

Speci�cation and Re�nement using a Heterogeneous Notation for

Real-Time, Concurrency, and Communication

Richard Paige

Technical Report CS-1998-07

October 29, 1998

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

SPECIFICATION AND REFINEMENT USING A HETEROGENEOUS

NOTATION FOR REAL-TIME, CONCURRENCY, AND COMMUNICATION

Richard F. Paige

Department of Computer Science, York University,
Toronto, Ontario, Canada, M3J 1P3.paige@cs.yorku.ca

Abstract. It is shown how to combine the Z formal specification notation [18] with a predicative notation [11],
so as to be able to specify and reason about real-time, concurrency, and communication. The integration is carried
out so as to alleviate some of the deficiencies noted with these approaches [5], such as the inability to use Z proof
rules and tools. We demonstrate how to carry out refinement in a number of small examples of writing and refining
heterogeneous specifications of concurrency and communication.

1 Introduction

The Z notation [18] has proven to be useful and appropriate for specifying and reasoning about sequential software and
hardware systems. The strengths of Z include its ability to construct specifications by parts, its growing tool support,
and its proof system. Recent work on Z has studied its application toconcurrent systems. In this growing body of
work, there are two general classes of approaches:

1. Extension approaches,which apply Z, perhaps with some strengthening of specification or proof techniques, to
concurrent systems [5].

2. Integration approaches,in which the Z notation is combined with notations that are considered better suited to
specifying and reasoning about time or concurrency, e.g., temporal logic, TLA, or CCS [4, 8, 15]

An advantage claimed with extension approaches is that compatibility with existing Z proof techniques and proof tools
can be maintained. A disadvantage claimed of integration approaches is that they may have difficulty reconciling the
semantics of the separate notations [5]. This can result in problems of compatibility with the integrated notation and
existing Z tools and proof rules.

A claim of this paper is that some of the limitations with integration approaches can be resolved, especially in
a setting where refinement is to be carried out. Limitations can be alleviated, providing that Z is combined with an
appropriate compatible notation, and the notation semantics are reconciled in a simple way. Our suggestion is that
preferences of an extension of Z over an integration involving Z are not as cut-and-dried as they may seem, and that an
integration of Z with a notation well-suited to specifying and reasoning about timing, concurrency, and communication
can occur. With such an integration, specifications and reasoning techniques that are comparable to those produced by
the method of [5] can be produced.

In this paper, we present a simple heterogeneous notation, combining Z with predicative notation [11], for spec-
ifying and reasoning about real-time, concurrency, and communication. We show how the semantics of the separate
notations can be resolved, and how the notation can be used in specification, refinement and proof of properties. The
approach is applied in several small specification and refinement case studies. Our emphasis in the integration is on
indicating howalgorithm refinementwith heterogeneous specifications can occur.

1.1 Organization of the Paper

We commence with an overview of previous work, concentrating on the approach of Evans [5]. We also provide a brief
overview of predicative notation. We next explain our approach to integrating notations, and describe how refinement
and proof can occur on heterogeneous notations. This section includes a result which shows that in the heterogeneous
notation, Z specifications can be refined using standard Z refinement laws. Section 4 recounts a technique for using
Z and predicative notation together for reasoning about real-time. Section 5 explains how to specify concurrency, and
presents an example of refinement. Section 6 extends concurrent specification to communication through channels,
and discusses deadlock. The approach is illustrated with several examples. Finally, we discuss the approach and its
limitations, consider tool support, and summarize some further work.

2 Previous Work and Background

A number of different approaches to combining Z, concurrency, and proof have appeared in the literature. The main
body of work in this area is by Duke et al [4], Fergus and Ince [6], Gotzhein [8], Evans [5], and Lamport [15].

The first three integration approaches propose the use of temporal logic in proving safety and liveness properties
of Z specifications, which requires extending Z to temporal logic. With these approaches, temporal logic is used to
reason about the histories of state changes that are produced by Z specifications, though derived inference rules for
inferring temporal properties of Z schemas are typically not produced. Operational styles of reasoning are used to
prove properties by directly examining histories, an approach which is suggested as impractical for all but the smallest
of specifications.

Lamport [15] has suggested an alternative integration approach to concurrency, by integrating Z with TLA. In this
approach, schemas are interpreted as actions, thus allowing use of TLA’s assertional inference rules to verify safety
and liveness properties. With this approach, temporal logic operators must still be added to Z, and existing Z proof
tools cannot be used directly.

Evans’ work [5] has instead focused on the direct application of Z to specifying concurrent systems. Evans’ ap-
proach augments traditional Z specifications with an additional specification describing the system’s dynamic be-
haviour (i.e., an ‘external view’ of the system), given in terms of allowable sequences of state changes. Evans produces
proof rules which have been used to verify safety and liveness properties of specifications. The standard Z proof rules
have been strengthened to ensure preservation of safety and liveness. The important goal of Evans’ approach is to
maintain compatibility with existing Z proof techniques, and existing Z proof tools.

In [17], it is shown how to combine Z and predicative programming in order to specify and reason about real-
time and space. It is also demonstrated that the heterogeneous notation can be used to produce simpler, more concise
refinements than with an extended dialect of Z.

2.1 Predicative programming

Predicative programming is due to Hehner [11]. It is a program design calculus in which programs are specifications. In
this approach, programs and specifications are predicates on pre- and poststate (final values of variables are annotated
with a prime; initial values of variables are undecorated). The weakest predicate specification is> (“true”), and the
strongest specification is? (“false”). Refinement is just boolean implication.

Definition 1. A predicative specificationPon prestate� and poststate�0 is refined by a specificationQ if 8�; �0 �(P(
Q).

The refinement relation enjoys various properties that allow specifications to be refined by parts, steps, and cases.
Since refinement is just implication, carrying out a refinement is equivalent to carrying out a logical proof. Therefore,
the refinement rules of predicative programming are laws of boolean logic; see [11] for a list.

Predicative specifications can be combined using the familiar operators of boolean theory, along with all the usual
program combinators. The program combinators include sequencing (:), selection (if-then-else), repetition (while-
do), and procedure call. The notation also has aframe construct. The specificationframe w � P means that predicate
P can change variablesw, but no other variables; if the state consists of disjoint collections of variablesw and�, then
frame w � P is equivalent to(P^ �0 = �).

One particular novelty with predicative programming is thatrecursiveprograms can be developed rather than
iterative programs, using recursive refinement rules. For example, in a refinement stepS (P (whereS andP are
specifications), specificationP can refer toS; this is a recursive call. It has been suggested that this simplifies the
process of developing certain programs [11], since in particular it eliminates the need to construct invariantsbefore
developing loops.

Predicative programming, as defined in its standard reference [11], is well-suited to specifying and reasoning about
real-time, concurrent, and communicating systems. A variant theory, presented in [12], maintains all the useful laws
and theorems of [11], but allows specification of intermediate states of a computation. This is useful in talking about
concurrent systems, and properties like liveness.

In the modified theory, state variables are treated as functions of time. The value of variablex at timet is xt. An
expression likex+ y is a function of time; its argument is distributed to its variable operands as follows:(x + y)t =

xt+ yt. Standard programming notations are defined as follows.

ok = t0 = t

x := e = t0 = t + 1 ^ xt0 = et^ yt0 = yt^ : : :

P: Q = 9 t00 : t � t00 � t0 � P[t00=t0] ^Q[t00=t]

if b then P elseQ = bt^ P_ : bt^Q

(Here, it is assumed that an assignment takes 1 unit of time, and no other program takes time. This could be general-
ized.) Recursive calls are allowed, providing that time is accounted for before the call. So, if a specificationP is refined
by specificationS, thenScan make recursive calls toP, providing that time is increased before the call.

