

Formalizing and Integrating SA/SD with a Program Design Calculus

Richard F. Paige

Technical Report CS-98-06

July 8, 1998

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

Formalizing and Integrating SA/SD
with a Program Design Calculus

Richard F. Paige
Department of Computer Science, York University,

Toronto, Ontario, Canada, M3J 1P3.paige@cs.yorku.ca

Abstract

The notations and parts of a process for Structured Analysis and Structured Design [2, 15] are for-
malized within a program design calculus [5]. The formalizations are used in an application of a meta-
method for formal method integration, combining SA/SD and the program design calculus of [5]. The
methods are integrated so as to provide more rigor to the informal method, and to make the program de-
sign calculus more applicable for use in large-scale systems development. Two integrations are proposed,
and the two approaches are applied in some detail to an example.

1 Introduction

Methods can be integrated by defining relationships between them, so that they can be cooperatively and

productively used together. Method integration in a software context has seen recent research, on tech-

niques to combine particular sets of methods [12, 13], and on systematic approaches to semiformal method

integration [7]. An aim of this paper is to use a method for formal method integration [11] to combine

a program design calculus and a structured method. We carry out this integration for two reasons: so as

to provide a rigorous basis to the informal method; and to make the calculus more useful for large-scale

software development.

We commence with a brief overview of method integration and the general approach we take to accom-

plish it. We then summarize a meta-method for formal method integration, discussed in [11]. The approach

is applied to combining predicative programming [5] with SA/SD [2, 15]. Finally, we use the integrated

method in an example.

Contributions of this paper include: a new, detailed application of the method of [11], combining an

informal method and a program design calculus, as well as a new example of using an integrated method.

We also provide new formalizations of SA/SD notations, using a design calculus, and explain some of the

repercussions of using such an approach to formalize parts of a structured method.

1

1.1 Methods and method integration

A methodfor software development consists of notations and processes. When integrating methods, incom-

patibilities between methods are resolved so that the approaches can be safely and effectively used together

[7]. Method integrationis the process of combining two or more methods to form a new method.Formal

method integration is method integration involving at least one formal method [11].

Method integration in a software engineering context is a problem of growing research interest for sev-

eral reasons. One rationale is that it is unlikely that one method will suffice for use in the development of

complex systems [6]; method integration can provide techniques for dealing with this complexity. Further-

more, method integration has been used successfully in industrial practice, for example, at BT [13], Philips

[7], Praxis [3], and elsewhere.

1.2 Heterogeneous notations and specifications

Notations are important parts of any method, and will play a key role in the approach we use to integrate

methods. In particular, we integrate notations as a first step in combining methods.

A heterogeneous notationis a combination of notations. It is used to writeheterogeneous specifica-

tions, which are compositions of partial specifications written in two or more notations. Heterogeneous

specifications are claimed to be useful for a number of reasons: for expressiveness; for producing simpler

specification languages [16]; for writing simpler specifications than might be produced using one language

[16]; for ease of expression [3]; and because they have proven to be successful in practice [13, 16]. We use

them as a first step towards formal method integration, and discuss this process starting in Section 1.3.

The meaning of a heterogeneous specification is given by formally defining the meaning of a compo-

sition of partial specifications. If we combine exactly two notations, where one is formal and the other

informal, we can formally define the composition by formalizing the informal notation in the formal lan-

guage being used. More generally, we may want to build a heterogeneous notation from more than two

formal or informal notations. In this case, to give a semantics to heterogeneous specifications written us-

ing the new notation, we construct aheterogeneous basis[11], a set of notations and translations between

notations that is used to provide a formal semantics to heterogeneous specifications.

In this paper, we are interested in combining the use of predicative programming and SA/SD; thus, we

will eventually formalize SA/SD notations in predicative notation. For more on heterogeneous bases, their

construction, and use, see [11]. By formalizing SA/SD notations in predicative notation, we effectively

construct a very simple heterogeneous basis consisting of only SA/SD notations and predicative notation.

2

1.3 Integrating methods with heterogeneous notations

We use the process of constructing heterogeneous notations as a first step in formal method integration. Inte-

gration occurs by formalizing the meaning of compositions of partial specifications written in the notations

of interest; such a process also requires us to ensure that the heterogeneous notation can be parsed. Once this

is done, integration continues by generalizing processes of methods so as to use heterogeneous notations,

and by defining relationships between the (generalized) processes of the methods that are being combined.

More details are given in Section 2.

We suggest that the process of formal method integration can be partially systematized by using het-

erogeneous notations. Their construction allows the notation-related complications associated with method

integration to be dealt with first. The heterogeneous notation can therefore provide a basis for defining

relationships between the processes of the methods that are being combined.

2 A Meta-Method for Formal Method Integration

A meta-method for formal method integration was introduced in [11]. It described an informal strategy for

combining formal methods with other methods, where all methods are to be used for system specification

and design. The meta-method is intended to be used as a thinking tool, to assist method engineers in

determining the roles that methods can play and the relationships that can be defined between processes in

an integration. We summarize the meta-method here, and then apply it in Section 3. The meta-method can

be summarized as follows.

