest what changes could be made to UML to
better support contracting, seamlessness and reversibility.

1.1 Organization of the paper

Section 2 introduces BON, and gives an overview of its process and the main tech-
niques that it embodies: seamlessness, reversibility, and design by contract. The focus
of Section 3 is seamlessness and reversibility, and therein, we describe the static BON
specification notations and how they support these techniques. These BON notations
are contrasted with corresponding UML elements. We also touch on BON’s small col-
lection of dynamic notations, which we consider asrough sketches[14]. Section 4 turns
to design by contract, and compares the assertion language of BON with the Object
Constraint Language, along with the uses of these languages in several examples. Sec-
tion 5 briefly touches on tool support, while Section 6 discusses improvements to BON
and UML. Finally, in Section 7, we relate our experience in teaching with BON and
UML, before concluding in Section 8, with discussion of language design and some
general principles that may be useful for enhancing UML and BON.



2 Introduction to BON

BON is an object-oriented method possessing a recommended process as well as a
graphical and a separate textual notation for specifying and describing object oriented
systems. The notation provides mechanisms for specifying inheritance and client-supplier
relationships between classes, and has a small collection of techniques for expressing
dynamic relationships. The notation also includes anassertion language, discussed in
more detail in Section 3; the method is predicated on the use of this assertion language.
In this sense, BON is based on behavioral modeling. This should be contrasted with
UML which is grounded in data modeling. The focus in data modeling approaches is
to create public data representations that are manipulated by query languages; this has
been considered to be against the tenets of information hiding [11].

BON is designed to support three main techniques: seamlessness, reversibility, and
software contracting. It also supports the language design principles ofuniqueness, sim-
plicity, andconsistency[12, 15, 31]. Uniqueness means that there is exactly one way to
express each operation or concept of interest in BON; the designers avoid providing
more than one means. Further, the notation is simple, based on a small number of pow-
erful, expressive concepts. Finally, BON is consistent: there is a goal to its design—
providing a seamless, reversible method for OO development that is founded on design
by contract. Each of the concepts present in BON strictly aims at meeting this goal.

As a result of these requirements, BON provides only a small collection of power-
ful specification features that guarantee seamlessness and full reversibility on the static
specification notations. The design of the notation, and the reliance on design by con-
tract, makes the implementation of seamlessness and round-trip engineering straight-
forward for all static notations, and fully supportable by tools, e.g., EiffelCase [16].

2.1 BON is a method

Unlike UML, BON is a method, and thus possesses a recommended process. The pro-
cess is representative of many earlier object-oriented methods. The basic steps of the
recommended process are outlined as follows.

1. Delineate the system borders:identify what the system will include and will ig-
nore. Determine the major subsystems. Prepare a glossary.

2. List candidate classes.
3. Select classes and group:organize classes into logical groups, and cluster.
4. Define classes:provide features and contracts for classes.
5. Sketch system behavior.A dynamic model, expressing message passing and sce-

narios, can be produced.
6. Define public features:give final class interfaces, taking into account visibility.
7. Refine system:implementation in an OO programming language.

Steps 1, 2, and 3 make use of the informalchart notation for documenting potential
classes, collections of classes (calledclustersin BON), and properties of classes. The
chart notation is a version of CRC index cards [1], and is supported by a CASE tool
[16]. We will not discuss chart notation further here, though we emphasize that it is an
important part of the BON method.



Steps 4–6 rely on the BON static and dynamic specification notations, which we
summarize in the following subsections. The last step involves mapping a BON speci-
fication into an OO programming language, like C++, Java, or Eiffel.

The BON method is not driven by use-cases, unlike UML and its compatible pro-
cesses. In this sense, we would claim that BON is architecture-centric and design by
contract driven, but not use-case driven. BON does implicitly apply use-cases with its
object communication diagrams (they are called ‘scenarios’ therein), but it is not an
emphasized part of the method, as it is with UML-compatible methods.

2.2 What is not in BON?

BON contains only a small collection of modeling elements that guarantee seamlessness
and reversibility, and that are based upon contracting. BON is also distinguished by the
so-called standard modeling elements that it omits. BON omits modeling features that
break seamlessness and reversibility, in particular, data modeling (e.g., via some variant
of entity relationship diagrams) and finite state machines. With both techniques, their
advantages are far outweighed by the advantages of seamlessness and reversibility.

It is clear that finite state machines introduce an impedence mismatch which re-
quires translation or surrender of the class concept. We also lose seamlessness with data
modeling, in part because of its reliance on binary associations, and in part because as-
sociations as a modeling concept break encapsulation. For this reason, BON includes
only simple OO primitives for modeling relationships among classes, thus guarantee-
ing seamlessness and reversibility. It is claimed in [29] that using simple OO primitives,
and not binary associations, for class relationships is sufficient for specifying all the in-
teresting relationships between classes.

3 Seamlessness and Reversibility

In this section, we outline the basic BON specification language, concentrating on those
aspects of the language that support seamlessness and reversibility. As we shall see, all
of the static diagramming elements of BON are designed to support seamlessness and
reversibility. These elements will be compared with equivalents in UML, and we will
discuss the support these UML elements provide to the aforementioned techniques.

3.1 Class interfaces

The fundamental specification construct in BON is theclass; in UML terminology,
the class is the only form of classifier available. This should be contrasted with the
eight classifiers available in UML. In part, the proliferation of classifiers available in
UML is because the designers did not unify the notions of type and module. In BON, a
class is both a module and a type. In this sense, it is a possibly partial implementation
of an abstract data type (ADT). This means that, when reasoning about BON classes,
powerful and mature ADT theory can be used. With BON, a class is the only way to
introduce new types.



A BON class has aname, an optionalclass invariant, and a collection offeatures. A
feature may be a query—which returns a value and does not change the system state—
or a command, which does change system state. BON does not include a separate notion
of attribute. Conceptually, an attribute should be viewed as a query returning the value
of some hidden state information.

Figure 1(a) contains a short example of a BON graphical specification of the inter-
face of a classCITIZEN. Class features are in the middle section of the diagram (there
may be an arbitrary number of sections, annotated with visibility tags, as discussed in
Section 2.3.4). Features may optionally have behavioral specifications, written in the
BON assertion language (discussed in Section 3) in a pre- and postcondition form. An
optional class invariant is at the bottom of the diagram. The class invariant is a predicate
(conjoined terms are separated by semicolons) that must betrue whenever an instance
of the class is used by another object. In the invariant, the symbol@refers to the current
object; it corresponds tothis in C++ and Java. ClassCITIZEN has seven queries and
one command. For example,single is a query (which results in aBOOLEAN), while
divorceis a parameterless command that changes the state of an object. ClassSETis a
generic predefined class with the usual operators (e.g.,2; add); it is akin to a parame-
terized class in UML, or a template in C++.

name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN

Result <-> (spouse=Void)!

divorce

? not single

! single and (old spouse).single

single or spouse.spouse=@;

parents.count=2;

CITIZEN

invariant

children p=@∀c ∃ p c.parents22

(a) BON interface

Citizen

name, sex, age : Value

single() : boolean

divorce()

spouse parents

children

0..1 *

*

single or spouse.spouse=self  and
parents->count=2                   and
children->forAll(c | c.parents->exists(p | p=self))

<<invariant>>

<<postcondition>>
result=(spouse=NULL)

<<precondition>>
not single

single and spouse@pre.single
<<postcondition>>

(b) UML class diagram

Fig.1.A citizen class in (a) BON and (b) UML

Classes can be self-referential; for example,CITIZEN has a queryspouseof type
CITIZEN. This can also be indicated using a self-directed client-supplier arrow, as we
discuss in Section 2.5. Overloading of feature names is not permitted in BON; each fea-
ture must possess a unique name. Feature names may be tagged to indicate that they are
renamed or redefined; these tags are primarily used when combined with inheritance.



