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Abstract

We propose a novel approach for the recognition, clustering and retrieval of shapes. The heart of our

methodology is a shape matching algorithm based on dynamic programming, that operates implicitly at

multiple scales, but avoids the heavy computational cost of the explicit curvature scale space representa-

tion. Our method provides for clustering, visualization and browsing of a data set, as well as for indexing,

achieving up to three orders of magnitude speed-up over sequential scanning. We illustrate the application

of our method to real two-dimensional static hand gesture data. We also demonstrate the superiority of

our approach over traditional approaches to shape matching and retrieval, such as Fourier descriptors, Geo-

metric and Sequential moments. Our evaluation is based on human relevance judgements following a well

established methodology from the information retrieval field.

1 Introduction

Object recognition is an important problem in computer vision and has received considerable attention in the

literature. Most approaches to object recognition aremodel-based[1] emphasizing the accuracy of recognition.

However, the increasing amounts of image data in many application domains has generated additional interest

for real-time management and retrieval of shapes [2]. There, the emphasis is not only on accuracy, but also on

efficiency (i.e., speed) of retrieval. Addressing such issues has become object of intensive research activities in

both the Computer Vision and Database research fields over the past few years [3, 4]. As observed in [5], there
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is a need for increased communication between the two research communities to deal with the above issues.

Combining results from both areas is an important next step. This article is a contribution in this direction.

There are three general goals common to all object recognition systems:

Robustness:The system must be able to recognize or retrieve similar objects even if they are noisy or distorted.

Accuracy: It must be able to recognize or retrieve similar objects with as few errors as possible.

Efficiency: It must befast.

Object recognition is based on appropriate representations obtained from all objects during a preprocessing

stage. These representations are then used by matching algorithms to determine similarities between objects.

In most cases, objects are considered similar if they have similar shapes. Then, the performance of any ob-

ject recognition system ultimately depends on the types of shape representations used and on the matching

algorithms applied.

Below are some criteria for a reliable shape representation:

Uniqueness: A representation must uniquely specify a shape.

Robustness: It must be robust against noise.

Proportionality: Small shape distortions should result in small variations in the representations.

Invariance: A representation must be invariant to translation, scale, rotation and symmetric transformations

of the shape.

Scalability: A representation must contain information about the shape at many levels of detail so that, similar

objects can be recognized even if they appear at different view-scales (resolution).

Efficiency: A representation must be computationally efficient.

Two shapes are never exactly the same. Then, given their representations, a matching algorithm must deter-

mine how similar they are. The definition of appropriate similarity or distance criteria (measures) is a key issue

here. A shape matching algorithm must take advantage of the properties of its underlying representation.

Traditionally, to determine which shapes in a collection are similar to a given query shape, all stored shapes

have to be matched with the input or query shape. In this case, time responses increase linearly with the number

of stored shapes, therefore they may become very slow especially when the shape database is large. Response

times can be speeded up significantly by incorporating techniques into shape matching and search that quickly
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narrow down the search to only a small number of promising shapes. This can be achieved in two ways: (a)

Indices are computed from all the shapes in a collection and stored separately forming an index structure; this

index structure is searched first to narrow down the search and (b) Matching a query with a stored shape is

performed hierarchically in stages, eliminating non-promising shapes from the early stages of matching.

A new category of methods based on the representation of a shape’s inflection points at various scales, called

Curvature Scale Space(CSS) representation, have been proposed. These methods bring together all the attrac-

tive properties for reliable shape representation referred to above (in particular representation at various levels

of detail), except that of efficiency: Computing theCSSrepresentation is very time intensive. In this work we

tackle this problem and we propose a shape matching algorithm which is both fast and accurate.

Specifically, we deal with the following general problem:

� We have a collection ofN images representing two-dimensional closed shapes (i.e., image hand gestures

in our case).

� Given a prototype shape, we want to find then most similar shapes or all shapes below a distance

thresholdt.

� We need to respond to such queriesasymptotically fasterthan sequential scanning.

We assume that objects are segmented into closed contours. For our purposes, we take images under good

lighting conditions and low noise. Segmentations are carried out by taking the polygonal approximation of their

boundary after thresholding. However, automatic object segmentation, in the general case, is difficult and it is

outside the scope of this paper.

In summary, the contributions of this work in the following:

� We propose a shape matching algorithm which is at least as accurate as the previousCSS-based matching

algorithms but much faster. We have identified instances where our method reports a match between two

shapes while previous methods fail to find one.

� Our method maps shapes into low-dimensionality points allowing visualization, clustering and browsing

of a collection of shapes.

� Our method allows for indexing of shapes at multiple scales, while achieving up to three orders of mag-

nitude speed-up over sequential scanning.

� We establish the superiority of our method over traditional shape matching methods such as Fourier

descriptors, Sequential and Geometric moments.
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� We introduce to the Computer Vision community a well established method from information retrieval

for the empirical evaluation of retrieval results obtained by many competing methods.

We tested our methodology on a data set of 980 two-dimensional hand gesture images but our method can be

applied on any kind of shapes.

The rest of this work is organized as follows: A review of related work in the areas of Computer Vision and

DataBases is presented in Section 2. The proposed matching algorithm is discussed in Section 3. Our approach

to indexing and retrieval is presented in Section 4. The conclusions and the issues for future research are

discussed in Section 6.

2 Survey of Related Work

In the following, we present related work in the area of Computer Vision and Database research.