To retain the look-and-feel of the original predicative notation, we follow the suggestion of [9] and usex for xt and
x0 for xt0 when we do not need to talk about intermediate states.

2.1.1 Bunch notation Bunches are used in [11] as a type system. A bunch is a collection of values, and can be
written as in this example:2; 3; 5. Some bunches are worth naming, such asnull (the empty bunch),nat (the natural
numbers),xnat (the extended naturals, which include1), int (the integers), and so on. More interesting bunches can
be written with the aid of the solution quantifierx, pronounced “those”, as in the examplexi : int � i2 = 4. We use the
asymmetric notationm; ::n for xi : int �m� i < n.

Bunches can also be used as a type system, as in the declarationvar x : nat (perhaps with restrictions for easy
implementation).

A:B is a boolean expression saying thatA is a subbunch ofB. For example,

2 : nat nat: int

We write functions in a standard way, as in the example� n : nat � n + 1. When the domain of a function is an
initial segment of the natural numbers, we sometimes use a list notation, as in[3; 5; 2; 5]. The empty list is[nil]. We
also use the asymmetric notation[m; ::n] for a list of integers starting withmand ending beforen. List length is#, and
list catenation is+. By letting list = �T : �list � 0; ::#(list T) ! T thenlist T consists of all lists whose items are of
typeT.

2.1.2 Concurrency Predicative programming includes notations for concurrent specification and for communica-
tion. Combined with the aforementioned notion of time, this allows for specification and refinement of real-time,
concurrent, interactive systems. See [11, 12] for a number of detailed examples.

In predicative programming, the independent composition operatork applied to specificationsP andQ is defined
so thatP k Q (pronounced “P parallelQ”) is satisfied by a machine that behaves according toP and at the same
time, in parallel, according toQ. The formal meaning ofk is as follows. We first definewait as a specification whose
execution takes an arbitrary amount of time and leaves all other variables unchanged during that time.

wait = t0 � t ^ 8 t00 : t � t00 � t0 � (�t00 = �t0)

Then independent composition can be defined as follows. Letv andw be bunches of variables, andP andQ specifica-
tions. Then

(frame w � P) k (frame v �Q) =

frame w � P^ frame v � (Q: wait) _ frame w � (P: wait) ^ frame x �Q

Informally, if P leaves a variable unchanged, thenQ determines the final value, while ifQ leaves a value unchanged,
P determines its final value. The time for the independent composition is the maximum of the process times.

2.1.3 Communication Communication between processes is by any number of named channels. Communication
on a channelc is described by two constant infinite listsMc andTc called themessage scriptandtime script, and two
extended natural variablesrc andwc called theread cursorand thewrite cursor. The message script is the list of all
messages that pass along the channel, while the time script is the corresponding list of times that the messages were

or are or will be sent. The read cursor is a state variable saying how many messages have been input on the channel;
the write cursor is a state variable saying how many messages have been output on the channel.

Here is an example: it says that if the next input on channelc is even, then the next output on channeld will be >,
otherwise it will be?.

Mdwd = even(Mcrc)

Four programming notations are provided for communication. Letc be a channel.

c? = rc := rc + 1

c = Mc(rc � 1)

c!e = Mc(wc) = e^ Tc(wc) = t ^ (wc := wc + 1)

?c = Tc(rc) < t

c? specifies a computation that reads one input on channelc. The channel namec is used to denote the message that
was last previously read on the channel.c!e specifies a computation that writes messagee on channelc. And ?c is a
boolean expression that is true if and only if there is unread input available on channelc (it is sometimes pronounced
“probec”).

Channel declaration introduces a new channel within some local portion of a specification. A channel declaration
applies to what follows it. The syntax and semantics of a channel declarationc applied to specificationP is

chan c : T � P = 9Mc : list T � 9Tc : list xnat� var rc;wc : xnat := 0 � P

T is the type of communications on channelc. Time is of type extended natural, but could also be extended integer,
rational, or real. The channel declaration also sets the read cursorrc and write cursorwc to initial value0.

Here is an example of two concurrent processes communicating on channelc.

chan c : int � c!2 k (c?: x := c)

The process that puts2 on the channelc can be executed in parallel with the process that reads an integer from channel
c and assigns this value tox. Simplifying, using the definition ofchan, we find that this specification is equivalent to
x := 2, as expected.

By itself, predicative programming is useful and appropriate for specifying and refining concurrent, communicat-
ing systems. The issue in this paper is in terms of combining Z with predicative notation so that Z can also make use
of these convenient predicative notions.

3 Approach to Heterogeneity

The approach to formally defining the meaning of heterogeneous notations that we use is from [16, 17]. Translations
are defined between formal notations of interest. The translations provide the mechanisms by which a heterogeneous
specification can be given a formal semantics using a homogeneous specification, via mapping the original specifica-
tion into a single-notation formulation. A set of notations and translations between them, which is to be used to give a
formal semantics to heterogeneous specifications, is called aheterogeneous basis. The small heterogeneous basis that
we use in this paper consists of the Z notation and the predicative notation, with translations between the notations. It
is derived from a much larger basis given in [16]. We require only one translation in the basis, a mapping from Z to
predicative notation.

To translate from a Z schemaOp b= [�S; i? : I ; o! : O j P] to a predicative specification, we use the translation
ZToPP, defined as follows.

ZToPP(Op) b= frame w � (preOp) P)

The framew consists of the variables inSand the operation outputs. Two options exist for translating the inputsi?: they
can be mapped to state variables (andZToPPcan be used unchanged); or they can be mapped to procedure parameters.
In the latter case,Opwould be translated to the predicative specification

procOp= � i : I � ZToPP(Op)

ThoughZToPPis written as a total function, we require that for anyOp that includes a state schema by� convention,
P 6= true, because predicative notation cannot describe terminating yet arbitrary computations [10].

3.1 Syntax of heterogeneous specifications

When integrating notations, both the syntax and the semantics of the separate languages must be reconciled. On the
surface, semantic reconciliation seems to be the harder problem: in order to prove properties about the combined no-
tation, we must give the combined notation a formal semantics, typically by translation. This process may be difficult,
especially if the notations are very different and present radically different views and models of a system. But rec-
onciling syntax need not be trivial either. If the notations, when combined, form a new notation with an ambiguous
grammar, then changes in the syntax of one or both of the notations may be necessary. But by changing the syntax
of the notations, we may make the combined notation more unattractive to use, especially by specifiers or developers
who are very familiar with one of the changed notations. Therefore, it is in our best interests to minimize syntactic
changes to notations.

Ambiguity of a syntax for a heterogeneous notation appears when we combine Z and predicative notation. In
predicative notation, the operatorŝand_ have the usual meaning: they are applied to predicates and produce a
predicate. In Z,̂ and_ are overloaded: when used within the property of a schema, they are applied to predicates.
When used within the schema calculus, they are applied to schemas. One implication of this overloading is that when,
in a notation combined from predicative notation and Z, we write the specificationS^ P (where, e.g.,S is a Z schema
andP a predicative specification), we cannot tell whether^ is an operator applied to predicates or to schemas. To
resolve this ambiguity, we can either restrict use of the ambiguous operators in some way, or change the syntax of one
of the ambiguous operators, or try to let the context indicate the meaning of the operator. Use of context, however, has
negative implications with respect to building tool support for heterogeneous notations.

We disambiguate the notations by usingg andf for the schema disjunction and schema conjunction operators,
respectively. In this fashion, we follow the approach of [20], which showed how to schema conjoin and disjoin speci-
fication statements.