A UML class diagram for a citizen class is quite different; one is shown in Fig. 1(b).
This diagram is drawn under the assumption that we want to represent all details shown
in the BON interface in a UML class diagram; we discuss how the UML diagram can
be simplified later, using standard techniques.

Let us discuss the differences between the diagrams. First, consider the types of the
attributes. In UML, attributes correspond to small simple variables (such as integers
and booleans). A citizen class thus is not used as a type of an attribute in a class. Thus,
spouse; children; andparentsfrom the BON class interface must be modeled asasso-
ciationsin the UML class diagram, thus making the UML diagram more complicated.
We note that in BON any type may be used in an interface. This leads to simpler mod-
els, abets seamlessness and allows modelers to visually emphasize the most important
relationships in their diagrams, thus aiding readability.

A second difference between the UML diagram and the BON diagram is with the
behavioral specifications. We shall return to this issue in detail in Section 3, but for
now we note that pre- and postconditions of operations in UML class diagrams can be
modeled as notes, using the precondition and postcondition stereotypes (and similarly
for invariants). This clutters the diagram, as Fig. 1(b) shows. For this reason, behavioral
details for classes are frequently omitted from diagrams and alternatively presented
using a textual assertion language, such as the OCL, separate from the diagram. This
introduces the potential for maintenance and consistency problems, as we discuss in
detail later.

There is a minor stylistic difference between BON and UML: in BON, all class
names are in italicized upper case; this makes class names easy to spot in specifications.
In UML, class names are in roman font, except when they are abstract, where italics are
used.

3.1.1 FeaturesEach class in BON has a collection of features, which may be queries
or commands. All features of an object are accessed by standard dot notation; no special
notation is used to access collections, or reference types. Identical syntax is therefore
used to access attributes, and parameterless queries; this is the so-calleduniform access
principle [16], and is a clear difference between BON and UML. In UML, one must
distinguish between using a parameterless function and an attribute by suffixing the
former with () . This is not necessary in BON, and because of it, it is possible to hide
implementation details from clients of the class, and allow the redefinition of functions
as attributes under inheritance [15].

UML distinguishes between the concept of anoperationand amethod. An opera-
tion is a service that a class can provide; a method is an implementation of a service. An
operation can possess many different methods (e.g., introduced in an inheritance hier-
archy). It is usually specified as a name and associated types, e.g., for parameters. BON
does not distinguish between operation and method; there are only features, which pos-
sess a name, optional parameters and results, and behavioral specifications. A feature
may beredefinedzero or more times in an inheritance hierarchy. In this sense, the BON
notion of a feature definition corresponds to the UML notion of a method. We prefer the
BON terminology: it corresponds directly to ADT terminology, which is the underlying
theory of OO, and it avoids the use of the overloaded term ‘method’.



3.1.2 Compressed interfacesOften, specifiers do not want to include all the details
of a class interface in a diagram. Instead, the view they want to present aims at showing
the classes and their architectural interactions. For this purpose, BON has acompressed
form for a class. In this form, a class is written as an ellipse containing its name. The
compressed form can be annotated with special header information, indicating further
properties about the class. Some examples are shown in Fig. 2.

Graphical form Explanation

Class is reused from a library.NAME

NAME[G,H] Class is parameterized.

*
NAME

+ Class is implementing a deferred
class, or reimplementing an
ancestor class.

Class is (potentially) persistent.

Class is deferred. It has no
instances, and is used for
classification purposes.

NAME

NAME

NAME

NAME

Class is a root; instances may be
created as separate processes.

Class is interfaced with the outside
world; some feature encapsulates
external communication.

Fig.2.Compressed views and headers in BON

The ellipse notation in BON is equivalent to the rectangle in UML. The* header in
BON, for adeferredclass, roughly corresponds to anabstractclass in UML – the latter
of which can be indicated by the constraint{abstract} or by writing the class name
in italics. A deferred class has at least one unimplemented feature. The correspondence
between deferred and abstract class is not exact. In UML, classes where all operations
are implemented can still be marked as abstract, while this is not possible with BON.
Deferred classes are also not the same as UML interfaces, since the former can contain
attributes and behavioral specifications, while the latter cannot. Thus, the deferred class
notion encompasses the UML notion of interface, and most common uses of abstract
class as well. There do not appear to be UML equivalents to BON’s effective classes.

Features of a BON deferred class need not have implementations, though they may
have behavioral specifications in the form of contracts, which can be used to constrain
any potential implementations and interactions. We discuss contracts in in Section 3.

3.1.3 Visibility Visibility of features in BON is expressed by sectioning the feature
part of the class interface, and by use of the feature clause. By default, features are
accessible to all client classes that would use them. This is almost the same as public



visibility in UML, except that in BON no client class canchangethe value of any query
(that is, BON features are read-only). Visibility of individual features or collections of
features can be changed by writing a new section of the class interface and prefixing the
section with alist of client classes that may access the features. For example, a section
prefix of feature{A,B} indicates that only classesA andB may access the features
in the section.

This should be contrasted with the mechanism supported by UML, which by de-
fault permits the C++/Java style of public, private, and protected features, via tagging
each feature with a symbol. Tagging can be applied at both the class and the package
level. The BON visibility mechanism is more flexible and general (and directly maps
to corresponding mechanisms in Eiffel and C++, the latter via use offriend classes).
It is also useful for expressing Java’s inner class mechanisms, and is very helpful in the
design phase, when class communication and coupling is being developed; it is sug-
gested [16, 29] that such a flexible visibility mechanism is a useful specification and
design tool, not just an implementation tool. To express such visibility mechanisms in
UML would require non-standard stereotypes, which introduce the usual potential for
communication problems.

3.1.4 Textual dialect of BON Unlike UML, BON has a textual dialect for specifi-
cation that is entirely equivalent to its graphical notation. Using the textual notation is
convenient for reducing the syntactic gap between specifications and code. The BON
CITIZENclass in Fig. 1(a) has the textual specification shown in Fig. 3 (readers familiar
with Eiffel will note syntactic similarities).

class CITIZEN feature
name, sex, age : VALUE
spouse : CITIZEN
children, parents : SET[CITIZEN]

single : BOOLEAN
ensure Result<->(spouse=Void) end

divorce
require not single
ensure single and (old spouse).single

end

invariant
single or spouse.spouse=Current;
parents.count=2;
for_all c member_of children it_holds

(exists p member_of c.parents
it_holds p=Current)

end -- CITIZEN

Fig.3.Textual BON specification for classCITIZEN

Mathematical elements like8 and9 in the graphical class interface are written out in
words, e.g.,for_all , in the textual specification. The textual dialect for BON was de-
signed to serve a purpose similar to that of the OCL, in reducing the difficulty that non-



mathematicians may have in using constraint languages. A difference between textual
BON and OCL is that standard mathematics is used with textual BON, and therefore
so are all standard forms of writing and reasoning about constraints. These are tech-
niques that are taught in all undergraduate CS programmes today. With OCL, students
and developers must learn a new syntax, semantics, and reasoning rules.