2.1 Shape Matching

Natural shapes [6, 7] are rarely rigid or describable by a small set of transformation parameters [8]. They are

typically characterized by smooth boundaries and continuous variations, making it difficult to apply to them

feature-based techniques [9]. Similarity of natural shapes is not easy to capture computationally, in spite of the

human ease in visually identifying it.

Multiscale representations of shape are considered the most promising, due to their ability to take intoaccount

the evolutionof shape as it is subjected to more and more smoothing. Different forms of scale space descriptions

have been proposed [6, 10, 11, 12, 13].

One class of contour tracking and matching methods relies on physical models of the deformation and is

based on minimization of an energy function, without first extracting a symbolic representation of the shapes

[14, 15, 16, 17]. More recently, matching of contours has been addressed with dynamic programming together

with detection of contours in image sequences. In [18, 19] dynamic programming is used to minimize a cost

function that accounts for displacement of a contour in a pair of images from an image sequence. In [20],

dynamic programming is used to fit a closed curve template to an image (deformable template matching).

Another class of matching methods relies on symbolic entities extracted from shape contours [21, 22, 23, 12].

Dynamic programming has been a popular approach for matching such symbolic entities [24, 25, 26, 27]. In

[24] the inability of dynamic programming to combine contour segments is mentioned, as well as the fact that

differing resolutions in the matched contours will lead to reduced performance. In [26] deletions and insertions
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of features (corners in a polygonal representation) as well as smoothing of features (i.e. dropping corners) is

incorporated in the dynamic programming scheme. This type of smoothing lends a primitive multiple-scale

character to the method. In [25] dynamic programming is used to guide the application of grammar rules that

transform one shape into another, in the spirit of [7]. In [27], matching proceeds both forward and backward

from a support match between two features (landmark points) that are maximally similar. Features are extracted

based on their persistence across scales. However, there is no matching of features at multiple scales. Therefore,

multiple scales are used as a preprocessing stage only.

Building upon the previously mentioned work, Ueda and Suzuki [23] propose a sophisticated dynamic pro-

gramming (DP) algorithm, which can group segments together in order to come up with appropriate correspon-

dences. For example, if one shape is slightly noisier than the other, it is possible for a single convex segment

to be broken up into a sequence of two convex segments with a concave segment between them. The algorithm

in [23] is capable of combining the three (or more) segments in the noisier shape and associating them with

the single segment of the less noisy shape. The algorithm of [23] uses the scale space representation of [11] to

constrain the possible merges, i.e. it accepts merges that are only present at coarser scales of the scale space

representation.

Our algorithm is a substantial extension of the dynamic programming algorithm in [23], in the following ways:

� The algorithm in [23] performs a best-only search in a DP table as it looks for minimum-cost paths in

the dynamic programming framework. We have identified instances, in which a best-only search strategy

fails to find a valid match between two shapes, although one exists. To address this deficiency, we

have extended the dynamic programming algorithm to performk-best search, and we have demonstrated

experimentally that for a smallk (e.g., 5), the additional space and time requirements are modest and the

algorithm can solve matching problems where the original one fails.

� We have implemented a different set of cost measures from the original algorithm, and we have demon-

strated improved performance with them. We present an intuitive justification for the new cost measures

and we show experimental results.

� We propose that the scale space restriction be removed from the original algorithm. The scale space

computation has two drawbacks. First, it tends to diffuse the effects of a feature far away from its

location as coarser and coarser scales are considered. As a result, the locality of the features is lost at

coarser scales. Second, it is computationally expensive. We present a formulation of the algorithm that

does not use scale space to restrict search for segment merges, and we demonstrate that the results are

comparable to those of the original formulation.
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In an earlier approach by Mokhtarian and Mackworth [28] matching is performed through“interval trees”

which are computed by tracking the scale space representation from coarser to finer scales. In [23] it is demon-

strated, however, that small shape changes may cause major structural changes in the interval tree and this may

lead to matching errors.

The problem of indexing based on scale space representations is difficult due to the complexity of the under-

lying CSSrepresentations as well as due to the large amounts of data in such representations. In [23] neither the

problem of shape indexing nor of efficiency of retrieval is addressed. Mokhtarian [29] base their matching on

the maxima of curvature zero-crossing contours of theCSSimage. Sequential scanning is implicitly assumed

as the retrieval mechanism in both methods.

Additional work on shape indexing include, methods based on multidimensional indices [30, 31, 32], and

methods based on hashing [33, 34]. However, none of these methods works in scale space. Finally, the method

by Gunsel and Tekalp [35] works in the modal feature space, does not require the extraction of connected

boundaries but, does not support indexing and cannot handle heaveily deformed shapes.

2.2 Spatial Access Methods (SAMs)

We can achieve faster-than-sequential searching by using spatial access methods. These are based on file

structures to manage a large collection off -dimensional points (or rectangles) stored on the disk so that,range

queriescan be efficiently answered. A range query specifies a region (e.g., hyper-rectangle or hyper-sphere) in

the address space, requesting all the data objects that intersect it. If the data objects are points (as eventually

happens in our application), the range query requires all the points that are inside the region of interest. An

example of a range query on point data is“retrieve all the cities that are 200 km away from Brussels”. Spatial

access methods can also handle“nearest neighbor”[36] and“all-pairs” (or “spatial-join”) [37] queries. For

clarity, in this paper we focus on range queries only.

Several spatial access methods have been proposed forming the following classes: (a) Methods that trans-

form rectangles into points in a higher dimensionality space [38]; (b) Methods that use linear quad-trees or,

equivalently, the “z-ordering” [39] or other “space filling curves” [40]; and finally, (c) Methods based on trees

(k-d-trees [41]). One of the most characteristic methods is the R-tree [42].