1. Fix a base method.Fixing a base method is a step aimed at assisting the method engineer in helping

to determine possible relationships between the methods being combined. A base method may support

more of the software development cycle than other methods.

2. Choose invasive methods.The invasive methods are to be embedded in the base method. Selec-

tion could be done on the basis of notational or methodological convenience, e.g., for adding new

techniques to a base method—such as refinement to a non-refinement based method.

3. Combine the notations of the base and invasive methods.In general, this is accomplished by

constructing a heterogeneous basis to include new notations of the methods we want to integrate (and

also extra notations, e.g., those we could use in supplying a formal semantics to specifications). A

single formal notation that is to be used to provide a formal semantics to system specifications can be

chosen at this point.

4. Describe informal relationships between the processes.It is defined how the processes for the base

and invasive methods will work together. The process of the base method may first be generalized

3

to use notations from the invasive methods; this is similar to the integration in [14]. Once general-

ization has occurred, informal descriptions (using annotated box-and-arrow diagrams, see Fig. 2) of

relationships between the process of the base method and the processes of the invasive methods are

constructed. This description explains how the processes are to be used together in the new method.

Some patterns of relationships are described in [11].

5. Guidance to the user.Hints, examples, and suggestions on how the integrated method can be used

are provided, as well as descriptions on how the methods will change when used in the combination.

As mentioned, the meta-method is intended as a thinking tool, to support method engineers in determining

roles for methods to play, and to support determining relationships that can be defined between processes.

When more rigor is needed in integrating methods, more powerful techniques such as meta-modeling [10]

will need to be applied.

3 An Integrated SA/SD–Predicative Programming Method

We present the construction of a method integrated from SA/SD and predicative programming. It is pro-

duced by applying the meta-method presented in Section 2. With respect to the meta-method, we make the

following decisions.

� SA/SD will be the base method, since we intend to use SA/SD to guide the production of system

specifications. Predicative programming will be the invasive method.

� The predicative notation will serve as a “basis notation” in defining the meaning of heterogeneous

specifications. To this end, we will formalize SA/SD notations in predicative notation.

� Predicative programming willsupplementan SA/SD process. Techniques for constructing DFDs,

process specifications (PSPECs), the data dictionary, and structure charts will be generalized to use

predicative notation, and will be supplemented by predicative proof rules.

� In the integration, predicative programming will be used to specify and develop system components

with complex functionality and to specify selected data components, e.g., those that are complex.

Predicative programming will also be used torefinespecifications through to the level of code.

Predicative programming and SA/SD are complementary methods: SA/SD offers notations (DFDs, struc-

ture charts) better suited to description of software architecture and system component relationships than

does predicative programming. And predicative programming provides refinement rules that allow formal

development of code from specifications, whereas SA/SD does not. The integration will help resolve a noted

weakness with using program design calculi: in lengthy refinements, it is easy to lose track of refinement

4

context. By combining the design calculus with a method like SA/SD, we allow developers to apply the

calculus to refining small parts of the system, where context can be maintained.

We call the result of combining the two methodsheterogeneous SA/SD(H-SA/SD, for short). As we

shall see, we can restrict the use of predicative programming with respect to the overall size of the system

specification. We do this by explicitly using the predicative notation—and thereby its refinement rules—only

where we have reason to believe it will be useful in writing system specifications.

The meta-method requires formalizing SA/SD notations—i.e., creating a heterogeneous basis—so we

now present two new formalizations of these languages.

3.1 Formalizations of SA/SD notations

To formalize SA/SD notations—specifically, DFDs and structure charts—we must fix an interpretation for

each notation, and provide a formal expression of the notation (based on this interpretation) using predicative

programming. More generally, we can view formalization of informal notations as part of the process of

constructing a heterogeneous basis so that it includes the informal notations. Building a heterogeneous basis

of some form is required if we are integrating more than two notations.

There are many interpretations we might take for SA/SD notations, If the interpretation or formalization

that we demonstrate is not appropriate for a particular development setting, it should be changed.

3.1.1 Formalizing data flow diagrams

A data flow diagram (DFD) describes a system in terms of processes and information flow among them.

We interpret DFDs as concurrent operations on a global state, with interprocess communication through

channels that provide the mechanisms for data flow. The interpretation is expressed using predicative nota-

tion, which is convenient to use for describing communication, channels, and concurrency [5]. Alternative

formalizations of data flow diagrams are presented in [9, 13]. The formalization given here is new. The

meta-method in this paper can accommodate use of other formalizations.

In DFDs, state is represented by data stores, operations are DFD bubbles, and system input and output

is represented by external entities. Thus, flow from a process to a data store depicts change of state. Internal

data flows are from process to process, and represent communication through channels that may be local to

the processes in question, or globally addressable but used only by specific processes.