3.2 Semantics of heterogeneous specifications

The translationZToPPis used to formally define the semantics of compositions of Z specifications and predicative
specifications, by translating heterogeneous specifications into homogeneous specifications. In this paper, heteroge-
neous specifications are given a semantics in terms of predicative notation. Therefore, we always write heterogeneous
specifications under the assumption that Z partial specifications can be translated into predicative notation. This pro-
vides anintersection semanticsto heterogeneous specifications [16]; it is so-called because the semantics of the new
language is effectively the intersection of the separate languages.

To obtain the meaning of a heterogeneous specification, it must be explained how to translate the specification
into predicative notation. The translationZToPP is defined only on Z specifications, so we must extend it to the
heterogeneous notation. The extension applies over the syntax tree of a heterogeneous specification. More formally,
we define the extensionZToPPe as follows. First, let� be a combinator andz a specification, where both are in
predicative notation. Letx be a Z specification. Then

ZToPPe(x � z) b= ZToPP(x) � z ZToPPe(x) b= ZToPP(x)

(a similar definition holds forZToPPe(z� x)). If z is also a Z specification, then

ZToPPe(x � z) b= ZToPP(x) � ZToPP(z):

If the combinator� happens to be a Z combinator, then

ZToPPe(x � z) b= ZToPP(x � PPToZ(z));

wherePPToZ is a translation from predicative notation to Z (one may be found in [16]. For convenience, we will
useZToPPfor ZToPPe from here on, and will let the context suggest how the function is to be used. When writing
heterogeneous specifications, we will primarily use combinators from predicative notation, because we are interested
in refinement, and because we want to retain all the refinement rules of predicative notation in the integrated notation.

To make this more concrete, consider an example whereX is a Z schema andP a predicate. ApplyingZToPPto
X ^ P results inZToPP(X) ^ P. ApplyingZToPPto Xg P results inZToPP(Xg PPToZ(P)):

Some rules for refining heterogeneous specifications composed from Z and predicative specifications were given
in [16, 17]. The first explains how to refine Z operation schemas via predicative refinement.

Rule 0. For prestate� and poststate�0, an operation schema with propertyP is refined by an operation schema
with propertyQ if

8�; �0 � (9 �0 � P) P)((9 �0 �Q) Q)

A useful rule is the following. Informally, the rule states the conditions to be checked in order to refine a schema
by a predicative specification. Such refinements occur when algorithmically refining heterogeneous specifications that
include time bounds.

Rule 1.For a prestate� and poststate�0, a Z schema with propertyP is refined by a predicative specificationQ if

8�; �0 � ((9�0 � P)) P)(Q

A generalization of the substitution rule of [11] appeared in [17]. It simplifies the definition of sequencing in the
case where the first operand is an assignment statement. Informally, it means that when we first assign valueE to
variablex, then behave like schemaS, it is the same as behaving like new schemaS0[E=x] (where the primed schema
is defined below).

Rule 2.Let x be a variable andE an expression, where ‘.’ is predicative sequencing. IfS is a schema with property
P, then

(x := E: S) = S0[E=x]

whereS0 is the same asSexcept with property preS) P. ReadS0[E=x] as “substituteE for x in the property of schema
S0”. � is the state of the system.

Rule 2 means that we can apply the predicative substitution rule when using Z schemas in refinements. The sub-
stitution rule of [11] simplifies reasoning with sequences of assignments. The property ofS0 is changed fromSunder
the substitution due to the translation of Z into predicative notation: Z conjoins a precondition with a postcondition,
while predicative programming combines the two parts with an implication. In the special case where the implicit
precondition ofS is true, thenS0 can be replaced byS.

A useful implication of using predicative notation to give a semantics to heterogeneous specifications (and of refin-
ing heterogeneous specifications with predicative refinement) is that Z refinements are preserved under the translation.
That is, if a Z specificationAOp is refined by Z specificationCOp, using the standard definition of Z algorithm re-
finement [18], thenAOp is also refined byCOpusing the standard predicative definition of refinement (applying the
translationZToPPbehind-the-scenes).

Theorem.Let AOpandCOpbe Z specifications, and suppose thatAOpv COp, wherev is Z operation refinement,
i.e.,

preAOp` preCOp

preAOp^ COp` AOp

Then8�; �0 � (AOp(COp).

Proof. Suppose thatAOpv COp. Then

AOpv COp = 8�; �0 � (preAOp) preCOp) ^ (preAOp^ COp) AOp)

) 8�; �0 � (preAOp) AOp)((preCOp) COp)

= 8�; �0 � ZToPP(AOp)(ZToPP(COp)

An important implication is that when refining a heterogeneous specification Z refinement techniques can be applied
to Z specifications, and this results in a predicative refinement of the heterogeneous specification. For example, let
AOpandCOpbe Z specifications andQ a predicative specification, whereAOpv COp. Then it is a theorem that

AOp: Q(COp: Q

AOp v COp implies thatAOp (COp, and by refinement by parts, the result holds. More generally, sequential
composition can be replaced by any combinator over which predicative refinement is monotonic (e.g., concurrent
composition), and the result still holds. Though the theorem says that we can use Z refinement rules in our specific
heterogeneous setting, it can be more useful to use the predicative notion of refinement, as we shall see in Section 4,
to produce shorter proofs.

3.3 Unintrusive Integrations

The integration of Z with predicative programming that we have presented is claimed to beunintrusive.Unintrusive
notation integrations, and unintrusive method integrations [16] should have at least the following (informal) properties.

1. The integration does not change the specification style, syntax, or semantics unduly.Specifiers can use most, if not
all of the familiar idioms and concepts of the separate notations. They can write their specifications in a similar
style. The meaning of the specifications that they write has a similar, if not identical meaning to those written in
the separate notations. And the specifications that they write are of a size proportional to those of the separate
notations.

2. The integration does not change the refinement or proof techniques associated with the separate notations unduly.
Similar, if not identical, refinement laws apply to the integrated notation as the separate notations. The laws are
made no more complex to use. Proof techniques that were applicable with the separate notations, e.g., refinement
by parts, by steps, by cases, can be applied to the integrated notation.

3. The integration allows use of the mechanized support provided by the separate notations.Note that this does
not require that tools of separate notations be applicable directly to specifications written in the heterogeneous
notation, only that the tools be applicable to the parts of the specification written in the separate notations.

Our suggestion is that if a notation integration is unintrusive, then the cost of integrating the notations can be justified
against the cost of extending a notation. Moreover, if the integration is unintrusive, then users of the separate notations
may be more comfortable in using the combined notation; unintrusive integrations can therefore smooth the passage
of adoption of new notations or methods.

The integration of Z and predicative programming is unintrusive because it satisfies the properties above. The
specification styles of predicative notation and Z remain, for the most part, the same. One change is made to Z (with
respect to the combinators_ and^) in order to obtain syntactic compatibility. The refinement techniques for Z are
applicable to the Z partial specifications that occur in a heterogeneous specification. And, therefore, Z tools, e.g.,
Cadiz, can be used to support the Z partial specifications.

4 Real Time

In this section, we outline how to use the combination of Z and predicative programming to talk about real time.
Recall that our primary interest is specification and refinement; therefore, we will concentrate on explaining how to
write real-time heterogeneous specifications, and on how to refine them algorithmically.

An integration of Z and predicative programming was presented in [17] which demonstrated how to write hetero-
geneous real-time specifications, and how to refine them to code. The basic approach was very simple: Z was used
to write behavioural specifications, and predicative notation for writing timing specifications. The two specifications
were then conjoined, and predicative refinement rules were used to refine the specification to code, following the
predicative method. We summarize the approach with an example, omitting the details.