Methods referred to as “metric trees” are based on the idea of indexing using distance information. Vantage-

Point (VP) trees [43] and Geometric trees (GNAT) [44] are characteristic examples. Most of these methods

require expensive preprocessing for building a tree index structure. An alternative to metric trees is FastMap

[45], a fast algorithm that transforms data entities (e.g., shapes in our application) into multidimensional points.
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Figure 1:Data (dark rectangles) organized in an R-tree.

In this work, we used Fastmap in conjunction with R-trees for indexing. The reasons for our choices are

justified below.

2.3 R-trees

The R-tree can be envisioned as an extension of the B-tree for multidimensional objects. R-trees have the

desirable property to remain robust for high-dimensionality spaces.

A geometric object is represented by its Minimum Bounding Rectangle (MBR). Non-leaf nodes contain entries

of the form (ptr; R) whereptr is a pointer to a child node in the R-tree;R is the MBR that covers all rectangles

in the child node. Leaf nodes contain entries of the form (object � id; R) whereobject � id is a pointer to

the object description, andR is the MBR of the object. The main idea in the R-tree is that father nodes are

allowed to overlap. This way, the R-tree can guarantee good space utilization and remains balanced. Figure 1

illustrates data rectangles (in black) organized in an R-tree (left); the file structure for the same R-tree is also

shown (right); the nodes correspond to disk pages.

Extensions, variations and improvements to the original R-tree structure include the packed R-trees [46], the

R+-tree [47], the R�-tree [48], and the Hilbert R-tree [49]. Recent extensions for high-dimensions include the

X-tree [50] and the SR-trees [51]. We used R-trees solely because of availability; anyspatial access method

would do, like, e.g., R�-trees and X-trees.

2.4 FastMap

FastMap is an algorithm that takes in a set ofN data items (e.g., images), together with a distance function

D(), and map these data items into points in somef -dimensional space (f is user defined), such that distances
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are preserved. It has the following attractive properties:

� It is as fast as it can be, since it islinear on the number of items. (No mapping algorithm can be better

than linear, unless it operates on a sample of the database, which FastMap can do, too.) Specifically, it

needsO(fN) distance calculations.

� It is dynamic: New data can be mapped after the original data have been mapped, without having to redo

the mapping from the beginning. The mapping for a new item (or query) takes 2f distance calculations,

that is, constant on the size of the database.

� The algorithm does not require the distance measure to be Euclidean. However, on non-Euclidean dis-

tances, we may have false dismissals, as we see later.

3 Shape Matching

The shape matching algorithm that lies at the core of our methodology takes in two shapes and computes:

(a) Their distance; the more similar the objects are, the lower the value of the distance function and (b) The

correspondences between similar parts of the two shapes. In retrievals, only distances between shapes are used.

However, the correspondences help assess the plausibility of the distance computation, if necessary.

3.1 Definitions

LetA andB be the two shapes to be matched. The first step is to segment both shapes. A segment is a part of

a shape contour between two consecutive inflection points and it is either convex or concave.

The major problem with segmented representations is that small perturbations to the shape can yield large

changes in the segmentation. Therefore the matching algorithm must be robust to segmentation changes. The

standard fix is to represent the shape at multiple scales of resolution (smoothing), and either use a full scale-

space representation for matching [28], or have the algorithm choose different scales for different parts of the

shape [23]. In both approaches the major cost is the computation of the scale-space representation. Furthermore,

the standard scale-space representation (obtained by smoothing with Gaussian filters of varying scales) has the

characteristic that the more prominent features tend to shift the position of and finally absorb the less prominent

ones, something that may be undesirable in cases when the smaller features have perceptual significance. Our

shape matching algorithm follows the paradigm of [23], but avoids the expense of computing the full scale-

space representation. Merging of neighboring segments is key to both algorithms, with the difference that [23]

only allows segments to merge in matching only if they merge in the standard scale-space representation. Our
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algorithm allows all segment merges, and relies only on the minimization of the overall matching cost to select

the merges.

Figure 2 shows two two-dimensional silhouettes of hand gestures, extracted from real video images. The large

circles indicate inflection points that are transitions from convex to concave and the small circles from concave

to convex, when the shapes are traversed in a clockwise fashion.

Figure 2: Shape examples

The number of segments in shapesA andB areN andM respectively; elements ofA andB are indexed byi

andj respectively; inflection points are denoted bypi andpj ; all i subscripts are moduloN and allj subscripts

are moduloM . Let

A = a0; a1; : : :aN�1

B = b0; b1; : : :bM�1

be the convex/concave segment sequences of the two shapes withai being the segment between two consec-

utive inflection pointspi andpi+1; similarly for bj . Then,a(i � nji), n � 0, is the sequence of segments

ai�n; ai�n+1; :::; ai; similarly for b(j �mjj),m � 0.

The algorithm searches for segment correspondences from the finest to coarser scales by merging an odd

number of consecutive segments at the finest scale, if such a merging replacement can lead to the minimization

of a cost function. Each merging should be a recursive application of the grammar rulesCVC ! C and

V CV ! V , whereC andV denote convex and concave segments respectively [7, 25]. This is enforced by the

algorithm. Acomplete matchis a correspondence between groups of consecutive segments in order, such that

no segments are left unassociated.