The textual dialect of BON includes facilities for expressing inheritance (single and
multiple), and for renaming and redefining features. See [29] for details.

3.2 Static architecture diagrams

As the design principles of uniqueness and simplicity suggest, BON provides a small,
yet powerful selection ofrelationshipsthat can be used to indicate how classes in a
design interact. These relationships work seamlessly and reversibly with those that are
supported by modern OO programming languages–especially Eiffel, but also Java and
C++. There are only two ways that classes can interact in BON.

– Inheritance: one class inherits behavior from one or more parent classes. Inher-
itance is the subtyping relationship; it corresponds to generalization in UML: ev-
erywhere an instance of a parent class is expected, an instance of a child class can
appear. There is only one form of inheritance relationship in BON; however, the ef-
fect of the inheritance relationship can be varied by changing the form of the parent
classes (e.g., making parents deferred).
In BON, renaming mechanisms can be used to resolve name clashes and repeated
inheritance conflicts that arise when using multiple inheritance. In a child class,
features inherited from a parent can be tagged as being renamed. Renaming sup-
portsjoining of features andreplicatingof features. By contrast, UML provides no
mechanism for resolving conflicts. According to [23], it is the responsibility of the
designer to resolve class conflicts in multiple inheritance, for example, based on
some provided programming language mechanism.

– Client-supplier: a client class has a feature that is an instance of a supplier class.
There are two basic client-supplier relationships, association and aggregation, which
are used to specify thehas-aor part-of relationships between classes, respectively.
Both relationships are directed; there is no equivalent to the undirected association
of UML in BON. These two relationships correspond tonavigableassociations and
compositions, respectively, in UML, or to usage dependencies. There is no equiv-
alent to UML’s aggregation in BON. Client-supplier relationships can be bidirec-
tional, and self-directed; we provide examples later. A third relationship, shared
association, is discussed in [29].
There are only class, and not object, client-supplier relationships in BON, because
of the requirement for seamlessness and reversibility. This is discussed more in
Section 3.2.1.

Fig. 4 contains a non-trivial architectural diagram using BON, demonstrating examples
of both inheritance and association. In the figure, classes are drawn in their compressed
form. Thin vertical arrows (e.g., betweenEXPandSD) represent inheritance. Double-
line arrows with thick heads (e.g., betweenFTSandTRANSITION) represent associa-
tion (‘has-a’). On the associations, names (and optionally, types) of client features that



use the supplier class can be specified, e.g., featureeventson the association between
CLOCKCHARTandEVENT; thus,eventsis a feature ofCLOCKCHART. The type of
eventsis generic; eventsis a set of instances ofEVENT. The BON naming notation for
client-supplier relationships roughly corresponds to the UML notation for roles.

TRANSITION

STRING

TYPE

EXP VAR

SD

CD

alpha: SET[...]

FTS
trans: SET[...]

CLOCKCHART EVENT

CHOOSE ASSIGN

START STOP

COUNT_UP

COUNT_DOWN

COUNT_UP_PARAMETER

COUNT_DOWN_PARAMETER

events: SET[...]

action: SET[...]

DESCRIPTIONS
FAIR_TRANSITION_SYSTEM

EFFECTIVE_CLOCK_COMMANDS

CLOCK_TRANSITION_SYSTEM

CLOCK_COMMAND
*

COMMAND
*

Fig.4.BON architectural diagram for fair transition systems

3.2.1 Client-supplier relationships Client-supplier relationships in BON are be-
tweenclasses, and constrain classes. This differs from UML, in which associations,
compositions, and aggregations all constrain collections. The BON relationships can be
mapped directly to attributes or queries in OO languages like Eiffel and Java, and can
be reversibly generated from Eiffel and Java programs.

Associations and aggregations in BON have no object multiplicities; class invari-
ants can be used to express such constraints. In this manner, constraint details are kept
solely within classes, and thus it is easier to maintain them and to understand their
relationships. If BON also supported object multiplicities, it would either break the
seamlessness of the approach (because there is no simple, general mapping from object
multiplicities to programs), or it would provide no further information beyond what we
obtain from class invariants. Using class invariants instead also helps to improve the
readability of the specification.



Multiplicities in a relationship are just one of many different kinds of constraints
that one might want to write on a relationship. Instead of providing a multiplicity no-
tation, BON provides a single, uniform and expressive notation to express all kinds
of constraints on relationships, including multiplicities. We note that with UML, mul-
tiplicities and the OCL can be used separately or together to constrain relationships;
this redundancy can make it difficult to provide guidance on the use of the modeling
language.

Client-supplier relationships in BON may haveclassmultiplicities, indicating the
number of relationshipsbetween a client and a supplier (e.g., a client may have two
variables of supplier type). Multiplicity is indicated by placing a lozenge containing the
number of relationships on the client-supplier arrow. This is not the same as UML’s ob-
ject multiplicity. A similar notation exists for expressing multiple repeated inheritance
relationships.

Fig. 4 shows examples of associations. BON also provides a notion ofaggregation,
which is commonly used to represent the ‘part-of’ relationship. Unlike some notations
aggregation has a clear and formal semantics in BON: it corresponds to the notion of
expandedtype, e.g., in Eiffel; that is, aggregations are mapped seamlessly to expanded
types. A variable of expanded type is not a reference; thus, memory can be allocated on
a run-time stack. An implication of this is that in BON, aggregates are created, exist,
and are destroyed with the whole. This most closely corresponds with UML’s notion of
composition.

All client-supplier relationships in BON are directed; unlike UML, there is no undi-
rected association. The reason for eliminating undirected relationships is reversibil-
ity; undirected associations would eliminate the possibility of developing a seamless
method. The BON developers state that the gains of having undirected associations
are outweighed by the gains of a seamless method. Further, the relationships that are
expressible via undirected associations are typically not the most interesting to the mod-
eler [29].

3.2.2 Clustering In Fig. 4, dashed boxes areclusters, which encapsulate subsystems.
In BON, clusters are a purely syntactic notion. They can be used to present different
views of a system, e.g., based on user categories, subsystem functionality, license re-
striction vs. public domain components, etc. Clusters roughly correspond to the notion
of package in UML, but there are several differences.

The first difference pertains to the extension of BON’s relationships to clusters. With
BON, inheritance and client-supplier relationships are recursively extended to be appli-
cable to clusters as well as classes, as the figure shows. Precise rules for such extensions
can be found in [29], but the basic ideas are simple. An inheritance relationship from
a cluster to a class indicates that every element of the cluster inherits from the class. A
client-supplier relationship from a class to a cluster means that the classcanuse some
element of the cluster.

A similar relationship is defined for package dependencies in UML; the UML
<<imports>> stereotype is similar in intent to BON’s client-supplier relationship
between classes. A difference arises with inheritance. UML supports generalization be-
tween packages, but it differs in meaning from inheritance involving BON clusters. In



UML, package generalization defines a substitutability relationship among packages;
in BON, it simply means that everything in the child cluster inherits from everything in
the parent cluster.