The problem is to calculate the maximum of a list of natural numbers and to do so in time proportional to the
length of the list. The system state is

Stateb= [L : 0::n� 1! N; j : N; r : Z1]

whereL is the list,n its length,r the result of the computation, andj a counter.Z1 is all integers plus the new symbol
1, which is larger than any integer.

The time constraints we are under are as follows. An assignment takes between 2-3 units of time, inclusive, and
a tail-recursive call takes between 5-9 units of time, inclusive. No other statements take any time. The initial problem
specification isS^ Time, where

S b= [�Statej L0 = L ^ r 0 = maxfj : 0::n� 1 � Ljg]

andTime b= t0 � t : (7; ::14) � n � (5; ::12). We use bunch notation [11] to express the nondeterministic timing
constraints.

The timing requirement for an assignment statement indicates thatx := e means

t0 � t : 2; ::4 ^ x0 = e^ y0 = y^ : : :

The refinement proceeds as follows. We first refine the heterogeneous specification into code, ignoring all timing
issues. Then, once complete, we prove that the time constraints written in the initial specification are satisfied by
the implementation. Then, due to monotonicity, the composition of the timing and correctness proofs will satisfy the
original specification.

The refinement without time is straightforward. The first step introduces a loop index variable,j, and initializes the
resultr.

S (j; r := 1; L0: S1

S1 is a Z schema, defined as follows.

S1 b= [�Statej L0 = L ^ r 0 = maxfr;maxfi : j::n� 1 � Ligg]

We next refineS1 into a two-branchif statement, using therefinement by casesrule of [11].

S1 (if j = n then ok else(j 6= n) S1)

(ok is the empty program that does nothing.) To prove thethen branch, use Rule 1. To prove theelsebranch, we apply
the boolean laws of specialization and discharge, which prove the obligation in two lines (see [17]).

The proof concludes by refining theelsebranch.

(j 6= n) S1) (j; r := j + 1;maxfr; Ljg: S1

Now for the timing proof. We must prove that the timing constraints placed on the initial specification are maintained
by the refinement, separate from the correctness proof. This requires us to show

Time (j; r := 1; L0 : U

U (if j = n then ok elseQ

Q (j; r := j + 1;maxfr; Ljg: t0 � t : 5; ::10: U

for suitable timing predicatesU andQ. Note that we have inserted the time requirements for the tail-recursive call
into the refinement structure; time requirements for the assignment statement are implicit in the semantics of the
assignment. We conjecture that

U = (j = n) t0 = t) ^ (j < n) t0 � t : (7; ::14)� (n� j))

Q = j < n) t0 � t : (7; ::14)� (n� j)

Verification is straightforward. We conclude that the timing constraintTime is satisfied by the implementation. By
monotonicity,S^ Timeis implemented, and satisfies the specified time bound.

The basic approach to real-time refinement with the heterogeneous notation is to specify timing behaviour using a
predicate, and then to refine a heterogeneous specification to code, using refinement techniques from [11].

5 Concurrency

In this section, we discuss how to specify concurrent processes using the combination of Z and predicative notation.
The process extends the definition of independent composition,k, to heterogeneous specifications.

First, we show howk can be applied to Z schemas. LetOp1 andOp2, be schemas where each can be translated
into predicative notation. They are as follows.

Op1 b= [�S; i? : I ; o! : O j P]
Op2 b= [�T; j? : J; k! : K j Q]

Then

Op1 k Op2 = ZToPP(Op1) k ZToPP(Op2)

= frame w � (preOp1) P) k frame x � (preOp2) Q)

Variables in state schemasSandT are considered to be translated to variables local to the independent composition,
as are the schema outputs. Inputs can either be translated to local variables, or parameters of procedures. If the latter
is to be done, then the translation of the schemas should be replaced by calls to a procedure, the body of which is the
translation of the schema byZToPP.

The definition of independent composition of Z schemas given above has the limitations noted with the opera-
tor in [11]. In particular, it is not suited for passing values of variables via shared memory (for this, we will need
communication, presented in the next section).

Let’s see a simple example. Consider a system with state specified by the following schema.

Stateb= [x; y; z : N]

There are two operation schemas, as follows.

Op1 b= [�Statej x0 = z^ y0 = y^ z0 = z]
Op2 b= [�Statej x0 = x^ y0 = z^ z0 = z]

Then the parallel composition of these schema is:

Op1 k Op2 = ZToPP(Op1) k ZToPP(Op2)

= (x0 = z^ y0 = y^ z0 = z) k (x0 = x^ y0 = z^ z0 = z)

= x0 = y0 = z0 = z

(We can omit theframes generated byZToPPbecause the state changed by both specifications is the same.)
Nothing has to be changed in our definition in order to be able to use time. Suppose, for example, that we changed

our parallel composition to

(Op1 ^ t0 � t = 2) k (Op2 ^ t0 � t = 1)

Then the semantics of this specification would be

x(t + 2) = zt^ y(t + 2) = zt^ z(t + 2) = zt^

x(t + 1) = xt^ y(t + 1) = zt^ z(t + 1) = zt

The intermediate states are shown in the semantics; the state at timet + 1 is due toOp2, while the final state, at time
t + 2, is due toOp1.

An advantage of using a heterogeneous approach to concurrency with Z is that with our definition ofk, the operands
may be written in different notations. That is, we can write an independent composition of the formOp k P, where
Op is a Z schema andP a predicative specification. This gives us the flexibility to use the most appropriate notation to
specify each process. It also gives us the flexibility to use the most appropriate refinement relation on each component.
For Z specifications, we can use Z refinement, and will produce a predicative refinement of the whole. For predicative
specifications, we use predicative refinement as usual.

5.1 Example

We contrast using the combination of Z and predicative notation with using Evans’ extension of Z [5], applied to a
simple telecommunications protocol from [21]. We show that the heterogeneous notation can produce specifications
and proofs that are comparable in size and complexity to those of Evans.

Evans’s specification of the protocol is as follows. LetM be the set of messages that the protocol handles, andState
be the state schema for the protocol.in andout are state variables describing the incoming and outgoing messages,
respectively. The invariant states thatout is a suffix ofin.

State== [in; out : seqM j 9 s : seqM � in = sa out]

The valid initial states are specified by operation schemaInit.

Init == [Statej in = h i]

Transmission and reception of messages is via theTransmitandReceiveoperations.

Transmit
�State
m? : M

in0 = hm?ia in
out0 = out

Receive
�State

in0 = in
#out0 = #out+ 1 _ out0 = out

This completes the traditional Z specification of the system. The dynamic specification augments the traditional one,
to describe behaviour in terms of allowable sequences of state changes that result from execution of system operations.
First, a next-state schema for the protocol is defined.

NextState== Transmitg Receive

The dynamic behaviour of the protocol is specified by schemaParBehaviour.

ParBehaviour
� : N1 ! State

� validcomp (fInit � �Stateg; fNextState� �State7! �State0g)
� wf fReceive� �State7! �State0g

validcomp is true for all state changes in which the first step belongs to the initial state of the system, and in which
subsequent steps are related by the next-state relation. Nondeterministic selections are made on enabled state changes.
Weak fairness, throughwf is also specified.wf is true for any behaviour in which the set of state changes is always
eventually executed. These operators are formally specified in [5].

Informally, the specificationParBehaviourcaptures the intuitive behaviour of the protocol:Receives andTransmits
may happen in parallel. This is simulated by nondeterministic interleaving. Note that this specification does not guar-
antee progress.

The heterogeneous specification of the system reuses the Z specifications ofReceiveandTransmit. Dynamic be-
haviour is specified using independent composition.