Channels in predicative programming are statically declared as follows. A channel declarationc of type

T applies to the predicative specificationP that follows it.

chan c : T � P = 9Mc : [1�T] � 9Tc : [1�xnat] � var rc;wc : xnat := 0 � P

5

Mc andTc are themessageandtimescripts, respectively—infinite lists of messages, and the times the

messages were sent alongc. rc andwc areread andwrite cursors, of extended natural type, whileP is a

predicative specification. To usec in P, a specifier can writec? to describe a computation that reads one

input on channelc; c? advances the read cursorrc by one. An occurrence ofc in P describes the most

recently read message (formally, an occurrence ofc is a list indexing,M(rc � 1)). Output of an expression

eon channelc is writtenc!e.

Formalizing DFDs is as follows. The process is syntax-driven, but requires formalizers to choose how

individual processes use channels, and to determine how scoping of channels is to be described.

1. Formalize data stores and external entities:for each data store, generate a state definition with an ap-

propriate type and the same name as the store. For each external entity, provide a type for the data

flow from or to the external entity, and formalize the flow as a state definition.

2. Formalize processes and data flow:for each data flow bubble A:

(a) Formalize each process:generate a predicative specification A which includes any appropriate

processing details.

(b) Formalize flow:for each data flow d, determine a type for the data flow, then for each flow:

� Process-to-Store Flow:from A to a data store, add storenameto the frame of specification A.

� Process-to-Process Flow:from A to a bubble B, declare a channel, chan d : T that is accessi-

ble to both processes A and B. There are many alternatives to describing how A and B use

channel d. For example, the processes could use the channel concurrently, and so the flow

could be formalized as the parallel composition chan d � (A k B). The processes could also

use d as a queue or buffer, resulting in chan d � (A: B) (where : is predicative sequencing).

Alternatively, the channel could be declared when the state (associated with data stores) is

declared. Then, only processes connected to d in the DFD can use d in the formalization.

This approach to formalization is necessary to deal with channel scoping situations that

cannot be specified statically. For example, consider Fig. 1. We must declare channels

u; v; and w with appropriate scopes. But predicative programming, as described in [5], has

static scoping for channels, and the scoping implied by Fig. 1 cannot be described statically

(though it can be described dynamically). One formalization is:

chan u : T1 � chan v : T2 � chan w : T3 � (A k B k C)

where A does not use v, B does not use w, and C does not use u. Another alternative is to

declare u local to A and B, as in chan v : T2 � chan w : T3 � (chan u : T1 � A k B) k C, where w

is not used by B, nor v by A. Channel use is formalized in the processes A; B; C.

By formalizing data flow as messages on channels between processes, we are underspecifying: a channel

is typically bi-directional, readable, and writable by the connected processes. Data flow in DFDs is usually

6

A B

C

u

vw

Fig. 1: DFD with scoping problem for channels

unidirectional. Thus, we require the specifiers of processes to use the channel appropriately, as dictated by

the DFD. If this level of flexibility is inappropriate, the formalization of channels (e.g., to include read and

write permissions) will have to be changed.

An interesting effect of using predicative notation to formalize data flow diagrams is that a designer

can use predicative refinement as a formal basis for DFD refinement. And since refinement in predicative

programming is just boolean implication, carrying out DFD refinement proofs in theorem proving tools,

such as PVS, seems to be possible. This could allow automated formal support for refining large-scale

DFDs with a rigorous semantics.

3.1.2 Structure charts

Structure charts are used to describe the modular structure of a system, and to describe the information

flow across module interfaces. An example of a structure chart is in Fig. 6. The interpretation we place on

structure charts is similar to data flow diagrams: we interpret a structure chart as a (possibly concurrent)

set of operations on a global state which communicate through (local or global) channels. Each structure

chart unit represents a particular operation or set of operations. Again, we only give this formalization as an

example.

1. Formalizing State:formalize each data generator (an ellipse attached to a leaf node) as we did for the

data store in the formalization of DFDs.

2. Formalizing Units: for each structure chart unit A, create a predicative specification with the same

name. Provide process descriptions appropriate for the unit.

3. Formalizing State Interactions:for flow from a bubble to a unit (or vice versa), formalize this link as was

done for flow from and to data stores in the DFD formalization, i.e., by adding state to the frame of

the specification representing the receiving unit.

4. Formalizing the Mechanisms for Information Flow:for data d passed from a unit A to a unit B, declare a

channel d of type T. d will be declared so that it is in the scope for both A and B. The channel will

have a type T appropriate for the data being passed.

5. Formalizing Information Flow from A to B:the channels declared in the previous step will be used by

processes to exchange information. The way processes use the channels must be defined by the

formalizer, as was done for DFDs in the previous section. Alternatives include having A and B use

7

channel d concurrently; interpreting the channel as a buffer or queue; or interleaving the use of d by A

or B with uses of other (local) channels. Because of the modular model provided by structure charts,

the formalization of channel use may differ from that produced for the DFD model.

By providing a predicative formalization of structure charts, and with the formalization of DFDs given

in the preceding section, we have a method for proving that a structure chart is an implementation of a DFD.