The goal is to find thebestassociation of segments in shapeA to segments in shapeB. The problem of

finding the best correspondences between the two shapes is formulated as a minimization problem which is

solved efficiently by Dynamic Programming (DP): A table of partial costs is built and the optimal matching is

searched in the form of a path in the DP table that minimizes a dissimilarity cost. The method involves building

various paths in the DP table matching groups of segments from the two shapes and, finally, choosing the path

that leads to a complete match and has the minimum cost.
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The DP table has2N columns and2M rows, corresponding to segments of shapeA and shapeB respectively

repeated twice (to force the algorithm to consider all possible starting segment pairs between the two shapes). A

link between cells(iw�1; jw�1) and(iw; jw) denotes the matching of segmentsa(iw�1 + 1jiw) with b(jw�1 +

1jjw). A path is a linked sequence of cells(i0; j0); (i1; j1); : : :(iw; jw), not necessarily adjacent, indicating a

partial match. Function (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) represents the dissimilarity cost between its two

arguments and is defined later in this section.

In the following, the termoptionsis used for the number ofK best choices stored at each cell of the dynamic

programming table. The cell at the intersection of columni and rowj will be referred to ascell(i; j). Each

cell contains the cost arrayg[kw] and associated bookkeeping datat1[kw], t2[kw], index[kw], gn[kw], gm[kw],

wherekw varies from 0 toK � 1 and refers to thekw-th best path, or partial match, up to and including

cell(iw; jw). Specifically,g[kw] holds the cost of the path,t1[kw] andt1[kw] hold the number of unmatched

segments in shapesA andB respectively for the path andindex[kw], gn[kw] andgm[kw] hold the back links

for the path and allow the backward tracing of the path. Ifgn[kw] = nw andgm[kw] = mw for cell(iw; jw),

then the previous cell and option in the path iscell((iw�1; jw�1) = cell(iw � 2nw � 1; jw � 2mw � 1) and

index[kw] respectively, wherenw andmw are nonnegative integers. Notice that,iw = iw�1 � 2nw � 1 and

jw = jw�1 � 2mw � 1, wherenw; mw � 0, since the number of segments which are merged is always odd.
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Figure 3:Example of a DP table.

The DP table consists of two distinct areas, the initial value area (left half) and the calculation area (right half).

In the initial value area allg terms are initialized to zero,t1 to N andt2 to M, implying that each of these cells

can act as the first cell in a path. The calculation area is computed and finally the optimal path is searched. All

paths of length greater than zero lie in the calculation area. A path is complete when its correspondingt1 and
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t2 at the final cell of the path, both become zero simultaneously. Figure 3 illustrates an example of a DP table

computed for the matching of two shapes with 8 and 4 segments respectively. Two incomplete paths are shown

ending atcell(11; 7).

3.2 The algorithm

The main idea in the algorithm is to fill the DP table cells and then search for and trace back the optimal

complete path. Filling the cells involves the computation of theK elements of cost arrayg(kw) in each cell and

the associated bookkeeping information. Figure 4 outlines the algorithm.

for iw = N � 1; N; : : :2N � 1 do
for jw = 0; 1; : : :2M � 1 do

fill the K options incell(iw; jw);
check if a complete path has been found;

end for
end for
select the complete path with the lowest cost over the whole DP table;
retrace corresponding shape match by following backward links;

Figure 4:Outline of the shape matching algorithm.

The for loop for jw does not run over all the indicated values, but only over those values that do not involve

convex to concave segment associations, which are not possible.

To describe the filling ofcell(iw; jw) of the DP table with values, we need the following auxiliary functions:

� xmin(list; x) extracts thex smallest terms fromlist.

� listat(iw; jw; nw; mw) is the list of the costs of all options atcell(iw�1; jw�1), augmented by the dis-

similarity cost (a(iw�1 + 1jiw); b(jw�1 + 1jjw)) of extending them tocell(iw; jw).

� fmin(f; i) returns the integer pair(n;m) that leads to thei-th smallest result in the evaluation of a given

functionf(n;m).

The functionf required for filling thekw option ofcell(iw; jw) is

f(n;m) = g(iw � 2n� 1; jw � 2m� 1; kw) +  (a(iw � 2njiw); b(jw � 2mjjw)) ; n;m � 0: (1)

whereg(iw; jw; kw) is the value ofg[kw] for cell(iw; jw).

The cost in the above equation is the cost of association of segmentsa(iw � 2njiw) with b(jw � 2mjjw)

and consists of a merging cost component and a dissimilarity cost component (see Section 3.3).
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With the above definitions, we fill the cost arrayg[kw] at cell(iw; jw) with theK values computed and col-

lected by the following loop:

for x = 0; 1; : : :K � 1 do
collect xmin(listat(iw; jw; fmin(f; x)); K);

end for

Functionfmin(f; i) searches forn’s over the range[0; N�1
2

] and form’s over the range[0; M�1
2

] to form

acceptable pairs(n;m). Additional constraints on acceptable pairs(n;m) are that eithert1 = t2 = 0 (a

complete match has been found), ort1 > 0; t2 > 0 (there exist unmatched segments in both shapes).

A constraint in the original method proposed in [23] is the curvature scale space constraint on(n;m) that

a(iw � 2njiw) andb(jw � 2mjjw) must actually merge in the scale space representation at some scale, not

necessarily the same for the two shapes. In our method, we have removed this constraint, and we rely on the

merging costs alone to select the optimal merges.

3.3 Cost Components

The cost term in Equation 1 can be rewritten as (a(iw�1 + 1jiw); b(jw�1 + 1jjw)). Its computation must

rely on geometric properties of the segments themselves. This cost term consists of three additive components

[23]:

 (a(iw�1 + 1jiw); b(jw�1+ 1jjw)) = (2)

MergingCost(a(iw�1+ 1jiw)) +

MergingCost(b(jw�1+ 1jjw)) +

� DissimilarityCost (a(iw�1 + 1jiw); b(jw�1+ 1jjw)) ;

where� is a constant that represents the relative importance of the merging and dissimilarity costs. In the

experiments� was set to 1.