The second important difference between clusters and packages is that UML pack-
ages introduce import and export facilities. Things inside a UML package cannot see
out of the package by default. Further, things outside of a package cannot see inside the
package. This can be changed by the specifier by introducing visibility tags (specifically,
public, private and protected visibility) on things inside a package. Packages can also
explicitly import visible components of other packages, via the<<import>> stereo-
type. BON supports none of these features; visibility and accessibility is determined
and specified by the modeler. Clusters provide no namespace control, visibility control,
and import/export facilities. All of these featuresare provided at the class level (e.g.,
through renaming and feature sectioning), because of the requirement for seamlessness.

The limitation with the UML approach is that it makes it difficult to express fine-
grained visibility of specific features of classes; we discuss this more below. On the
other hand, UML’s packages make it straightforward to model facades, i.e., visible and
accessible elements of a package, something which can be done only by convention in
BON. We also note that not all programming languages support packages in the form
present in UML; this means that seamlessness can be lost.

In both UML and BON, the contents of a package or a cluster can be omitted from
a diagram if they are not important to the specific view of the specification that we are
presenting. CASE tools for both languages exist to support this ‘hiding-of-detail’.

In BON, clustering, combined with the previously mentioned visibility mechanism
in classes, can significantly simplify modeling. Suppose that we have two clusters, a
control and a plant, each of which may contain other clusters and classes. A classFOO
in the control cluster needs to use a classBAR in the plant cluster. To express this in
BON, we simply draw a client-supplier relationship from the control to plant cluster;
there is no need to indicate the specific classes involved. Then, in the interface of class
BARin the plant, we specify visibility controls; that is, there will be a section inBAR
prefixed with the name of classFOO.

How could this be done with UML? Packages for the control and the plant would
be created, and imports and exports would have to be added. But selective export of
components of a package, i.e., that only a specific component of this package is ac-
cessible to another package, is not easy to express. New stereotypes would have to be
introduced, at both the class and package level, to express that, e.g., only classFOOcan
access a particular strict subset of the features of classBAR.

3.3 Dynamic diagrams

The BON static diagrams are designed to be simple, expressive, and appropriate for sup-
porting seamlessness and reversibility. BON also provides a simple, uniform expressive
notation for specifying message passing and object interactions. This notation presents
a complementary view to that of a static model, and is supplemented by a dynamicchart
notation.

We view the BON dynamic notation as useful for producingrough sketchesof sys-
tem behaviour [14]. Rough sketches provide informal, possible vague ideas of how el-



ements in a system interact, e.g., via message passing. They are to be used to provide a
basis for later production of feature contracts. However, just because we view dynamic
diagrams as rough sketches does not mean that the BON dynamic diagrams cause us to
lose seamlessness and reversibility. We retain these capabilities because in the dynamic
diagrams, the only message passing primitive is the feature call.

There are two categories of dynamic BON notations: the charts, and the object com-
munication diagram. The charts are an informal CRC card-like notation — typically
used early in the dynamic design stage — to describe incoming and outgoing system
events (via event charts), communication scenarios (via scenario charts), and creation
of instances (via object creation charts). The object communication diagram models ob-
jects, and the messages that are passed between objects during a computation; messages
are just feature calls. Objects are represented as rectangles enclosing the name of their
class, perhaps with an object name qualifier; multiple objects are drawn as overlapping
boxes. Messages are depicted as dashed arrows, optionally annotated with sequence
numbers representing order of calls. Sequence numbers can be cross-referenced to en-
tries in ascenario box, which explains semantics. Semantics of calls can be expressed
in natural language, or using the assertion language. This is depicted in Fig. 5. Sequence
numbers may be nested to an arbitrary depth (e.g., 1.1, 1.1.1, 1.1.2), as in UML.

DRIVER

OWNER

CAR ENGINE

1,6

2,4 3,5

1. Driver gets keys from owner.

Scenario: borrow car and go for a drive.

2. Driver turns ignition.
3. Engine starts.
4. Driver removes key.
5. Engine stops.
6. Driver returns keys to owner.

Fig.5.Object communication diagram with scenario box

Messages in the diagram correspond to calling a feature of an object. Messages are
always potential. Bidirectional messages (e.g., showing calls and returns) can be drawn,
as can concurrent messages, where a message is sent to many objects simultaneously.

The object communication diagram corresponds most closely to UML’s collabo-
ration diagram; both forms of diagram share the ideas of sequence numbers and using
two dimensions to express collaborations. Unlike UML, though, the BON diagram does
not include stereotypes or function or procedure calls on messages; such details, when
necessary, are included in the scenario box. These kinds of details can clutter a diagram



if not used judiciously. Further, BON frees the time axis in the diagram; this can result
in substantially smaller diagrams than are possible otherwise.

As an example, consider the UML collaboration diagram shown in Fig. 6(a); it
is adapted from one in [23], omitting certain stereotype details on links. It could be
expressed in BON as shown in Fig. 6(b).

: Transaction

c: Client

1: <<create>>
2: setActions(a,d,o)
3: <<destroy>>

p:ODBDProxy

2.1: setValues(d, 3.4)
2.2: setValues(a,"CO")

(a) UML collaboration diagram

(c)
CLIENT

TRANSACTION ODBD_PROXY
(p)

1, 2, 3

2.1, 2.2

Scenario: sample communication.

1. Create a transaction.
2. Call setActions(a,d,o)

2.1. Call setValues(d,3.4)
2.2. Call setValues(a,"CO")

3. Destroy the transaction.

(b) BON object communication di-
agram

Fig.6.Examples of dynamic diagrams in UML and BON

Since UML’s collaboration diagram is semantically equivalent to its sequence dia-
gram, BON’s object communication diagram can be used to express sequence diagram
details as well. BON provides only a single diagram for modeling a concept where
UML provides more than one.

BON provides an object grouping mechanism akin to the cluster; see [29]. Mes-
sage relationships are recursively extended to groups, which can substantially simplify
dynamic diagrams.

3.3.1 State machinesBON does not provide its own dialect of state machines. If
designers want to use state machines to, say, specify the reactive behavior of objects,
they can use any of the existing dialects, e.g., Harel statecharts, or that used with UML.
If contracts are used to specify feature behavior, a state machine can be inferred from
the contracts, in much the same way as is provided by theSOMATIKtool [7].

In BON, more emphasis is placed on the use of design by contract, object commu-
nication diagrams, and the assertion language than on the use of state machines. This is
because of the seamlessness and reversibility requirements for the language.



3.4 Further UML diagrams

There are a number of UML diagrams and concepts that have no direct equivalent in
BON. Some of these concepts contravene the BON requirements for seamlessness and
reversibility. Stereotypes, in particular, are not a part of BON for this reason, as are use-
case diagrams. Components and component diagrams, as well as deployment diagrams,
are not part of BON as well.

4 Design by contract and assertion languages

We now turn to the second major technique supported by BON (and supportable by
UML), namely design by contract [16]. In doing so, we explain how the technique is
used in BON and UML, and discuss the respective contracting or assertion languages.