If D is a predicative formalization of a DFD andS is a predicative formalization of a structure chart, then we

need proveDesignOfDFD= 8�; �0 � (D (S) (where�; �0 are the pre- and poststate of the data stores), in

order to show thatS implementsD. For large specifications, this will be time consuming; since refinement

in predicative programming is boolean implication, this suggests that it will be useful and appropriate to

carry out the proofs using automatic tools, like PVS or the Refinement Calculator [1].

The proof ruleDesignOfDFDis a formalization of the process of transforming DFDs to structure charts;

such a process is sometimes known as “transaction” or “transform flow” analysis [2, 15]. Predicative refine-

ment can therefore provide a mathematical basis for such a task.

SA/SD notations have been formalized in predicative notation because we want to integrate predicative

programming and SA/SD. In general, we may want to combine several different (formal or semiformal)

notations, or may want to use a formalization notation different from those used for specification. In such a

case, a heterogeneous basis will have to be built. An example of a heterogeneous basis can be found in [11];

it instead uses Z for formalization of SA/SD notations.

3.2 An H-SA/SD Process

We now continue with applying the meta-method, moving to Step 4: generalization of processes, and de-

scription of informal relationships between processes. We depict an example of an H-SA/SD process in

Fig. 2. In this diagram, ellipses represent steps or phases in the process, and boxes represent (heteroge-

neous) method products. Thick lines between ellipses represent ordering of process steps. Arrows represent

“production” (out of an ellipse) or “use” (into an ellipse).

The relationships between the methods are described in the diagram: predicative programming supple-

ments PSPEC production, the construction of a data dictionary, and the process of designing an implemen-

tation from specifications. This latter relationship occurs via use of predicative refinement. In more detail, a

process for H-SA/SD is as follows (different processes can be derived to meet more complex needs).

1. Analyze problem.A context-level data flow diagram of the system is produced.

2. Decomposition.The context DFD is decomposed into more detailed process components. The pro-

cesses of such a diagram can be written as standard data flow diagram processes. Some processes may

later be given predicative PSPECs. If, at the decomposition stage, we decide that a process will later

be given a predicative PSPEC, then we draw this process as arounded rectangle. This allows a reader

8

Context Analyze problemdiagram

Heterogeneous
DFDs

informationAdd control

Heterogeneous
structure chart

Program
code

PSPEC production

Decomposition Add type info.

Heterogeneous
PSPECs data dictionary

Heterogeneous

Generate implementation

Refine PSPECs,
predicates

Fig. 2: H-SA/SD process

of the diagram to quickly and efficiently determine the scope of use of the predicative programming

method. We can also add predicative PSPECs later, in Step (4).

We obtain restrictability of the predicative notation, by allowing the user of the integrated method to

control the extent of use of the notation in the heterogeneous DFD specification.

3. Add type information.Extended BNF notation can be used, as can predicative data type notations

(e.g., bunches, lists) for augmenting the formal partial specifications.

4. PSPEC Production.Process specifications are constructed. PSPECs may be specified using predica-

tive notation, or informal pseudocode notation as is standard in SA/SD; predicative notation would

be used where formality is needed, or where a refinement-based development is planned. The pseu-

docode would be used everywhere else. We therefore treat pseudocode PSPECS asrough sketches

[6]: we consider them to be formal (or formally expressible), but with no provided rigorous meaning.

By giving the user control over where and to what extent the predicative notation is used for writing

PSPECs, we obtain restrictability of the notation.

5. Formulate modular structure.The heterogeneous DFD is transformed into a structure chart, either by

hand or by transform or transaction analysis. The resulting structure chart may include predicative

partial specifications. These parts will be depicted as rounded rectangles, while standard structure

chart units will be depicted as rectangles. The formal parts can be used in a subsidiary support or a

central construction role as required.

9

6. Refinement of PSPECs and predicates.PSPECs are elucidated and can be semiformally refined by

adding more detail. Predicative parts are formally refined, using algorithm refinement rules from [5].

We therefore obtain restrictability of predicative programming by specification construction.

7. Implementation.The design is implemented. The predicative parts are (possibly data) transformed to

code. The non-predicate parts can be transformed to a program design language level, which can then

be implemented as is standard in Structured Design. Translation into a programming language may

have to occur.

3.3 An alternate integration

Different integrations of SA/SD and predicative programming can be constructed using the meta-method

of Section 2, relying on the predicative formalization of SA/SD notations. One useful integration is afor-

malization. In this alternative, full formalization occurs after Step (4) of the H-SA/SD method; thus, a

heterogeneous DFD, PSPECs, and a data dictionary have been constructed. Using the formalizations, the

system specification is mapped into a predicative programming specification. Development of an imple-

mentation from this form can occur using predicative programming. This alternative is depicted in Fig. 3(a).

It is similar to the approaches suggested in [12, 13]. Akin to these approaches, we can also formalize so as

to evaluate what is missing in our system specifications, by deriving a formal specification which, in turn,

could be used to derive new (heterogeneous) specifications related to the original specification. The derived

specifications could then be fed back into the original H-SA/SD method.