The first two terms in Equation 3 represent the cost of merging segmentsa(iw�1 + 1jiw) in shapeA and

segmentsb(jw�1 + 1jjw) in shapeB respectively while, the last term is the cost of associating the merged

a(iw�1 + 1jiw) with the mergedb(jw�1 + 1jjw).

Requirements for reliable cost computation are the following:

� Merging should follow the process grammar rules [7, 25], i.e. each allowable merging should be a

recursive application of the grammar rulesCV C ) C andVCV ) V . This is enforced by the DP

algorithm.
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� Absorbing a“visually prominent” segment (i.e., a long segment with high curvature) into a merged

segment of the opposite type should incur a high cost. To specify this requirement, we need to define

visual prominencein geometric terms.

� The partial cost components arising from different features of the shape should be combined into a total

cost in a meaningful way.

The heuristic cost computations that follow attempt to satisfy the above requirements.

pi
tangent 

tangent

segment   a i

area  Ai

θrotation  angle  p
i+1 i

Figure 5: Geometric quantities for defining the prominence of a segment

We now define geometric quantities (features) needed in the specification of visual prominence of a segment

according to Figure 5.

Rotation Angle �i is the angle traversed by the tangent to the segment from inflection pointpi to inflection

pointpi+1 and shows how much a segment is curved.

Length li is the length of segmentai.

Area Ai is the area enclosed between the line segment (chord) and the arc between the inflection pointspi and

pi+1.

Dissimilarity cost computation: This cost computation should assign a higher cost to segments (or groups

of segments) with large differences in more than one feature. The dissimilarity cost of associating segments of

shapeA with segments of shapeB is computed using the following equation:

DissimilarityCost = W max
all features f

fdfg; (3)

wheref = l; � or a.

We choose themax operation instead of product (as in [23]) because in the product a small cost in terms of

one feature can cancel the effect of a high cost in terms of another feature, something that may lead to a visually

implausible outcome. The max operation addresses this problem.
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FactorW equals the number of features for whichdf is greater than0:75 � maxfdfg, wheref = l; �; a.

Thus, if all three features have uniformly largedf , then the dissimilarity cost is multiplied by 3.

The termdf , for f = � is defined as

df =

�
�
�
�
�a ��b

�a +�b

�
�
�
� ; (4)

where�a =
Piw

s=iw�1+1
�s, and�b =

Pjw
s=jw�1+1

�s, and�s being the rotation angle of segment with indexs

of shapeA and shapeB respectively.

The termdf , for f beingl (length) or area (a), is defined as

df =

�
�
�
�
fa

Fa
�
fb

Fb

�
�
�
� ; (5)

whereFa =
PN�1

s=0 fs, fa =
Piw

s=iw�1+1
fs of shapeA and similarly forFb, fb of shapeB.

Merging cost computation: Let the types of the segments being merged beCV C : : :V C, whereC is convex

andV is concave (the opposite case is obtained by switchingC andV ). The merging cost is defined as follows:

MergingCost = max
all features f

fwfcfg; (6)

where subscriptf refers to a feature (length, area or rotation angle).

We choose the above maximization formulae instead of sum of products of terms comparing consecutive

segments (as in [23]) for the following reasons: We used max instead of product, because in a product a small

cost in terms of one feature can cancel the effect of a high cost in terms of another. The reason for abandoning

the sum of consecutive segments is because it implies that the plausibility of merging several segments can be

reduced to the similarity of consecutive segments, which may not necessarily be true. Consider, for example,

the case of a short and flat segment next to a long and curved one. In this case, it is plausible to merge the two,

however the merging cost in [23] will be high. Another drawback of the use of a sum is that the merging cost

increases with the number of segments merged, even if several very short segments are being merged into a

large one.

Forf being length or area:

cf = 1�

P
C segs of group f �

P
V segs of group f

P
all segs of shape f

: (7)

Forf being rotation angle:

cf = 1�

P
C segs of group f �

P
V segs of group f

P
C segs of group f +

P
V segs of group f

: (8)
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The intuition behind these formulae is that they measure the visual prominence of the features of the absorbed

segments (of typeV ) relative to the absorbing segments (of typeC). All costscf are within the interval[0; 2].

Costcf is close to 0 if the convex segments visually dominate the concave ones (hence it is plausible to absorb

the concave ones), while it is close to 2 if the concave segments visually dominate the convex ones (hence it is

not plausible to perform the merge, therefore the merging cost should be high).

For f being any feature (length, area, rotation angle) the weight term is

wf =
N

2

P
V segs of group f

P
V segs of shape f

: (9)

The intuition behind the weight term is to measure the visual prominence of the absorbed segments within the

shape as a whole. FactorN
2

is heuristic, and it could instead be incorporated into the relative weight� between

the merging and dissimilarity costs, as defined next.

3.4 The Ueda-Suzuki Algorithm

The algorithm by Ueda and Suzuki [23] is a special case of the aboveK-option DP algorithm withK = 1,

and with the additional constraint that segment merges must actually appear in coarser scales. The motivation

for introducing theK-option method is that, by the use of only one option at each cell, the optimal path is

sometimes missed. This happens because the(n;m) pair chosen atcell(i; j) is the one which leads to the least

cost path only up tocell(i; j). This path may not be the one that leads to the formation of a complete path.