The notion of design by contract is central to BON. It is used to specify the behavior
of features, of classes, and of class interactions. Each feature of a class may be given a
contract, and interactions between the class andclientclasses must be via this contract.
The contract is part of the official documentation of the class; the class specification and
the contract are never separated. This substantially aids readability and specification
simplicity.

The contract of a feature places obligations on the client of the feature (who must
establish the precondition) and supplies benefits to the client of the feature (who can
rely that the feature will establish the postcondition). Both BON and UML offer con-
straint languages than can be used to precisely specify behavioral details about classes,
features, and entire systems. BON has a simple assertion language based on standard
first-order predicate logic; the method was designed around the use of the assertion lan-
guage, via design by contract. By contrast, UML has its Object Constraint Language,
which was added to UML in version 1.1, after much work on the modeling language
had been completed.

4.1 Assertions in BON

Contracts, and thus class behavior in BON, are written in a dialect of predicate logic.
Assertions are statements about object properties. These statements can be expressed
directly, using predicate logic, or indirectly by combining boolean queries from indi-
vidual objects. The basic assertion language contains the usual propositional and arith-
metic operators and constants. Expressions constructed from these simple elements are
easy to immediately translate into executable code.

The BON predicate logic can be used when more expressive power is needed; the
logic is sufficiently expressive to model any computation. The predicate logic intro-
duces basic set operations (e.g., membership, union, et cetera), and universal and exis-
tential quantifiers. The basic assertion language elements in BON are given in Table 1,
below. We show elements in both the graphical and the textual syntax. The graphical
syntax is similar to that used in any recent logic or discrete maths textbook.

The BON assertion language can also be used to refer to a prestate in the postcondi-
tion of a routine. Theold keyword, applied to an expressionexpr, refers to the value of



Assertion Elements

Graphical BON Textual BON Explanation
Result Result query result

@ Current current object
+;�; =; � numeric operators

=; 6= =, /= equal, not equal
! -> semi-strict implies

and, or logical and, or
: ;$ not, <-> not, equivalence
9 exists there exists
8 for_all for all
j such_that such that
� it_holds it holds
2 member_of in set

Table 1.Examples of BON assertion elements

exprbefore the routine was called.old can be used to specify how values returned by
queries may change as a result of executing a command. Most frequently,old is used
to express changes in abstract attributes. For example,count= old count+ 1 specifies
thatcountis increased by one.

A formal semantics for contracts in BON, as well as a collection of re-engineered
rules for reasoning about BON contracts, can be found in [21].

4.2 The Object Constraint Language

The Object Constraint Language (OCL) is roughly the equivalent of the BON assertion
language in UML. It can be used to write pre- and postconditions of methods and class
invariants. Requirements for the OCL include: precision; a declarative language; strong
typing; and, being easy to write and read by people who are not mathematicians or
computer scientists. As a result, OCL syntax is verbose, replacing common mathemati-
cal operators and terms with a more programming language-like syntax. Such a syntax
is proposed for being more attractive to developers unfamiliar with basic logic and set
theory. However, to developers experienced with the use of a constraint language in
software design, the OCL will appear cumbersome and difficult to use—especially for
reasoning.

We–and others [7, 22]–question whether it is feasible to produce a usable constraint
language that satisfies all the goals of the OCL. This is discussed more in Section 5.

4.3 Comparison

While the BON assertion language and OCL are roughly similar in terms of how they
are each intended to be used, there are significant differences between the two lan-
guages.



The first difference is really one in terms of the rˆole or emphasis the constraint
languages play in the modeling language. The assertion language is fully integrated
into BON; the graphical (and textual) notation and the process have been designed with
use of the assertion language in mind. With UML, the constraint language is an add-on,
and there are syntactic and semantic issues that remain to be considered with the OCL’s
addition [8].

The BON assertion language provides both a familiar, concise, expressive mathe-
matical notation – in its graphical form – as well as a textual form that may be preferable
to inexperienced constraint language users. We suggest that the graphical BON asser-
tion language is far superior for reasoning, either with a tool or without, than the OCL;
even simple proofs, e.g., the kind needed to show totality or satisfiability of a constraint,
will be large and complex to do with OCL’s syntax. An example of using the BON as-
sertion language for reasoning can be found in [21].

Another significant difference is that OCL is a three-valued logic; anexpression
may have the valueUndefined. BON possesses a notion ofVoid, which reference types
may take on. However, this is not the same as OCL’sUndefined, as only a reference
variable (and not, e.g., aBOOLEANvariable, or an expression) can take on valueVoid.
Three-valued logics need more extensive rules for reasoning than standard predicate
calculus. A full comparison of two- and three-valued logics is beyond the scope of this
paper, but the interested reader can find a discussion in [3]. A case for making the OCL
a two-valued logic can be found in [8].

BON defines the effect of inheritance on constraints: they are all inherited by the
child class (where the child class may refine them in a formally defined way). With
OCL, this approach is recommended, but not required. It is not clear what value there
is in not requiring the inheritance of contracts.

The BON assertion language is not formal, in the sense of notations like Z [25],
in that it has a precisely specified formal semantics, e.g., as a set of axioms. However,
the language is based on typed set theory, and so producing a formal semantics will
not be difficult; a formal semantics for contracts (in a sequential setting) can be found
in [21]. The OCL is also not formal; work on providing it with a formal semantics
has begun [9]. This work has already identified some limitations with the OCL, and
some complications in terms of formalization, especially with respect to flattening of
collections and the three-valued nature of OCL’s logic.

We now discuss more specific features of BON and UML, with regards to the con-
straint languages and their use in modeling.

4.3.1 Contextual information In BON, constraints (preconditions, postconditions,
and invariants) are written in class interfaces; they are never separated from the in-
terface to which they apply, and therefore maintaining constraints and ensuring their
consistency with respect to the attributes and queries of a class is straightforward.

With OCL, it is recommended that constraints not be included in the class diagrams
[30], in part because doing so clutters the UML class diagram. Constraints are instead
written textually, separate from the diagram, perhaps elsewhere in a specification doc-
ument. For example, to express that an attributeageof a classCustomeris always at



least 18, we would write

Customer

age � 18

Because constraint and class are written separately, it is necessary to indicate the class
to which a constraint applies; the context is underlined and prefixes the constraint. Since
constraint and diagram are separated, there is increased likelihood of inconsistency, es-
pecially without suitable tool support. Even with tool support, separating constraint and
class can make it difficult for developers to use existing constraints to further develop
the class, simply because the developers lose their focus. Part of the value of using
constraints with classes is that when writing new constraints, we can use existing con-
straints, through functions of a class. This is not easy to do when constraints are not
kept in one place.

4.4 Support for design by contract

The BON assertion language is used to specify pre- and postconditions of features as
well as class invariants. Such behavioral specifications are inherited by child classes,
and may be further refined (e.g., a precondition may be replaced by a weaker precon-
dition in a child class). BON provides theold keyword, usable in postconditions, for
referring to the value of an expression in a routine prestate.

OCL support for software contracting comes in the form of class constraints (which
are equivalent to BON’s class invariant), and optional pre- and postconditions. These
contracts are not, by default, inherited by a child class, though they may be. Here are
two example of contracts in OCL. They are taken from the BON classCITIZEN in
Fig. 1(a). First, we show a possible contract, in OCL, for the parameterless function
single.