Refinement & proof

Heterogeneous
DFDs

Formal
specification

Heterogeneous
PSPECs

PSPEC production, Add Type Info.
... from Decomposition,

Implementation

Generate formal
specifications by
formalization

H-SA/SD
Steps (1)

through (4)

Accounting and
Evaluation Step

Formalization H-SA/SD
Steps (5)

through (7)

(a) (b)

Feedback

Fig. 3: Alternative integration: (a) formalization; (b) relationship to H-SA/SD

The generation of a formal specification is shown occurring immediately after the steps of PSPEC pro-

duction, decomposition, and type information addition. A formal specification could also be constructed

elsewhere in the development process, e.g., after producing structure charts.

Fig. 3(b) shows a relationship between formalization alternative and the H-SA/SD method. As shown

in Fig. 3(b), after Steps (1)–(4) of the H-SA/SD method, there can be an evaluation step, where a decision

10

on how to proceed with the development is made. This evaluation should be done with reference to the

current status of the development, and with consideration of the functional and non-functional requirements

on the development. The evaluation process may suggest that the development can proceed according to the

H-SA/SD method. It may also suggest that the formalization path (possibly with feedback to the original

H-SA/SD specifications) be taken.

With the construction of a heterogeneous basis, as discussed in Section 1.2, we can integrate SA/SD with

methods other than predicative programming, using the meta-method. By defining translations between

formal notations, like Z and predicative programming, we effectively gain the ability to use new formal

notations, within the H-SA/SD method as it has been defined. Such a heterogeneous basis would transitively

give us a version of H-SA/SD that uses Z, and not predicative programming. One can therefore think of

H-SA/SD as a meta-method itself, in which one or more formal notations and methods can be used in

cooperation with SA/SD.

3.4 Comparison with other approaches

The SAZ method [12] links SSADM with Z. There is a direct transformation from an SSADM development

to a pure Z development. Z specifications produced using SAZ can be studied, and new information from

them can then be fed back in to the SSADM development. In our approach, predicative programming and

SA/SD can be linked in a similar fashion, as suggested in Fig. 3(b).

A different approach is offered in [8]. Therein, SA is combined with VDM; VDM specifications sup-

plement and can be automatically derived from the products of SA. The SA and VDM techniques are used

in parallel; heterogeneity arises implicitly, for example, when VDM specifications are used as DFD pro-

cess specifications. An advantage of this approach is that there is tool support for extracting partial VDM

specifications from the products of SA.

The integration of Larch with SA [14] uses Larch interface language specifications for writing PSPECs,

and LSL specifications for defining a data dictionary. The relationship between Larch and SA specifications

is left informal. The intent with this integration matches ours with respect to the goal of restrictability: in the

method of [14], Larch specifications are used only where helpful; in H-SA/SD, predicative programming is

used only where helpful. A difference in the approaches (besides the methods involved) is that H-SA/SD

offers a formal semantics for the composition of partial specifications.

4 Example

In this section, we briefly demonstrate the use of the integrated H-SA/SD method. Our goal here is to

demonstrate the properties of the integrated method, and to describe the use of the alternatives to the H-

SA/SD method presented in Section 3. To this end, we consider only a small example.

11

The problem we wish to solve is that of constructing a simulator for a scheduler that can provide service

either in a first-come first-served or a round-robin fashion. The initial requirements are as follows.

A system is needed to simulate two short-term schedulers. The system must generate test data and

simulate either a first-come first-served (FCFS) or a round-robin (RR) short-term scheduler, depending

on user choice. The system will have two parts: the first will generate data. The second part will load the

data into a “ready” queue, and simulate the scheduler operation on the data.

The generator part produces two vectors of data, one holding NUMBERrandom CPU burst lengths,

and the other holding NUMBERrandom arrival times of processes. The CPU bursts should be generated

so that 80% of the bursts are uniformly distributed between 0:1 and 1:0, and the remaining 20% are

uniformly distributed between 1:0 and 10:0. The arrival times of the processes must have a Poisson

distribution, with parameter LAMBDA.

The second system component is the simulator, which simulates the appropriate algorithm on the test

data. Total wait time and average wait time should be output upon completion. For the most efficiency, a

circular ready queue of fixed length 100 should be used.

4.1 Analyze the problem

The first step is to construct a heterogeneous DFD. A context-level DFD appears as shown in Fig. 4(a).

Recall that we use rounded rectangles to specify processes that will have predicative specifications.

Simulate

SCREEN

FCFS or RR

INITIAL

stats

USER

algorithm

generator

NUMBERLAMBDA

LAMBDA NUMBER INITIAL

SCREEN USER

Scheduler
Simulation
System

(a) (b)

algorithmstats

Data

Fig. 4: (a) Context diagram; (b) Level-1 heterogeneous DFD

12

4.2 Decomposition

We now refine the context DFD into its two parts: the data generator, and the simulators. We eventually

want to use the predicative notation to develop the data generator, so we describe the generator process as a

rounded rectangle. In the decomposition, we also add storeData. The refinement is shown in Fig. 4(b). We

come back to the decomposition stage later, after constructing part of a data dictionary.