It is possible that after the entire DP table is computed, there exist only incomplete paths, in which case the

algorithm fails to produce a match. Also, the best choice atcell(i; j) may lead to an expensive match of the

remaining unmatched segments.

This is illustrated in figure 3, which shows the DP table for matching two shapes with 8 and 4 segments

respectively. Cells in the table are marked as follows:(4; 0) asB, (6; 0) asC, (8; 2) asE, (9; 4) asA and

(10; 6) asD. The number in bold at a cell represents the cost of the path up to that cell using theK = 1 option

(dashed line). Oblique numbers represent the cost along the alternate path (K = 2, dotted line). Alternate path

BEAD is ignored by theK = 1 option algorithm because of a least cost choice made atA. This problem is

solved by theK-option DP method where the choice of a best subpath is not made at cellA but deferred until

a later point when more information is available.

Examples of this kind of failure of the 1-option algorithm in a real situation of matching the silhouettes of

two hand gestures, along with two additional optimizations of the 1-option algorithm as presented in [23] are

described in [52].
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3.5 Experiments with Matching

The goal of this set of experiments is to illustrate the superiority of our proposed matching algorithm over the

algorithm by Ueda and Suzuki [23].

In the generalized algorithm presented above, we have the following options:

� Matching involving the computation of theCSSrepresentation or matching without it.

� Matching using the cost functions of [23] or the new proposed in the previous section.

� Matching with the best-search option (K = 1) as in [23] or with theK-best-search option (K > 1)

proposed in the previous section.

The algorithm in [23] corresponds to the use ofCSS, the original cost computations andK = 1. In the

experiments described below, we usedK = 5 to avoid the situations in which theK = 1 algorithm fails to find

a solution, where one exists. Among the several combinations of the above three options, in the following, we

discuss the most characteristic ones:

Method 1: Matching using the Ueda-Suzuki algorithm [23].

Method 2: Matching with the cost definitions of [23], searching for the best 5 paths (K = 5) and without the

CSSrepresentation.

Method 3: Matching with our proposed cost definitions, searching for the best 5 paths usingCSS.

Method 4: Matching with our cost definitions, searching for the best 5 paths in the DP table and matching

without theCSSrepresentation. This is essentially our proposed algorithm.

Figure 6 shows a model database of two-dimensional silhouettes of hand gestures, extracted from real video

images. In the following, the two silhouettes of Figure 2 are used as queries and are matched against the above

17 model silhouettes. They are referred to asquery 1(left silhouette) andquery 2(right silhouette).

Table 1 from [52] shows the results of retrieving all the model shapes usingquery 1. Table 2 shows the same

experiments whenquery 2is used. In these tables, the models have been sorted by increasing cost, hence the

top one is the most similar according to the respective algorithm used. The cost values have been normalized

so that the minimum cost for each algorithm equals to 1. Notice that, for query 1, only methods 3 and 4 retrieve

correct best match.

Apart from the failure of the Ueda-Suzuki algorithm (method 1) to identify the correct match, we also notice

that this algorithm is more “uncertain” in its inferences than the new cost versions, as in the latter the cost of
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the closest incorrect match is at least 20% larger than the cost of the correct match. Our experiments confirm

that relaxing theCSSconstraint, while using the new cost measures, improves performance compared with the

original cost computations with theCSSconstraint while saving a lot of computation time.

method 1 method 2 method 3 method 4
model cost model cost model cost model cost

4 1 12 1 3 1 3 1
17 2 3 3 12 18 12 18
13 2 9 14 17 32 17 28
9 2 17 17 2 33 2 51
3 6 8 17 8 33 13 61
12 8 13 21 10 42 15 64
5 22 10 22 9 49 4 72
16 25 11 25 15 52 8 75
1 46 2 29 11 55 9 75
8 49 7 33 13 60 16 76
7 54 15 36 5 63 11 83
10 61 5 41 16 66 7 84
2 64 6 50 14 67 10 90
14 77 4 59 7 68 6 90
15 82 14 69 6 75 1 95
11 100 16 78 1 84 5 98
6 100 1 100 4 100 14 100

Table 1: Matching query 1 to the model database. Method 1 corresponds to the Ueda-Suzuki method while,
method 4 corresponds to our proposed method. Methods 2 and and 3 correspond to intermediate settings of the
matching options.

Figure 8 shows the results of matchingquery 1with the the same model (model 8). In this experiment we

illustrate the segment correspondences between the two shapes reported by all methods. The large circles

indicate inflection points that are transitions from convex to concave, and the small circles from concave to

convex, when the shapes are traversed in a clockwise fashion. Lines connecting inflection points in the two

shapes define the associations between shape parts computed by the algorithm.

Figure 7 illustrates the results obtained by matchingquery 2with model 3. Again, all methods report only

correct associations but not always the same.

4 Shape Retrieval

The heart of our approach is the matching algorithm presented above. Given the shape matching algorithm and

a database ofN shapes, the obvious method to search for similar shapes is sequential scanning. However, this
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method 1 method 2 method 3 method 4
model cost model cost model cost model cost

6 1 8 1 8 1 8 1
9 9 17 9 17 11 17 21
17 30 11 18 3 47 9 40
12 48 9 20 6 47 2 42
3 55 6 24 7 47 13 45
13 64 12 25 11 48 3 49
2 66 2 34 9 61 7 51
8 69 13 35 13 61 11 53
15 80 4 38 16 64 6 56
7 81 5 43 4 66 12 56
14 86 16 45 12 68 15 59
10 92 10 49 15 75 16 67
11 94 15 53 1 75 4 78
1 95 7 57 10 78 14 82
6 95 3 73 5 83 1 86
5 99 1 94 14 84 10 95
4 100 14 100 2 100 5 100

Table 2:Matching query 2 to the model database.

requires alwaysN distance computations. We can speed-up retrievals using indexing.