Citizen :: single()

pre : �� none

post : result = (spouse = NULL)

In the equivalent BON contract forsingle, spouseis compared with theVoid reference;
a citizen is single if and only if theirspouseattribute refers to theVoid object. [30]
makes no reference to aVoidor NULL object that can be used with reference (or object)
types. We useNULL here for illustration, but a careful consideration of object types,
Void references, and their effect on the type system of OCL and UML, is necessary.

And the contract for the parameterless procedure,divorce.

Citizen :: divorce()

pre : not single()

post : single() and spouse@pre:single()

In the postcondition ofdivorce, the value of attributespousebeforedivorceis called is
referred to, by using of the@pre notation1. For any attributex, x@pre is the value of

1 @pre is evidently derived from the Z primed notation [25].



x in the prestate of a method.@pre can only be applied to attributes or associations
(i.e., collections of some kind). This should be contrasted withold, which serves a
similar purpose in BON, though thereinold can be applied to any expression.old makes
specification of certain features very straightforward and convenient. There is no valid
technical reason to restrict use of@pre to attributes and associations, except to simplify
the notation.

4.5 Language built-in types and operations

BON provides a library of built-in classes, such asINTEGER, REAL, STRING, and a
number of generic container and traversal classes, e.g.,SET[G], ARRAY[G], andBAG[G].
All class features are accessed in the same way, using the dot notation, whether the class
is a collection or not.

OCL provides a number of built-in types, including basic types like integers, and
collection types like bags, sequences, and sets. Methods of collection types (defined in
[30]) are accessed via the arrow notation!; methods of basic types are accessed by the
standard dot notation. It has been suggested that the arrow notation in OCL is counter-
intuitive [6], and difficult to teach, in part because of its confusion with the similar
pointer dereference syntax of C, and implication of logic. A simplifying consistency
modification to OCL would be to obey the uniform access principle, and to use dot
notation to access methods and attributes.

The definition of OCL states that collections are flattened [30]; that is, collections
cannot contain other collections. Nestings of collections are not permitted because they
are considered to be complex to use and explain; however, they are a very useful mod-
eling tool. Further, flattening makes formalization of a theory of collections difficult
[8], can require non-standard reasoning about collections, and significantly reduces the
modeling power of the notation. We agree with [8] that flattening collections is unnec-
essary, and it reduces the value of the OCL significantly.

OCL offers a selection of features on collections, such ascollect(which produces a
new collection based on computed values from an old collection),select(which chooses
values from a collection),forAll (which specifies that a boolean expression must hold
for all values), andexists[30]. Others are suggested in [8]. BON instead provides a gen-
eral, and standard, set comprehension notation that encompasses all the OCL notations,
and is, in our opinion, less prone to confusion and ambiguity, and easier to teach and
provide methodological guidance as to its use. We note that there is redundancy with
OCL’s features:collectcan be used to specify the other features. While this redundancy
is not necessarily inappropriate in itself, better justification for includingcollectas well
as the other features should be provided.

Consider an example, taken from [30], that uses the OCLforAll operation. Suppose
we have a collection (e.g., a set) of customers in a classLoyaltyProgramand want to
specify that all customers are no more than 70 years old. In OCL, a specification is

LoyaltyProgram

self:customer! forAll(c : Customer j c:age() � 70) (1)

This specification is not very readable. It also contains many unnecessary elements: the
!, the empty parentheses, and the type ofc.



The corresponding BON specification is an invariant of classLOYALTYPROGRAM,
which possesses a set attributecustomer. The constraint is

8 c 2 customer� c:age� 70

It is difficult to argue that the OCL specification (1) is easier to write and read than the
corresponding graphical BON specification, and even the textual BON specification:

for_all c member_of customer it_holds c.age<=70

In the example, the mathematical symbols involved in constraining the set are simple;
overuse of such symbols may result in large, hard-to-read specifications. However, the
OO setting can prevent overuse: therein, the constraints are used to write contracts and
clauses of class invariants. Very often, such behavioral specifications are short and sim-
ple (and if they are not, very frequently the specifier is doing something wrong).

An alternative OCL specification of (1) is given in [30]. The alternative is, in fact,
more concise, and is as follows.

LoyaltyProgram

self:customer! forAll(age() � 70) (2)

This is clearly easier to read, but it introduces a new problem.age() is an operation
of the classCustomer . The constraint (2) belongs toLoyaltyProgram . The use
of age() in (2) is untargeted; the object to which the call applies is not provided. The
OO paradigm clearly states that all operation calls must be targeted, either implicitly to
the current objectself or to a specified object. Neither case applies to (2), so we must
reject use of such constraints for OO modeling.

UML also provides theallInstancesoperation for producing the set of all instances
of a modeling element as well as its subtypes. Here is an example, from [30].

Person

Person:allInstances! forAll(p j p:parents! size � 2)

The constraint says that a person has no more than two parents. Note that the constraint
is applied to the classPersondirectly. In BON, there is no equivalent toallInstances,
and so the only alternative for expressing such a constraint is to constrain the invariant
of classPerson. In BON, the above constraint would be written as

parents:size� 2

This latter example of a constraint can also be written in OCL, and in fact is the rec-
ommended approach in [30]. [30] also discourages use ofallInstancesin this manner.
allInstancesis clearly unnecessary for writing constraints like the preceding, but it has
been suggested as useful for specifying creation procedures [8]. In OCL, we can spec-
ify the creation of a new object (say, of typeStudent, being added to an existing set of
students in aCourseobject) as follows. (For simplicity, we omit arguments that can be
used to set attributes of the student being created.)

Course :: add new student()

self:students! exists(s : Student j

Student:allInstances� Student:allInstances@pre! includes(s))



We specify thatstudentsincludes a new student who wasn’t previously in the set of
all known instances of typeStudent. From this example, it is implied thatallInstances
gives the set of all instances of a type at some point in time; this is confirmed in [8].

This notation is not convenient; Catalysis [6] introduces anew notation for object
introduction. A similar notation could be added to OCL.

Expressions similar toallInstancescan be written in BON. Suppose classCOURSE
has a setstudentsand a featureadd new student. This feature’s postcondition will be

9 s2 students� s 62 old ft : STUDENTg

The propositional part of the postcondition says thats, now an element ofstudents,
wasn’t in the set of all knownSTUDENTs before the operation was called.

A specialallInstancesfeature is unnecessary if a single, expressive assertion lan-
guage based on standard typed set theory and predicate logic is provided.

4.6 Contracts for resolving ambiguity

OCL was added to UML to provide a more precise basis to the modeling language. It
also provides designers with a mechanism with which to resolve model ambiguities.
An excellent example of the latter, from [30], arises with the or-constraint. Consider
Fig. 7. Two interpretations are possible: one person has either a managed project or a
performed project, but not both; and, one project has either a project leader or a project
member, but not both.

Person Project

managedProject

performedProject

projectLeader

projectMember

0..1

0..10..1

0..1

{or}

Fig.7.Ambiguous or-constraint

To precisely express which interpretation is desired, a constraint on either class
Personor Projectcan be added; see [30] for examples. Adding an OCL constraint, in
fact, removes the requirement for the UML or-element; the meaning of the association
is captured unambiguously by the constraint.