4.3 Data dictionary creation

In Fig. 4(b), we made use of several data objects. These must be added to the data dictionary, and can then

be used in other parts of the solution. First, we give several constants and their types.

INITIAL;NUMBER: nat LAMBDA: real algorithm : rr ; fcfs

INITIAL is the number of processes to be in the ready queue at the start of simulation.algorithm is the

simulation algorithm that is to be run (eitherfcfsor rr). The remaining data definitions are as follows. The

data storeData consists of twoNUMBER-length lists of generatedreals, burstsandarrivals. The other

items are used to maintain the ready queue.

bursts;arrivals : [NUMBER� real] boundary;head; tail; length : nat

The queuereadywill be a list of records. Each record in the list, acell, consists of a burst length, an arrival

time, and a group field, used in calculating distribution statistics.

cell = \burstlength" ! real j \arrivaltime" ! real j \group" ! int

ready : [100 � cell]

4.4 PSPEC production and further decomposition

The next step is to provide PSPECs (e.g., forgenerator) and to refine theSimulate FCFS or RRbubble. We

show the refinement of the relevant bubble in Fig. 5.

The predicate corresponding to the rounded rectanglegeneratorof Fig. 4(b) is as follows.

generator = arrivals0(0) = 0 ^ (bursts0(0) = 0:9� rand+ 0:1 _ bursts0(0) = 9:0 � rand+ 1:0) ^

8 i : 1; ::NUMBER� (bursts0(i) = 0:9� rand+ 0:1 _ bursts0(i) = 9:0 � rand+ 1:0) ^

arrivals0(i)� arrivals0(i � 1) = �LAMBDA� logerand

13

Place
INITIAL

Select
Algorithm

Output
Stats

Data

SimResults

USER

SCREEN
stats

algorithmnumplaced

simulate

ReadyQueue

INITIAL

NUMBER

simulator

Fig. 5: Refinement ofSimulate FCFS or RR

generatorproduces two lists of simulation data. The listburstsholds random burst lengths in the range

0:1; ::10, and the listarrivals holds arrival times with a Poisson distribution. The parameterless function

rand returns a randomreal in the range0; ::1.

The predicatesimulateis a specification of the FCFS and RR simulators. We use a predicate for this

part of the system because it has complex functionality. Since it is often reasonable to use operational

specifications to describe simulations (because of their iterative nature), we make use of some program

code. Recall that the queue to hold processes will be implemented in a circular fashion, and that when the

simulation begins there are alreadynumplacedprocesses in the ready queue.

We now are confronted with a decision: should we include specifications to read the data flow from

numplacedand simulator, or should this be included in the formalization process? Simulation cannot

proceed until an algorithm has been selected and the number of processes already in the ready queue

(numplaced) is known. It is debatable whether reading such data values from channels should be part

of the simulatePSPEC; including channel interactions in the PSPEC requires the specifier to know the

formalization of DFDs.

We choose not to include specification parts to read data from the channels in the PSPECs; these will be

included in formalization (see Section 4.7). ThesimulatePSPEC is as follows. A simultaneous assignment

initializes the simulator variables. Then, a loop specifies the simulation; it terminates when the queue

empties or overflows.

simulate = time;arriving; current;boundary:= 0;numplaced;bursts(0);arrivals(length):

while (0 < length< 100) do (if (simulator= fcfs) then FCFSelseRR)

14

(The dot operator is predicative sequencing.) Because predicative notation formalizes channels as state com-

ponents, we can use the names of channels (i.e.,numplacedandsimulator) as variables in our specifications.

The formalizations must guarantee thatsimulatorandnumplacedhave values before they are used.

The functiondequeue, which will be used in the simulator specification, removes the element at the front

of ready, providing the queue is not empty.

dequeue= (head 6= tail)) (head0 = (head+ 1) mod 100 ^ length0 = length� 1)

The FCFSspecification is as follows. We first update the statistics (the group to which a to-be-simulated

process belongs, and the total running time of the simulation) in predicateupdatecount. The simulator then

calculates the number of processes,marr, that arrive during the simulation of the currently active process.

These processes are queued, and then the current process is removed from the simulator.

updatecount:

marr := MAX j : arriving; ::NUMBER� (time+ boundary> arrivals(j)):

head 6= (tail + marr� arriving) mod 100) 8 i : 0; ::marr� arriving �

ready0 = ((tail + i) mod 100; \burstlength") ! bursts(arriving + i) j

((tail + i) mod 100; \arrivaltime") ! arrivals(arriving + i)� boundaryj

((tail + i) mod 100; \group") ! bbursts(i)c j ready^

tail0 = (tail + marr� arriving) mod 100 ^ length0 = length+ (marr� arriving) :

arriving0 = marr^ current0 = ready(head): dequeue

The round-robin simulatorRRhas a similar specification. The main difference between theRRandFCFS

simulators is that the current active process in theRRsimulator is “executed” for1 time unit, and then is

queued again, providing that it has not been serviced for its complete burst length.