The main idea behind our approach is to transform each shape to a point in anf -dimensional space. The

mapping of shapes tof -dimensional points is achieved through FastMap [45]: The FastMap algorithm accepts

as inputN shapes, our distance function andf , the desired number of dimensions, and maps the above shapes

to N points in anf -dimensional space. The complexity of this mapping isO(Nf) distance computations.

Notice that this operation could (and should) be off-line. Similarly, when a query is given, it is quickly mapped

to a point into the abovef -dimensional space requiring only�(f) distance computations. Then, the problem of

database search is transformed into one of spatial search.

To speed-up retrievals, thef -dimensional points are indexed using an R-tree [42]. We used R-trees solely

because of availability; any spatial access method would do, like e.g., X-trees [50]. Figure 9illustrates the

above sequence of operations. Below we discuss each one of these processing steps separately.

4.1 Shape Indexing

Figure 10 demonstrates the proposed file structure of the data on the disk. Specifically, the file structure consists

of the following parts:
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� The“shape file” holding the original shapes along with their boundary contours.

� The R-tree holding anf -dimensional vector for each stored shape.

4.2 Search Strategy

The user specifies a query shape and a tolerancet and asks for all shapes within that tolerance. Thef -

dimensional vector of the query is computed first using FastMap. Then, all vectors within distancet are re-

trieved from the R-tree. As we show later, the R-tree may returnfalse alarms(i.e., non qualifying shapes). A

post-processing step is required to clean-up the false alarms. The generic search algorithm is as follows:

R-tree search: Issue a range query on the R-tree to obtain a list of promising shapes (their identifiers).

Clean-up: For each of the above obtained shapes, retrieve its corresponding contour from the shape file and

compute the distance between this shape and the query. If the distance is less than the thresholdt, the

shape is included in the response set.

Nearest-neighbor queries, such as“give me the 10 most similar shapes”, can also be answered using the

algorithm in [36].

5 Experimental Results

We carried out several groups of experiments. The experiments were designed to illustrate the:

Superiority of our shape matching algorithm over traditional algorithms such as those examined in [2]. We

experimented with Fourier descriptors, Sequential and Geometric moments.

Speed-up of our method over sequential scan searching. We studied the search time for various values of

the tolerancet and of the dimensionalityf . We show that our method can be several times faster than

sequential scanning.

Accuracy of our indexing method. Our indexing scheme may miss some of the answers that sequential scan-

ning would retrieve. We show that our methodology exchanged a very small loss in accuracy (i.e., 5 -

10%) for several times faster retrievals.

Clustering properties of our method. Similar shapes tend to cluster together and these clusters can be viewed

in 2 or 3 dimensions.
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To test the efficiency of our methodology we used a data set consisting of 980 synthetic shapes which are

generated from the original 17 hand gestures of Figure 6: We took the shape models in pairs and, for each such

pair, we produced a number of blend shapes on the process of transforming the one shape to the other using the

shape morphing algorithm of [53]. To evaluate our method we took the 17 original model shapes as queries and

we computed the average of their responses. Therefore, all measurements below correspond to averages over

17 queries.

5.1 Comparison With Other Methods

The competitors to our method are:

Fourier descriptors [54] : This known to be one of the most successful methods for the recognition of closed

shapes. We took the first (lower order) 20 coefficients of the fourier transform.

Sequential moments [55]:This is one of the most effective moment-based methods for closed shapes. For

each shape, a representation of 4 moment coefficients is computed from its bounding contour.

Geometric moments [56]: This is the original and the most characteristic representative of a wide class of

methods based on area moments. A representation of 7 moment coefficients of the shape is computed

from the area it occupies.

In [2], such methods where tested on a database of 500 trademark images. Additional reasons for choosing

these methods for our evaluation are: (a) They are translation, rotation and scale invariant (the same as our

method) and (b) They all filter out shape detail so that, they can detect similarity at a coarse view-scale. Our

method has these advantages too. Notice that matching with such methods is global, as opposed to matching

with our method which is local, detecting similarities between shape parts, not necessarily at the same scale for

each matched part.

We used human relevance judgements to compute the effectiveness of each method. Two shapes (i.e., a query

and a model shape) are considered similar if a human judges that they represent the same figure. To measure

effectiveness, for each candidate method we computed:

Precision defined as the percentage of similar shapes retrieved with respect to the total number of retrieved

shapes.

Recall defined as the percentage of similar shapes retrieved with respect to the total number of similar shapes in

the database. Because we don’t have the resources to compare every query with each database shape (i.e.,
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this would require, for each method,17� 980 = 16; 660 visual judgements!), for each query, we merged

the answers obtained by all candidate methods and we considered this as the database which is manually

inspected for relevant entries. This is a valid sampling method known as “pooling method” [57]. Notice

however, that this method does not allow for absolute judgements such as“methodA misses 10% of

the total similar answers in the database”. It provides, however, a fair basis for comparisons between

methods allowing judgements such as“methodA returns 5% fewer correct answers than methodB” .

Each one of the 17 queries retrieves the best 50 shapes. For answer sets containing between 1 and 50 entries,

we computed the average values of precision and recall. These values are represented in aprecision-recall

plot: The horizontal axis corresponds to recall and the vertical axis corresponds to precision. Each method is

represented by a curve. Each point in such a curve is the average over 17 queries. The total number of points

in each curve is 50 (i.e., we compute precision and recall for answers containing between 1 and 50 shapes).