Behaviour= (Receivek Transmit): Behaviour

Informally, the system carries outReceiveandTransmitin parallel indefinitely. Formally, the behaviour is specified
as a fixed-point construction. In order to bring initialization into the specification, the schemaInit 0 can be sequenced
with the fixed-point constructionBehaviour, i.e.,

Init0: Behaviour:

Note that inBehaviour, Receivehas the option of doing nothing each time it is enabled. Thus, progress is not guaran-
teed. Progress can be guaranteed by constraining theReceiveoperation, in exactly the same way as is done in [5]. To
do this, theReceiveoperation is extended to[Receivej out0 6= out]. Further,Behaviourcan be extended to specify
the weak fairness of the operationReceiveby conjoiningBehaviourwith

8 t � 9 t00 : t � t00 � t0 �Receive[t00=t0]

which says that it is always the case that eventuallyReceivewill be true.

5.2 Safety and liveness

In [5], it is shown how to prove safety and liveness properties with an extension of Z. We now briefly discuss how to
carry out such proofs with the heterogeneous notation, in a format that is close to that used in [5].

We begin with safety (invariant) properties. LetA be a concurrent heterogeneous specification.

A = (S0 k : : : k Sk�1): A

EachSi may be a Z operation schema or a predicative specification.A is invariant with respect to a propertyP (which
is a predicate on a state�) if the independent composition preservesP, i.e.,

8 t; t0 � ((S0 k : : : k Sk�1)) (P) P0))

whereP0 is identical toP but is in terms of the post-state�0. In general, we cannot prove invariant properties by parts,
because the processesSi may interfere with each other (e.g., if one process changes variablex, and another process
also changesx but to a different value). However, in the case where theframes of all processes are disjoint, it will hold
that

(S0 k : : : k Sk�1) = (S0 ^ : : : ^ Sk�1)

) (S0 _ : : : _ Sk�1) (1)

and then we can prove the invariance ofP by parts, by showing that

8 i : 0; ::k � 8 t; t0 � Si) (P) P0)

In general, if we can prove that the independent composition ofSi ’s implies the disjunction of theSi ’s, then safety
properties can be proven by parts. This is necessary in general because the operands of the independent composition
can change the same variables. In [11], it is recommended not to write independent compositions in this way (i.e.,
with intersectingframes), because it leads to unsatisfiable specifications. Communication constructs can be used to
avoid the problem. In [5], proof of safety properties by parts is possible in general because parallelism is simulated
by nondeterministic interleaving;k in this paper is approximately conjunction, thus requiring an extra satisfiability
constraint (which is effectively (1)).

Consider the following example, showing thatBehavioursatisfies the invariantP = (9 s� in = s+out). Because the
processes ofBehaviourchange different variables, it suffices to show that each process maintains the invariant. Thus,
we would need to show thatReceivesatisfiesP. The proof obligation for this step is

8 t; t0 � Receive) (P) P0)

Notice thatP happens to be the state invariant. After applyingZToPPto Receive, we must prove

8 t; t0 � (P) (in0 = in ^#out0 = #out+ 1 _ out0 = out^ P0))) (P) P0)

which istrue. Transmitsimilarly satisfies the invariantP. And thus, so doesBehaviour.
Liveness properties are more complex to prove. One useful liveness property, suggested in [5], isleads-to. P leads-

to Q is informally defined as “ifP is true then eventually an enabled operation will causeQ to become true”. For a
concurrent system likeA, above, the formal meaning ofP leads-toQ is

8 t; t0 � P) (9 t00 : t � t00 � t0 � (A) Q0)[t00=t])

Informally, the rule expresses that ifP holds at timet, then there is some timet00 in the course of steps of behaviour of
the concurrent systemA at whichQ0 is established.

Proving that a system satisfies aleads-toproperty using this definition may be complicated. If an inductive proof
is not needed (i.e.,P will lead-toQ after a single step in the computation), we must prove that

8 t; t0 � P) 9 t00 : t � t00 � t0 � ((S0 k : : : k Sk�1)) Q0)[t00=t]

because the processesSi may change some of the same variables. If all processes have disjointframes, then condition
(1), above, will hold, and theleads-toproperty can be proven by parts, using a UNITY-style law adapted from [3], in
much the same way as Evans [5].

There are two possible versions of theleads-torule: one for weak fairness, the other strong fairness. We consider
the former here. There are three main steps in aleads-toproof, providing that we have shown that the proof can be
done by parts.

1. Show that each operationSi in the system either leavesP invariant, or establishes the propertyQ.

8 i : 0; ::k � 8 t; t0 � Si) (P) P0 _Q0)

2. Show thatP enables a weakly fair operationSj .

8 t � P) (preSj)

3. Show that the weakly fair operationSj establishesQ under assumptionP.

8 t; t0 � P) (Sj) Q0)

To establish the soundness of this rule, suppose that the three conditions hold (as must (1)). For any computation in
which P holds initially, the first condition ensures that a valid step (where a step corresponds to the execution of an
operationSi) in the behaviour will either preserveP or establishQ0. By the second condition, the weakly fair operation
is continuously enabled throughout the computation. As a consequence of the third rule and fairness,Sj will eventually
be executed, resulting inQ0 being established.

This rule will be insufficient for inductive proofs. In such situations, it is useful to introduce a variant that is
decreased on each iteration. For such systems, we must show

(P^ N = n) leads�to ((Q_ N < n) ^ P)

whereN is a variant over a well-founded set.
For the systemBehaviour, we might want to prove that, under a progress constraint,

(#in > #out^#in = k) leads�to (#out= k)

i.e., that ifk messages are input, then eventuallyk messages are output. Assume thatReceiveis a weakly fair opera-
tion. First, we must constrainBehaviourso as to ensure eventual reception of messages. Due to the flexibility of the
heterogeneous notation, this is easy to do. We simply modifyReceiveto [Receivej out0 6= out].

We can use the inductive rule to prove liveness (because condition (1) holds, since the processes ofBehaviour
change different variables). Let a variantN bek�#out, P be#in > #out^#in = k, let Q be#out = k, and letI
be the property of state schemaState. First, we must show that the weakly fair operation is always enabled.

8 t � P^ I ^ (k�#out= n)) preReceive

Next, we show that each system operation either maintainsP or establishesQ. The first part shows this forReceive.

8 t; t0 � ZToPP(Receive)) ((P^ I ^ k�#out= n))

P0 ^ k�#out0 = n_Q0 _ k�#out0 < n^ I 0)

A similar obligation must be discharged forTransmit.

8 t; t0 � ZToPP(Transmit)) ((P^ I ^ k�#out= n))

P0 ^ k�#out0 = n_Q0 _ k�#out0 < n^ I 0)

Finally, it must be shown that the weakly fair operation establishesQ or decreases the variant.

8 t; t0 � P^ I ^ k�#out= n) (ZToPP(Receive)) Q0 _ k�#out0 < n^ I 0)

The first obligation holds because#in > #out implies the precondition ofReceive, while the second holds because
Transmitmaintainsout0 = out and impliesP0. The third condition holds becauseReceiveincreases#out, thus de-
creasing the variant. The last formula holds sinceReceiveincreases#out by 1, which either guarantees thatQ0 holds
or that the variant is decreased.

Proving safety and liveness properties with the heterogeneous notation is somewhat more complex than in Evans’
approach, in part because concurrency in the notation is effectively conjunction, as opposed to disjunction in [5].
In order to prove these properties by parts, an extra satisfiability proof obligation must be discharged. In general,
safety and liveness properties will not be provable by parts with the heterogeneous notation. However, if we use the
independent composition operator as suggested in [11] (i.e., avoid writing to shared memory) and instead make use of
the communication operators presented in the next section, then for most practical examples, a partwise approach to
proof can be used.

5.3 Data transformation

The specification of operationsReceiveandTransmitcan be further refined, using the data transformation theory of
[11].