4.5 Heterogeneous structure chart creation

The next step in the integrated method of Section 3 is to construct a heterogeneous structure chart, in order

to describe the modular structure of the system. As input, we use the heterogeneous DFD and the data dic-

tionary information. A heterogeneous structure chart is shown in Fig. 6. (Units with predicate specifications

are again drawn as rounded rectangles.)

15

Scheduler Simulation System

Output
Statistics

Select
Algorithm

Data SimResultsReadyQueue

Place
INITIAL

generator simulate

bursts,
arrivals

arrivalsready algorithm

count,
waitbursts,

USER SCREEN

algorithm stats

ready
arrivals,

bursts,
algorithm

wait
count,

Fig. 6: Heterogeneous structure chart

4.6 Constructing an implementation

We sketch the construction of an implementation. Implementation proceeds by refining the specifications

generatorandsimulateto code. We sketch the details, and commence withgenerator. The guard on the

loop implementinggeneratoris i 6= NUMBER, a variant isNUMBER� i, and an invariant is

1 � i < NUMBER^ 8 j : 1; ::i � arrivals(j) � arrivals(j � 1) = �LAMBDA� loge rand^

(bursts(j) = 0:9 � rand+ 0:1 _ bursts(j) = 9:0� rand+ 1:0)

A generatorimplementation is as follows (omitting the refinement steps for space reasons).

var n : real := rand �

arrivals(0); i := 0; 1:

bursts(0) := if (n� 0:8) then 0:9� rand+ 0:1 else9:0 � rand+ 1:

while (i 6= NUMBER) do (

n := rand:

bursts(i) := if (n� 0:8) then 0:9� rand+ :1 else9:0� rand+ 1:

arrivals(i) := �LAMBDA� loge(rand) + arrivals(i � 1):

i := i + 1)

The final refinement tosimulatemight look something like the following.

time; i; current;boundary:= 0;numplaced;bursts(0);arrivals(length):

while (0 < length< 100) do (if (simulator= fcfs) then FCFS0 elseRR0)

16

FCFS0 is a refinement of the specificationFCFS; it is as follows.

updatecount:

while ((time+ boundary> arrivals(i)) ^ i < NUMBER^ length 6= 100) do (

enqueue(bursts(i); arrivals(i) � boundary; bbursts(i)c): i := i + 1):

current := ready(head): dequeue

(The above code is a transliteration of the recursive refinement structure obtained by refiningFCFS.) Simi-

larly, the specificationRR0 is a refinement ofRR(we omit its definition here).

After carrying out the refinements to the formal specifications above, we must produce a complete

implementation by coding the remaining specification parts of Fig. 6. This encompasses the components

PlaceInitial, SelectAlgorithm, OutputStats, and so on. We must also provide definitions that implement

the data dictionary, and transform the programs generated by refinement into the implementation language.

Finally, channels must be codified in an implementation language. We do not present these steps here.

4.7 Applying the formalization alternative

A formalization alternative to H-SA/SD was diagrammed in Fig. 3(a). In this relationship, complete formal-

ization of the system specification occurred after Step (4) of the H-SA/SD method. Using the formalizations

of SA/SD in predicative notation, formal specifications could be obtained from the heterogeneous speci-

fications. These specifications could then be used, either to develop a final implementation via algorithm

refinement, or to determine inconsistencies or missing parts in the informal specifications. Such an approach

is offered in methods like SAZ [12] or the Yourdon variant discussed in [13].

In our example, we are given a heterogeneous data flow diagram with predicative parts (Fig. 5). By

applying the formalizations given earlier, we obtain predicative specifications. System state is formalized

from the data stores and external entities. We collect these specifications into a set of state declarations.

bursts;arrivals : [NUMBER� cell]

algorithm : rr ; fcfs

count;wait : [10 � cell] ready: [100 � cell]

stats : StatType

The processesPlaceInitial;OutputStats; andSelectAlgorithmall are formalized, resulting in three processes

that may interact with system state. (We omit the bodies of the processes, including those parts that generate

data on the channels, due to space constraints.) According to the formalization process, we obtain:

PlaceInitial = frame ready� : : :

SelectAlgorithm = : : :

OutputStats= frame stats� : : :

17

frames are used to specify the variables that can be changed by each specification.SelectAlgorithmchanges

no state, but uses namealgorithm (see Fig. 5).

No formalization of the processes with predicative PSPECs need occur; we add frames to each process

specification, renaming each specification in the process to be consistent with the convention followed for

the preceding processes. The results of this process are shown below.

Generator= frame bursts;arrivals � generator

The predicategeneratoris as shown in Section 4.4. We now formalize the data flow in the specification, and

express how processes use the flow. We first formalize two channels: betweenPlaceInitial andsimulate,

and betweenSelectAlgorithmandsimulate, adding types in the process.

chan numplaced: nat � chan simulator : rr ; fcfs

The simulator predicatesimulateis shown in Section 4.4. In “formalization”, it is wrapped with a frame.

The process must also read values from the channels between it andPlaceInitial andSelectAlgorithm. This

is shown in the specificationSimulate, below.