Therefore, the top-left point of the diagram corresponds to the precision/recall values for the best answer (best

match) while, the bottom right point corresponds to the precision/recall values for the entire answer set with 50

retrieved shapes.

Figure 11 illustrates the precision-recall diagram for this experiment. For small answer sets returning up to

10 shapes (corresponding to the left-most 10 points of a curve) our method and Fourier descriptors perform

about equally in terms of both, precision and recall. Notice that, for such small answer sets, both methods

achieve precision close to 1, that is, their answers are almost 100% correct. For larger answer sets, our method

performs clearly better than any other method, achieving up to 25% better recall and 20% better precision than

the second best method (Fourier descriptors). This result demonstrates that our method is very well suited for

database work, where one is interested in retrieving between 10 and 50 shapes.

Both, our method and Fourier descriptors perform much better than moments. An interesting observation here

is that, Geometric moments perform better than Sequential moments for answers with more than 30 shapes.

Notice that, most literature references (e.g., [55]) report that sequential moments perform always better than

Geometric moments, but they examine very small answer sets.

5.2 Response Time

In the following we study the speed-up effect of our indexing scheme over sequential scanning. Times are re-

ported in number of distance computations that is, in number of calls of the matching algorithm. The reasons of

this choice are: (a) Response time in seconds vary depending on the implementation of the matching algorithm

and of the access structures and (b) The time for distance computations (i.e., 1-2 seconds per matching on a

PENTIUM PC 200Mhz) clearly dominates the time for R-tree search (i.e., less than 1 second per query!).

21



Tolerance 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

Shapes 0 0.1 1.9 3.9 7.1 10.0 13.0 18.5 23.8 29.2 34.8 41.8 52.0

Table 3:Average number of retrieved shapes as a function of the tolerancet.

Figure 12 shows the average number of distance computations plotted against the tolerancet for f = 2, 3,

5, 7 and 10 dimensions. Table 3 shows the number of retrieved images (after clean-up) as a function of the

tolerancet. For t < 0:5, that is for queries returning one or two best matches, searching with indexing is up to

three orders of magnitude faster than sequential scanning. Fort � 2:5, 52 images are retrieved on the average.

The shape of the curves is justified as follows: Sequential scan, performs always the same number of distance

computations. For the proposed method, the shape of the curve resembles as exponential curve. This is expected

because the number of shapes which are retrieved from the R-tree increases exponentially with the tolerancet

and each retrieved shape yields a shape distance calculation during clean-up.

In all cases, searching with indexing results in faster retrievals but, the speed-up decreases with the dimension-

ality: As the dimensionality decreases, more points (shapes) are projected from a higher dimensionality space

within t distance from the query (false drops) in the lower dimensionality space. The above false drops account

for distance computations during clean-up and time responses are slowed-down.

5.3 False Dismissals

The labels in Figure 12 denote average values of accuracy compared to sequential scanning. For example,

a value 0.95 denotes than 5% of the answers retrieved by sequential scanning are missed (false dismissals).

Notice that, our method achieves high values of accuracy (i.e., greater than 0.90) in most cases. Accuracy drops

with the dimensionality but remains as high as 0.90 for answer sets with 50 images. Presumably, a typical

user retrieves more than 40 or 50 shapes. In this case, we setd = 10. This value assures high accuracy with

maximum speed-up. If, however, a user is interested in smaller answer sets with 10 or 20 shapes, then, we

would choosed = 5. To satisfy both cases of users, we may select to keep both R-tree indices (i.e., withd = 5

andd = 10) on the disk.

5.4 Clustering

FastMap transforms shapes intof -dimensional points preserving much of the distance information creating

clusters with similar shapes. Whenf = 2 or 3 then the above target space can be visualized. This diagram can
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be found especially useful for the:

Classification of unknown shapes: We apply FastMap to transform an unknown shape to a multidimensional

vector. The unknown shape belongs to a class if it is mapped within its cluster.

Browsing of the contents of shape collection and for the retrieval of similar shapes: Once a query is mapped

to a point on the above diagram, one could search manually for similar shapes by browsing shapes in the

neighborhood of the query.

Figure 13 illustrates the FastMap diagram forf = 3 of 44 shapes belonging to 4 disjoint classes. We observe

4 clusters since the shapes of each class tend to cluster together.

6 Conclusions

We propose a novel approach for shape matching at multiple scales and for handling similarity retrieval in a

shape database. The heart of our approach is an algorithm for shape matching in scale space which has the

following advantages:

� Corrects failures of previous algorithms (i.e., [23]).

� Employs a newly defined set of cost measures which showed improved performance.

� Does not assume the scale space representation during matching thus saving lot of computation time.

With respect to retrieval, we proposed an indexing method which:

� Achieves up to three orders of magnitude speed-up over sequential scanning with very high accuracy.

� Provides for clustering, visualization and browsing of a shape data set.

Additional contributions of this work are that:

� We demonstrate the superiority of our approach over traditional approaches to shape matching and re-

trieval, such as Fourier descriptors, Geometric and Sequential moments.

� We introduce to the Computer Vision community a well established methodology for the evaluation of

the retrieval results obtained by more than one competing methods.

Current research is directed towards extending our matching algorithm for open curves. A very promising

research direction is the study of data-mining algorithms [58] on the point-transformed set of shapes, to detect

regularities and patterns within a shape collection.
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