This is exactly the approach taken to specifying such a model in BON. No new fea-
tures are added to the language in order to model or-constraints; the constraint language
is used to express the desired restrictions. Fig. 8 shows a BON diagram, with the first
possible interpretation. The lozenge betweenPERSONandPROJECTindicates that
there are two bidirectional relationships between the classes; the names of the features
involved in the relationships are specified on the relationships.

While we can write a BON model similar to the UML one, we question whether
object-oriented designs should be written in the style of Fig. 7 in the first place. A



managed=Void or performed=Void

PERSON
PROJECT

managed,
performed

2
member
leader,

Fig.8.BON specification of or-constraint
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Fig.9. Inheritance solution to design of Fig. 8

more maintainable and understandable design for a similar system would make use of
inheritance and polymorphism, as shown in Fig. 9.

Graham [7] makes observations similar to our own. Constraints should be added to
subclasses ofPERSONandPROJECTto restrict acceptable types of the featuresrole
andkind.

A precise, expressive, assertion language can dramatically simplify the require-
ments for a modeling language. It also makes it easier to give advice to users of the
language on how to deal with various modeling problems. It can improve the read-
ability of specifications, make specifications simpler, and can simplify the modeling
language itself.

4.7 Accessing the meta-level

OCL provides facilities to access the meta-level of a model. This allows, for example,
modelers to interrogate an object to determine its type. The operationoclIsTypeOfis
used for this. OCL provides these operations, which are applicable to every type of
OCL instance, as features of a classOclAny. Operations provided with this class also
includeoclIsKindOf, which is a boolean function used to check type conformance, and
a number of equality and comparison operators.

OclAnyis a supertype of all types in a model. The BON equivalent is calledANY,
at the top of the BON classification lattice. It supplies equality, type conformance, and
comparison operations, likeOclAny. In theory, BON also has abottomto its classifica-
tion lattice:NONE, which inherits from every class.NONEhas no instances.

Consider the example on page 52 of [30]. Child classesApplePieand PeacePie
inherit fromFruitPie. An invariant onApplePieis that its ingredients are only apples.

ApplePie

self:ingredient! forAll(oclIsKindOf(Apple))



The constraint says all elements of the ingredient collection are of typeApple. In BON,
we would add an expression to the invariant of classAPPLE PIE as follows.

8 i 2 ingredient� i : Apple

The colon operator ‘:’ is used in BON constraints for type interrogation; it is a feature
of classANY. [29] contains a number of examples of its use.

5 Tool Support

Currently, there is a wealth of UML-compliant tools, e.g., Rose, COOL:Jex/ObjecTeam,
and EiffelCase, to assist developers in producing UML models and in generating code
automatically from the models. There is less tool support for BON. BON is primarily
supported by EiffelCase, from ISE. EiffelCase supports production and browsing of
static BON diagrams, as well as automatic code generation from the diagrams, and
the reverse engineering of such diagrams from Eiffel programs. The CASE tool works
cooperatively with the EiffelBench compiler and debugger, the latter of which can be
used to syntax and type check subsets of specifications. As of revision 4.3 (released
February 1999), EiffelCase also supports pseudo-UML.

UML currently has a significant advantage over BON in terms of tool support.

6 Limitations of BON and UML

In this section, we briefly discuss some limitations that we have identified, with both
BON and UML. Our observations are based on those that arose during development
of this paper, through extensive use of BON, and through teaching of both BON and
UML.

6.1 Improvements to BON

Two inadequacies with BON were identified and discussed in detail in [21]: tool sup-
port and handling of real-time. There does not exist a wealth of tool support for BON;
EiffelCase, a CASE tool from ISE, supports the static diagram and interface notation, as
well as round-trip engineering and code generation. There is no analytic tool support,
e.g., for reasoning about contracts and classes. Work is underway on providing such
support, as detailed in [21]. Better tool support is needed for BON in general, if it is to
be considered industrial-strength.

Currently, BON provides no support for real-time specification (concurrency, of a
certain degree, can be expressed using object communication diagrams). UML, by com-
parison, has real-time features, e.g., as detailed in [5]. A long-term direction of research
will be to study how, and if it is valuable, to provide real-time features that integrate
with BON’s behavioral modeling techniques. This could go hand-in-hand with further
study and development of dynamic modeling notations in BON. Currently, BON pro-
vides only object communication diagrams. [29] suggests that statecharts can be used
in cooperation with BON as well. Consideration of other dynamic notations, e.g., those



in UML or [4], as well as physical modeling notations, such as, deployment diagrams,
to see if they have a role to play in BON, will be worthwhile as well. Any extensions to
BON will have to maintain seamlessness and reversibility.

Unlike UML, BON does not currently have a precise diagrammatic meta-model; it
does have a context-free grammar for its textual dialect (see [29]). Given the simplicity
of BON and its grammar, producing a precise meta-model should be straightforward.
Though the UML does possess a meta-model, it has been criticized for its lack of clarity
and for omission of concepts. See [11], in particular, for a comparison of UML’s meta-
model with that of OPEN.

Finally, the BON assertion language can be criticized as being complex and inacces-
sible to non-domain experts. A semiformal natural language extension – akin in premise
to OCL, though with a different syntax – might be worthwhile, when the method is to
be used by non-experts. The textual BON assertion language would be a good starting
point for the development of such a notation.

6.2 Improvements to UML

The UML has been constructively criticized by many others, e.g., [7, 17, 24]. Our com-
parison of BON with UML has led us to the following suggestions for improvements
with the UML.

– Design by contract.Design by contract can be supported in UML through the
OCL, but it is not a core part of the modeling language. Full support for design
by contract in UML would an excellent way to rationalize existing techniques for
specifying constraints, and would significantly improve the UML’s capabilities for
building reliable, robust software. This, however, may be difficult: the visual model-
ing notation may require changes in order to better integrate design by contract ca-
pabilities, and the semantics, particularly with respect to state diagrams, may have
to be changed to accommodate contracts. Further, tool support for UML would
have to be augmented to fully support design by contract.

– OCL. As it currently stands, we believe the OCL is too informal and too verbose
for behavioral modeling and for reasoning about said models. A formal semantics
for the OCL, as well as a less verbose syntax, needs to be developed. Work is
underway along these lines, e.g., see [9] for a Larch LSL semantics for OCL. The
interested reader might consult [20], which presents an integration of UML with a
formal design calculus that can be used to write constraints and to reason about the
constraints in a rigorous manner.
A number of decisions in the design of OCL are also worth revisiting. As discussed
earlier, and elsewhere [8], making the OCL a three-valued logic, and requiring the
flattening of collections, are questionable decisions and impact on the modeling
power of the notation. Furthermore, there are modeling concepts in the OCL that
are questionable value (e.g.,allInstances) and there is redundancy; rationalization
would therefore be useful.
We question whether it is feasible to develop a constraint language that meets all
the requirements placed on the OCL. The goals of precision and non-expert un-
derstandability seem to be mutually exclusive. A better approach, as is commonly



used in the formal methods application area, might be to use a formal contract lan-
guage for modeling and specification, and to thereafter paraphrase it into natural
language.