Simulate = frame ready; count;wait � ((numplaced? k simulator?): simulate)

Simulatemakes use ofnumplacedandsimulator(by reading values from the channels before commencing

the simulation), so these channels must be in its scope. We now describe how the system use the channels.

The intent with our diagram was to state thatnumplaceddata items are in the queue before the simulation

starts; also, an algorithm (fcfsor rr) must be selected before simulation. We express this as follows.

chan numplaced: nat � chan simulator : rr ; fcfs� (PlaceInitial k SelectAlgorithm): Simulate

Data must be generated before the simulation begins. So the final formalization expresses this requirement.

Generator: (chan numplaced: nat � chan simulator : rr ; fcfs�

(PlaceInitial k SelectAlgorithm): Simulate)

Alternative formalizations of channel use and process interleaving are possible; the formalization we have

given corresponds with our intuitive use of the DFD notation. We can use this formalization for algorithm

refinement to code, or as documentation for developing an implementation from the informal specifications.

18

5 Conclusions

We have demonstrated the use of a general approach to integrating formal and semiformal methods, based

on heterogeneous notations. A formal semantics for heterogeneous notations constructed from SA/SD no-

tations and predicative notation was provided, through giving new formalizations of data flow diagrams and

structure charts in terms of concurrent predicative specifications. A meta-method for formal method inte-

gration was applied in combining SA/SD and predicative programming. We applied the integrated method

in solving a small problem. In the future, we plan to apply the integrated method to larger-scale problems,

and explore alternative formalizations.

An issue we have not yet discussed is the effect of using heterogeneous notations on tools. Methods

like SA/SD are well-supported by CASE tools, while formal methods like predicative programming can be

supported by theorem provers, syntax and type checkers, etcetera. Combining notations suggests that it may

be necessary to also combine tools. To provide tool support for the use of heterogeneous notations, we must

also provide tool support for communication across tools, e.g., via an application framework. A benefit of

using predicative notation in integration is that it is just boolean logic: any theorem prover or proof tool

that uses boolean logic can be used to support the combination of methods. We envision using CASE tools

associated with automated tools like PVS or STeP to support the integrated method.

The approach to method integration offered by heterogeneous notations is quite general: it can be used

to combine formal methods with both formal and semiformal methods used for system specification and

design. In future work, we plan to apply the approach to methods used for requirements analysis, as well

as studying how to combine the use of tools for proof with CASE tools for system modeling and code

generation.

References

[1] M. Butler, J. Grundy, T. Langbacka, R. Ruksenas, and J. von Wright, The Refinement Calculator:

Proof Support for Program Refinement, in:Proc. Formal Methods Pacific ’97, Springer, 1997.

[2] T. DeMarco,Structured Analysis and System Specification(Yourdon Press, 1979).

[3] A. Hall, Using Formal Methods to Develop an ATC Information System,IEEE Software13(2) (1996).

[4] U. Hamer and J. Peleska, The CIDS A330/340 Cabin Communication System – a Z Application, in:

Applications of Formal Methods,(Prentice-Hall, 1995).

[5] E.C.R. Hehner,A Practical Theory of Programming, (Springer-Verlag, 1993).

[6] M.A. Jackson,Software Requirements and Specifications, (Addison-Wesley, 1995).

19

[7] K. Kronlöf (ed.),Method Integration: Concepts and Case Studies, (Wiley, 1993).

[8] P.G. Larsen, J. van Katwijk, N. Plat, K. Pronk, and H. Toetenel, Towards an integrated combination of

SA and VDM, in:Proc. Methods Integration Workshop, (Springer-Verlag, 1991).

[9] P.G. Larsen, N. Plat, and H. Toetenel, A Formal Semantics of Data Flow Diagrams,Formal Aspects of

Computing,7(5) (1995).

[10] MetaPHOR Project Group, MetaPHOR: Metamodeling, Principles, Hypertext, Objects and Reposito-

ries. Technical Report TR-7, (University of Jyvaskyla, 1994).

[11] R.F. Paige, A Meta-Method for Formal Method Integration, in:Proc. Formal Methods Europe 1997,

LNCS 1313 (Springer-Verlag, 1997).

[12] F. Polack, M. Whiston, and K.C. Mander, The SAZ Project: Integrating SSADM and Z, in:Proc.

Formal Methods Europe 1993, LNCS 670 (Springer-Verlag, 1993).

[13] L.T. Semmens, R.B. France, and T.W. Docker, Integrated Structured Analysis and Formal Specification

Techniques,The Computer Journal35(6) (1992).

[14] J.M. Wing and A.M. Zaremski, Unintrusive ways to integrate formal specifications in practice, in:

Proc. VDM ‘91, LNCS 551 (Springer-Verlag, 1992).

[15] E. Yourdon and L. Constantine,Structured Design,(Prentice-Hall, 1979).

[16] P. Zave and M. Jackson, Conjunction as Composition,ACM Trans. on Software Engineering and

Methodology, 2(4) (1993).

20