To data transform a specification, given implementer’s variablesv, we must produce newimplementer’s variables
w as well as an abstraction invariantD (called a data transformer in [11]). The invariant must satisfy

8w � 9 v � D

Each specificationS is transformed, under the abstraction invariant, to

8 v � D) 9 v0 � D0 ^ S

In the example, the implementer’s variables are specified byState; the new implementer’s variables are specified by a
new schema,Section. This new state describes theroutethat messages take through a network: a sequence of signalling
point codes (SPCs) without repetition. Each section in this route may receive and send messages; those which have
been received but not sent exist in thein section.

[SPC]

Section
route : iseq SPC
rec; ins; sent: seq(seqM)

route 6= h i
#route= #rec= #ins= #sent
rec= ins� sent
front sent= tail rec

ins represents the sequence of messages currently within the section,rec is the sequence of received messages, and
sentthe transmitted messages.� denotes the pairwise concatenation of two lists. A formal definition is in [21].

A data transformer to relate the two states is

D = in = head reĉ out= last sent

(whereheadandlast are predicative translations of the corresponding Z toolkit functions).
To apply the data transformer to a Z specification, we must define the effect of the transformer on a Z schema. This

is straightforward. LetOpbe a Z operation schema. Then

8 v �D) 9 v0 �D0 ^Op b= 8 v � D) 9 v0 �D0 ^ ZToPP(Op)

Thus, after transformation and some simplification, theTransmitoperation is transformed as follows. LetJ be the
property of schemaSection.

STransmit= frame rec � J) (head rec0 = [m]+(head rec) ^ tail rec0 = tail rec^ J0)

Receiveis transformed to

SReceive= frame ins; sent� J) (front ins0 = front ins^ last ins0 = front(last ins) ^

front sent0 = front sent̂ last sent0 = [last(last ins)]+(last sent) ^ J0)

In the original abstract view, messages arrived at their destination nondeterministically. In the sectional view, nonde-
terminism is explained by the progress of messages through a sequence of sections. Thus, we should add an operation,
Daemon, that moves messages. The effects of theDaemonare invisible in the abstract state, but visible in the concrete
state. TheDaemoncan be specified as a Z schema.

Daemon
�Section

9 i : 1::#route� 1 j ins i = h i�
(ins0 i = front(ins i)^

ins0(i + 1) = hlast(ins(i)i a ins(i + 1)^
(8 j : domroute j j 6= i ^ j 6= i + 1 � ins0 j = ins j))

To specify the system’s concurrent behaviour, the transformed operations andDaemonare composed in an independent
composition,SectionBehaviour.

SectionBehaviour= (STransmitk SReceivek Daemon): SectionBehaviour

To guarantee eventual reception of messages, theSReceiveandDaemonoperations should be constrained to be weakly
fair with respect to start and completion times of a computation. Definewf Sas

wf S = 8 t � 9 t00 : t � t00 � t0 � S[t00=t0]

ThenSectionBehaviourmust be further constrained, as follows.

SectionBehaviour̂ wf SReceivê wf Daemon

It must also be shown thatDaemonis correct with respect to the abstract state. LetI be the property ofState. To start,
we must prove that

8 in; out; rec; route; ins; sent� I ^ D) (preDaemon)

8 in; out; in0; out0; route; rec; ins; sent; route0; rec0; ins0; sent0 �

D ^ ZToPP(Daemon) ^ D0) (preDaemon) I 0 ^ in0 = in ^ out0 = out)

The first proof obligation is to show that theDaemonis always enabled. The second obligation is to show that if
enabled theDaemondoes not change the abstract state.

Next, we must show two things: that whenever a weakly fair operation on the abstract state is enabled, it will
remain enabled at least until the corresponding concrete operation occurs; and, whenever a weakly fair operation on
the abstract state is enabled, the corresponding operation on the concrete state is eventually enabled.

Let dt Sbe8 v �D) 9 v0 �D0 ^S, i.e., the transformation of specificationSby data transformerD. Then the proof
obligations for weakly fair abstract operationA and weakly fair concrete operationC are

8 t1; t2 : t1 � t2 � (dt preA)[t1=t] ^ C[t2=t]) 8 t00 : t1 � t00 � t2 � (dt preA)[t00=t]

(dt preA)) 9 t00 : t00 � t � (preC)t00

These obligations must be discharged forReceiveandSReceive.
A limitation of the predicative theory of data transformation is that it cannot express infinite stuttering.

6 Communication

Now we consider input and output between processes. Input and output is by channels, through which a computation
communicates with its environment. The computation may be specified in Z or in predicative notation or in a combi-
nation, perhaps via an independent composition. The channels are specified in predicative notation, as was discussed
in Section 2.1. We illustrate the approach with two examples.

6.1 Mutual exclusion

The first example involves mutual exclusion, critical sections, and synchronization. We specify a concurrent queueing
system. One process adds jobs to a queue, while a second process removes jobs from the queue and services the job.

The system will be specified using the combination of Z and predicative notation. The processes will require mutually
exclusive access to the queue. We first specify the system (omitting the details of how a job is to be serviced), and then
write a specification expressing mutual exclusive access to the critical section.

The specification commences by introducing a basic typePROCESS, to stand for the type of processes, as well as
a RESULTtype, to stand for an operation status output.

[PROCESS]

RESULT ::= SUCCESSj FAIL

The system state is as follows.

State
queue: seq

1
PROCESS

numjobs: N

numjobs= #queue

AddJobplaces new jobs into the queue.

AddJob
�State
job? : PROCESS

numjobs0 = numjobs+ 1

queue0 = queuea [job?]

The operation to service a job is as follows.

ServiceJob
�State
result! : RESULT

numjobs> 0
queue0 = tail(queue)
numjobs0 = numjobs� 1
result! = SUCCESS

RServiceJob
�State
result! : RESULT

numjobs= 0
result! = FAIL

We now use the heterogeneous notation to specify the system. The specification is

chan a : int � chan b : int � P k Q

where

P = Np: a!>: AddQueue: a!?: P

Q = Nq: b!>: (ServiceJobg RServiceJob): b!>: Q

Np is a specification that performs some initialization forAddQueue; Nq performs initialization for the service oper-
ations. Note that the schema disjunctionServiceJobg ServiceJobhas an implicittrue precondition, i.e., it is always
enabled. Thus, progress is guaranteed in this concurrent system. By comparison, if we were to removeRServiceJob
from Q, above, progress would not be guaranteed, becauseServiceJobwould only be enabled whennumjobswas at
least 1.

To ensure that mutual exclusion is guaranteed, the specification must satisfy

: 9 i : wa; ::1 � 9 j : wb; ::1 � (Mai ^ Tai � Tbj < Ta(i + 1)) _

(Mbj ^ Tbj � Tai < Tb(j + 1))

Informally, the condition above states that a message does not arrive on channela at the same time as a message on
channelb (and vice versa).

6.2 Short-term scheduler

We now present a more detailed example that brings together all the techniques we have described in the paper. The
example combines use of concurrency, communication, and refinement.

The problem we wish to solve is that of constructing a simulator for a scheduler that can provide service either in
a first-come first-served or a round-robin fashion. The initial requirements are as follows.

A system is needed to simulate two short-term schedulers. The system must generate test data and sim-
ulate either a first-come first-served (FCFS) or a round-robin (RR) short-term scheduler, depending on user
choice. The system will have two parts: the first will generate data. The second part will load the data into a
“ready” queue, and simulate the scheduler operation on the data.