– Rationalization.With the UML, there are typically several ways to write a model;
UML does not satisfy the principle of uniqueness, discussed earlier. In part, this is
an artifact of unification and the desire to make it as easy as possible for users of
the unifying methods to move to UML.
With the addition of the OCL, a number of modeling concepts, e.g., or-constraints,
subset constraints, etc., can be considered redundant. Further rationalization could
to be done in order to make the UML manageable and more teachable. Alterna-
tively, restrictions of the UML could be examined, e.g., removing those graphical
modeling concepts that become redundant upon addition of a precise constraint
language. This is discussed more in the conclusions.

7 Teaching with BON and UML

We have been teaching with BON at all levels of our undergraduate and graduate cur-
riculum for two years now, and in this section we briefly discuss our rationales for
using BON, and how we introduce students to UML and other modeling languages and
methods as well.

7.1 How do we use BON?

We introduce BON, in a very simple form, to students in our first year CS1 and CS2
courses. Therein, BON is simply used to specify class interfaces, and to draw client-
supplier relationships and inheritance relationships between classes. We do not use the
full BON assertion language, nor dynamic diagrams. Contracts for methods are speci-
fied as simple propositional pre- and postconditions, which can be implemented directly
in any programming language. The lab manual for these courses is supplemented by a
short introduction to BON, prepared by one of the authors. These two courses use Java,
and so the introduction contains a simple guide to mapping the subset of BON con-
structs that are used into Java code.

The use of contracts – even simple propositional ones, as used in our first-year
courses – is emphasized and reinforced throughout the undergraduate curriculum. The
value of contracts in terms of abetting debugging, testing, and coding, is emphasized in
all programming-oriented courses.

We have two third-year undergraduate courses, one on object-oriented program-
ming and another on software design. BON is introduced, at a high-level, in the first
course, and is taught in detail in the second course. In the second course, BON is ap-
plied in a small specification assignment, and then in a large-scale group project. In the
project, a BON specification is produced (typically, the specification is in the range of
15-25 pages). Then, in following project phases, the specification is implemented in an
OO programming language. CASE tools are used to develop the specification, and to
produce code templates for implementation.



We have also used BON in our advanced graduate-level software engineering course.
Therein, BON is taught and students are required to apply it in requirements analysis
and specification of a substantial software system.

7.2 Why did we choose BON?

Our choice of BON as a teaching method was influenced by our desire to educate stu-
dents in the seamless production of reliable, robust, maintainable software systems.
BON, through its design by contract and OO technologies, meets this need. Further,
we also wanted to give students experience with state-of-the-art and industrial-strength
CASE tools, compilers, and debuggers. Tools for BON also fit this need. Finally, we
wanted to teach a method that would not get in the way of students applying software
design principles. In our experience, and in the experience of others, complex methods,
notations, and tools can prevent the students from understanding how to apply the de-
sign principles, e.g., related to class communication, taught in lecture. With BON, the
notation and method do not get in the way of the students applying the techniques for
producing reliable and maintainable software that are taught in lecture.

Another reason for teaching BON is that students can quickly and effectively start
to apply it to non-trivial problems. We typically spend at most one fifty minute lecture
teaching the syntax, semantics, and process of BON. We then spend a number of lec-
tures on CASE studies illustrating BON’s use, and on in-class examples where BON is
used in the specification and design of systems. It is not surprising to us to see that after
a single fifty minute lecture, the students are capable of applying BON to substantial
problems. Because of this, and because of the minimal amount of time spent on teaching
the method, we can give the students more complex and realistic projects in the course,
and can devote more in-class time to discussing these projects, their design problems,
and possible solutions. We doubt that we would be able to devote so much in-class time,
nor could give such realistic projects to students were we to use an alternate method.

7.3 Teaching other methods

We emphasize the use of BON in our software design course, but we are careful to
spend two weeks of the thirteen week term talking about other methods. In particular,
we spend a week or so discussing UML and compatible processes, and another week
on non-OO methods, including structured techniques and formal methods. We typically
revisit problems that we attacked using BON, and produce UML models for compari-
son.

We find that after having spend ten or so weeks learning and applying BON to real-
istic problems, students have little difficulty learning the basic concepts of a language
like UML.

8 Conclusions

BON and UML are languages that can be used to model object-oriented systems. BON,
a graphical notation originally designed as a front-end for Eiffel, is founded in behav-
ioral modeling and emphasizes seamlessness, reversibility, and the use of design by



contract. It features a small collection of modeling concepts and diagrams, as well as an
expressive assertion language. It is simple, easy to teach, and scales up to large systems.
UML is a data modeling language that emphasizes use-cases, architectural modeling,
and expressiveness. It is supported by a constraint language that is optional for devel-
opers to use. It is large, general purpose, and extensible.

One of our motivations in writing this paper was to better understand UML and
BON, and to potentially identify limitations and aspects for improvement with each no-
tation. With BON, we have identified limitations with respect to real-time specification
and tool support. With UML, our main conclusion is that its development is clearly
not complete. UML has unified three different approaches to modeling; that is a use-
ful first step. A next step for UML development should be rationalization, to eliminate
inconsistencies and overlap.

A second goal of this paper was to understand how UML supports, or fails to support
seamlessness, reversibility, and software contracting. We, and others, believe that these
are vital techniques for an OO modeling language to support. BON has been designed
to support these techniques, but UML has not. Table 2 summarizes key elements of
UML that prevent full application of these techniques.

Technique UML Element
Seamlessness state diagrams,

activity diagrams,
interaction diagrams,

non-standard stereotypes

Reversibility undirected data modeling,
multiplicities,

non-standard stereotypes

Contracting OCL and inheritance,
collapsed collections

Table 2.Techniques and UML elements that hinder their support

If it is desired to use UML and to support the techniques of seamlessness, reversibil-
ity, and software contracting, we suggest the following.

– Seamlessness.We should treat dynamic diagrams as rough sketches [14], and make
contracts the fundamental specification element. State diagrams should be used
minimally, and ideally as an automatically generated view for a class (e.g., as is
done with SOMA [7]). Formal semantics should be provided for standard stereo-
types, and non-standard stereotypes should not be used.

– Reversibility. Navigable associations should be used in class diagrams. Non-standard
stereotypes should not be used. Contracting should be considered for use as a tech-
nique that further supports reverse-engineering.



– Contracting. The OCL should be carefully formalized, and a precise definition of
the effect of contracts on inheritance should be specified. Collapsing of collections
should not be carried out.

Even with the UML used in this way, it is questionable whether it is the best approach
for developing software via contracting seamlessly and reversibly. The most significant
difference between BON and UML is that the former satisfies what we term thesingle-
model principle.In BON, there is precisely one model for a class. All information
associated with the class, e.g., contracts, invariants, signatures, is always kept in that
single model. When we design, we add information to the class model, and as necessary
we produce different views of the model. But these views are always based on the single
model for the class. this does not preclude multiple several models for asystem.

UML does not satisfy the single model principle. Information about a class is not
kept in one place. Its contracts and invariants are written in OCL, and are not part of the
diagram. Information about attributes that are not ‘simple’ is kept outside of the class.
And the semantics of a class may be given using a state machine. There is no single
model for a class written in UML, and this may lead to consistency and communication
problems as the class is reused or maintained, and as the system evolves.
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