The generator part produces two vectors of data, one holding NUMBERrandom CPU burst lengths, and the
other holding NUMBERrandom arrival times of processes. The CPU bursts should be generated so that 80%
of the bursts are uniformly distributed between 0:1 and 1:0, and the remaining 20% are uniformly distributed
between 1:0 and 10:0. The arrival times of the processes must have a Poisson distribution, with parameter
LAMBDA.

The second system component is the simulator, which simulates the appropriate algorithm on the test data,
starting with the ready queue holding INITIAL jobs. Total wait time and average wait time should be output upon
completion. A circular ready queue of fixed length 100 should be used.

We can provide arough sketch[14] of the system as a data flow diagram in Fig. 1.

Data ReadyQueue

SCREEN

numplaced

simulator

SimResults

Output
Stats

Simulate
Place

Select
Algorithm

InitialGenerator USER

Fig.1.Rough sketch of simulator system

(The diagram in Fig. 1 is given only for illustrative purposes. We ascribe no particular semantics to it; it is drawn
to help us understand the system.) In the figure, processes are written as circles, external entities in the environment
as rectangles, and data stores as parallel lines. Data flow between processes, entities, and data stores is written using
labelled arrows.

To formally specify the system, we express (using Z and predicative notation) the behaviour of each process and
the mechanism for communication among the processes, via channels. Before doing so, we specify the state of the
system, and formalize the terms used in the rough sketch of Fig. 1.

The constantsINITIAL, LAMBDA, andNUMBERwere described in the informal requirements.

INITIAL;NUMBER: N
LAMBDA : R

The system’sready queueholds the processes that are to be serviced. The queue is modeled as a sequence ofCells.

Cell
burstlength; arrivaltime : R
group : Z

ReadyQueue
ready: seq

100
Cell

arriving; boundary; head; tail; length: N

The ReadyQueueis made up of a sequence ofCells, as well as the pointers necessary to maintain and update the
queue (i.e.,tail andheadpointers). Finally, the data store used to hold the data generated and used by the simulator is
specified as a state schema.

Data b= [bursts; arrivals : seqNUMBERR]

The type definition for the algorithms available to simulate (we specify only two) is as follows.

ALGTYPE ::= rr ; fcfs

(rr andfcfsare names for which we provide no definition.) Two channels appear to be necessary for this system (though
we might choose to make the interface between the system and the external entitiesUSERandSCREENchannels as
well): one between processesPlaceInitialandSimulate, and another betweenSelectAlgorithmandSimulate. The rough
sketch of Fig. 1 suggests names for these channels:numplaced, andsimulator, respectively. These are specified in the
usual predicative notation. (We add process details later.)

chan numplaced: nat � chan simulator: ALGTYPE

We now provide specifications of selected processes, concentrating on the most interesting: those for the generator
and the simulator. We omit formal specifications of the remaining processes. The purpose of theSimulateprocess is to
read values along its channels and then simulate a scheduling algorithm on the data generated by the remaining parts
of the system. We write this as a heterogeneous specification.

Simulate= numplaced? k simulator?:

time; arriving; current; boundary:= 0; numplaced; bursts(0); arrivals(length):

while (0 < length< 100) do (

if (simulator= fcfs) then FCFSelseRR:

current := ready(head): dequeue)

The partial specificationsFCFSandRRspecify the behaviour of the first-come first-served and round-robin schedulers,
respectively. Predicative notation is better suited for specifying the iterative parts of the simulator (via awhile loop),
because it is a wide-spectrum language with an embedded programming language part. Z is useful for specifying the
remaining parts.

TheFCFSschema is as follows.

FCFS
�ReadyQueue
marr : N

marr = maxfj : arriving::NUMBER� 1 j time+ boundary> arrivals(j)g
head 6= (tail + marr� arriving) mod 100
8 i : 0::marr� 1 � 9 new: Cell � (

new:burstlength= bursts(arriving + i)
new:arrivaltime= arrivals(arriving + i)� boundary
new:group= bbursts(i)c
ready0((tail + i) mod 100) = newtail0 = (tail + marr� arriving) mod 100

length0 = length+ (marr� arriving)
arriving0 = marr

(The schemaRRis similar.) Informally, the operation queues all those jobs that would have arrived during the service
of the current job.marr is the maximum (last) job to arrive during the service of the current job.

Before simulation can begin, data must be generated, and the system must be initialized. Initialization involves
placingnumplaceddata items in the queue and selecting a scheduling algorithm (RRor FCFS) before simulation.

Generator: (chan numplaced: nat � chan simulator: rr ; fcfs�

(PlaceInitial k SelectAlgorithm): Simulate): OutputStats

Data is generated using a random number generator,rand, which returns a randomreal.

0 � rand< 1 ^ rand : real

TheGeneratorschema is as follows.

Generator
�Data

arrivals0(0) = 0
(bursts0(0) = 0:9� rand+ 0:1 _ bursts0(0) = 9:0� rand+ 1:0)
8 i : 1::NUMBER� 1�
(bursts0(i) = 0:9� rand+ 0:1 _ bursts0(i) = 9:0� rand+ 1:0)
(arrivals0(i)� arrivals0(i � 1) = �LAMBDA� loge rand)

The operation calculates burst and arrival times forNUMBERjobs, where a burst time is either between 0 and 1, or
between 9 and 10. Arrival times have a Poisson distribution with parameterLAMBDA.

OutputStatsmight be trivially formalized as

OutputStats = Screen!data

whereScreenis a declared channel anddatathe collected simulation data. Similarly,SelectAlgorithmmight be

SelectAlgorithm = while : ?Userdo ok: User?: simulator!User

whereUser is a declared channel.
Now refinement can occur, using the results we described earlier. We omit most of the details, since they follow

standard refinement practice. TheGeneratorspecification can be refined to a simple loop, using standard Z refinement
techniques, e.g., as described in [22]. This can occur due to our result that shows that Z refinement is monotonic over
all predicative combinators. The guard on the loop implementing the generator isi < NUMBER, a loop variant is
NUMBER� i, and a loop invariant is:

1 � i < NUMBER^

8 j : 1; ::i � arrivals(j)� arrivals(j � 1) = �LAMBDA� loge rand^

(bursts(j) = 0:9� rand+ 0:1 _ bursts(j) = 9:0� rand+ 1:0)

The first step of the refinement is to introduce a local variable,n, and to split theGeneratorspecification into a leading
assignment and a loop partial specification. The second step is to refine the loop to a loop body, where the body is a
collection of assignment statements. The proof obligations are standard from [22]. The result of the refinement and
proof obligations is the following program (in Dijkstra’s guarded command language).

n; arrivals(0); i := rand; 0; 1;

bursts(0) := if (n� 0:8) then 0:9� rand+ 0:1 else9:0� rand+ 1;

do (i � NUMBER)!

n := rand;

bursts(i); arrivals(i); i :=

if (n� 0:8) then 0:9� rand+ :1 else9:0� rand+ 1;

�LAMBDA� loge(rand) + arrivals(i � 1); i + 1

od

Refinement of theFCFS is somewhat more complex (it involves a more complex loop invariant, and the loop
body is more complicated). We found it easier to refine the specification to code using predicative refinement rules,
developing a recursive program instead of an iterative program. The heterogeneous setting allows us to do this. To
carry out the refinement, we first define a queueing functionenqueue, as follows.

enqueue= � a; b : real; g : int � (head 6= (tail + 1 mod 100)))

ready0 = (tail; \burstlength")! a j (tail; \arrivaltime")! b j

(tail; \group")! g j ready^

tail0 = (tail + 1) mod 100 ^ length0 = length+ 1

Refinement is carried out by first noticing that inFCFS, the local variablenewas well as the body of the universal
quantifier, can be replaced by anenqueueoperation. We also notice that the purpose of the universal quantifier is to
add all arriving processes to the ready queue, providing that such an addition does not exceed the queue size. This can
be refined to a tail-recursive program with guard

((time+ boundary> arrivals(arriving)) ^ arriving < NUMBER^ length 6= 100)

providing that we usearriving as the index variable for determining when to exit the tail recursion. The result of the
refinement (a tail recursive program) can be transliterated to awhile-loop, which looks as follows.

while ((time+ boundary> arrivals(arriving)) ^ arriving < NUMBER^ length 6= 100) do (

enqueue(bursts(arriving); arrivals(arriving)� boundary; bbursts(arriving)c):

arriving := arriving + 1

)

7 Discussion

The aim of integrating Z with predicative notation is to construct a notation that is suitable for specification and
for programming of real-time, concurrent, and communicating systems. It is therefore in our best interests to make
specification and refinement (which is what we do when we program) as simple as possible. It is also in our best
interests to integrate Z and predicative programming in an unintrusive manner, so that the individual notations can be
used in combination in a manner that is close to how they can be used separately. These ideas led us to choose an
intersection semantics for the combination of Z and predicative notation, which in turn led to simple refinement rules
and specifications.

In [5], Evans suggests a number of disadvantages to integrating Z with notations — like CSP, TLA, or CCS — that
are better suited to specifying concurrent behaviour.

1. Reconciling the semantics of the individual notations.
2. Using existing Z tools (e.g., for type checking and proof).
3. Poor use of the Z proof system.

The integration of Z with predicative notation that we have presented in this paper does not suffer from these disad-
vantages. We discuss each of these points in more detail.

Reconciling the semantics of notations can be difficult, especially for notations with very different semantics, such
as Z and CSP (though see [19]). But predicative notation and Z can be used to present the same view of a system;
both notations are model-oriented. Therefore, combining the notations is much simpler than combining Z and CSP, for
example. And since predicative notation is well-suited to specifying concurrent behaviour, so too should the integrated
notation.

As we pointed out earlier, reconciling the semantics of similar notations can be difficult, in particular, when the
notations differ in expressiveness. A clear understanding of the roles of the notations in the integration will help in de-
termining the best way to reconcile the semantics. In the integration of this paper, the role of predicative programming
is for specifying communication and concurrency primitives, as well as to provide a basis for refinement. Z is used for
specifying system operations, and can also be used for refinement if desired.

With an integration of Z with CSP, the ability to use existing Z tools (and existing CSP tools, like FDR) will be
reduced or removed. With the integration of predicative notation with Z in this paper, the ability to use Z tools remains,
at least with respect to Z partial specifications. Some behind-the-scenes translation may have to be done in order to get
information regarding the system state needed to use the Z tools.

As well, by using predicative notation as the semantic basis for the heterogeneous notation, we allow ourselves to
use theorem provers based on typed set theory. So, for example, PVS can be used to support the predicative method,
and therefore the heterogeneous notation. This creates the need for a tool (e.g., based on TXL) that will automatically
translate heterogeneous specifications written in Z and predicative notation, into PVS syntax. Work is underway on
creating such a tool.

Finally, the integration of Z and predicative notation allows use of Z proof techniques when applied to Z partial
specifications (that may, perhaps, be composed with and by predicative specifications). This is due to the particular
reconciliation of semantics that we have chosen.

Our suggestion, then, is not that the problems suggested by Evans will not be apparent when combining very
different notations — like Z and CSP — but by carefully choosing notations that can be unintrusively integrated, and
by understanding the roles each notation will play in the integration, the disadvantages may vanish, or at least prove
to be less critical.

8 Conclusions

In this paper, it has been shown how the Z notation can be used, in combination with the predicative notation of [11], to
specify and reason about concurrent, real-time, communicating behaviours. The motivation for the work was to attempt
to demonstrate that limitations noted with previous integrations [4, 6, 8] could be partially alleviated by integrating Z
with the right notation. In order to overcome these limitations, an intersection semantics for Z and predicative notation
was used, and it was demonstrated that such a semantics allows (practically) full use of Z and maintains the ability to
use Z proof techniques and tools on Z partial specifications.

The approach was aimed at showing how refinement could be used on heterogeneous specifications of concurrent,
real-time, or communicating behaviour. We demonstrated how both Z refinement techniques and predicative refine-
ment techniques could be applied in such situations.

An important aspect of this work is that it shows that it need not be necessary to extend Z, or to even change the
standard Z approach to specification, in order to discuss concurrent, real-time, or communicating behaviour. Therefore,
the standard Z notation can be used, augmented with predicative specifications that are well-suited to talking about
such behaviours.

References

1. P. Baumann and K. Lerner. A Framework for the Specification of Reactive and Concurrent Systems in Z. InProc. 15th
Conference on Foundations of Software Technology and Theoretical Computer Science, LNCS 1026, Springer-Verlag,
1995.

2. J.-M. Bruel, A. Benzekri, and Y. Raymaud. Z and the Specification of Real-time Systems. InProc. 7th Int. Conf. on
Putting into Practice Methods and Tools for Information System Design, IRIN, 1995.

3. K.M. Chandy and J. Misra.Parallel Program Design: A Foundation, Addison-Wesley, 1988.
4. R. Duke and G. Smith. Temporal Logic and Z Specifications. InAustralian Computer Journal,21(2), May 1989.
5. A.S. Evans. A Case Study in Specifying, Verifying, and Refining a Parallel System in Z. To appear inParallel Processing

Letters,1998.
6. E. Fergus and D. Ince. Z specifications and modal logic. InProc. Software Engineering 90, Cambridge, 1990.
7. C.J. Fidge. Real-time Refinement. InProc. FME ’93, LNCS 670, Springer-Verlag, 1993.
8. R. Gotzhein. Specifying open distributed systems with Z. InVDM and Z — Formal Methods in Software Development,

LNCS 428, Springer-Verlag, 1990.
9. I. Hayes and M. Utting. Deadlines are Termination. InProc. PROCOMET ’98, Chapman and Hall, 1998.

10. E.C.R. Hehner and A.J. Malton. Termination Conventions and Comparative Semantics,Acta Informatica, 25 (1988).
11. E.C.R. Hehner.A Practical Theory of Programming, Springer-Verlag, 1993.
12. E.C.R. Hehner. Abstractions of Time. InA Classical Mind: Essays in Honour of C.A.R. Hoare,Prentice-Hall, 1994.
13. C.A.R. Hoare. Lectures given at the NATO ASI International Summer School on Program Design Calculi, Marktober-

dorf, July 1992.

14. M.A. Jackson,Software Requirements and Specifications, (Addison-Wesley, 1995).
15. L. Lamport. TLZ. InProc. ZUM ’94, Springer-Verlag, 1994.
16. R.F. Paige. A Meta-Method for Formal Method Integration. InProc. Formal Methods Europe ’97, LNCS 1313, Springer-

Verlag, 1997.
17. R.F. Paige. Comparing Extended Z with a Heterogeneous Notation for Reasoning about Time and Space. InProc. 11th

Int’l Conference of Z Users,LNCS 1439, Springer-Verlag, 1998.
18. J.M. Spivey.The Z Notation: A Reference Manual, Prentice-Hall, 1989.
19. G. Smith. A Semantic Integration of Object-Z and CSP for the Specification of Concurrent Systems. InProc. FME ’97,

LNCS 1313, Springer-Verlag, 1997.
20. N. Ward. Adding specification constructors to the refinement calculus. InProc. FME ‘93, LNCS 670, Springer-Verlag,

1993.
21. J. Woodcock and J. Davies.Using Z, Prentice-Hall, 1996.
22. J.B. Wordsworth.Software Development with Z, Addison-Wesley, 1992.

