

From Z to BON/Ei�el

Richard F. Paige

Jonathan S. Ostro�

Technical Report CS-98-05

July 7, 1998

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

From Z to BON/Eiffel

Richard F. Paige and Jonathan S. Ostroff

Department of Computer Science, York University,
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3.

fpaige,jonathan g@cs.yorku.ca

Abstract. It is shown how to make a transition from the formal specification notation Z [10] to the Business
Object Notation (BON) [11], so as to be able to relate the former notation with object-oriented specifications and
implementations. The transition is applied in a case study that shows how to move from Z to BON, and finally
through to executable Eiffel programs. The translation lays the groundwork for a semi-automated tool that spans
the semantic gap from abstract Z specifications to concrete Eiffel implementations.

1 Introduction

The Z formal notation [10] is receiving growing attention: in industry, where it is being used for the formal specification
of large systems [3, 6]; and in academia, where it is being taught for formal specification and development. Z is a
mathematical notation, with a rich collection of idioms based on typed set theory for specifying systems. It has seen
successful use in writing and analyzing specifications, and in proving properties about specifications [4, 5].

Z has limitations. Its complex mathematical syntax has been found to have too steep a learning curve for some.
It is not an object-oriented notation, which may be too limiting for modern software development. And, like many
formal methods, it has been accused of producing incomprehensible, only expert-accessible specifications. One noted
limitation of Z is that it is hard to relate specifications to implementations. A reason for this is that Z is not a wide-
spectrum language; unlike the notation in [8], Z does not include a programming language subset. Techniques have
been developed for Z to bridge the gap between specification and implementation, for example, via translation to a
notation like specification statements [8], or by embedding a small programming language subset in Z [12], but these
approaches suffer from several problems.

– A bridge to a concrete implementation, i.e., in an executable programming language like Eiffel or Java, must still
be made. If an object-oriented implementation is desired, the transition from Z may be more complex, since Z
specifications must be mapped into classes. This limitation is not obviated by Object-Z [2], the object-oriented Z
dialect, since it too must be mapped to a concrete implementation.

– The approaches used may not scale up to large-scale system development. In particular, these approaches do not
directly allow specification in terms of classes, which is important in producing extendible, reusable software [7].

– The notations used in bridging the gap may be inaccessible to practitioners, and likely will be weakly supported
by industrial strength tools, like CASE diagrammers and theorem provers.

With these limitations in mind, we are interested in showing the feasibility of bridging the gap from Z to implemen-
tations without all of the problems inherent in previous approaches. In particular, we want to link Z with BON [11],
which is part of aseamless development methodthat results in Eiffel programs. In linking these two notations, we have
the following aims.

– To show how Z specifications can be related to correct, concrete, executable implementations.
– To provide the ability to develop object-oriented programs from Z specifications. Object-oriented programs have

been proposed as essential for producing extendible and reusable systems [7]. By linking Z with BON, which can
then be used in deriving Eiffel programs, the gap from Z to Eiffel may be reduced.

– To attempt to convince the reader that it need not be necessary to specify in Z—that it is sufficient, and in some
cases more useful, to specify in BON from the start. One advantage of this is that specifications are object-oriented
from the beginning.

– To lay the groundwork for a semi-automated tool that can span the semantic gap from abstract Z specifications to
concrete Eiffel implementations.

The link between Z and BON is based on defining translations between the notations, and then by making use of the
theory of [7] to develop Eiffel implementations from BON specifications. Translations from Z to BON are presented
in Section 3, and make use of the existing Eiffel class libraries. Our concern with these translations is presenting
mappings that allow us to link the techniques together. We are interested in showing thefeasibilityof linking Z with
BON. We therefore do not attempt to show a complete mapping of Z constructs to BON and Eiffel constructs (space
constraints also prevent us from giving full details). Here, we concentrate on demonstrating the use of one mechanism
for linking the notations.

Because Z is not an object-oriented notation, whereas BON is object-oriented, the mapping from Z to BON must
add information. This is done by, effectively, following a standard Z style of specification, which encompasses first
specifying system state, then related system operations. The related specifications are mapped into a BON class. This
is discussed more in Section 3.

After describing translations between Z and BON, we use the translations in solving the classic birthday book
problem [10], so as to illustrate the approach. Finally, we summarize the technique, mention some observations, and
propose avenues for future work.

2 Overview of Notations

2.1 The Z Formal Specification Notation

The formal notation Z is due to Abrial (a good reference is [10]); it is a notation based on typed set theory. The
fundamental specification construct in Z is the schema, which groups declarations with predicates. There are two kinds
of schemas:stateschemas, which provide declarations and definitions of system state; andoperationschemas, which
specify operations upon the system state. Here is an example of a state schema (which we will revisit in Section 5):

BirthdayBook
known: PNAME
birthday : NAME! DATE

known= dombirthday

The schema part above the horizontal line contains the state declarations and inclusions for the schema; in particular,
the schema above declares a setknown(the birthdays recorded in the system) and a functionbirthday. The part below
the line is the state invariant that must be obeyed by all operations that use the state.

An operation schema uses state schemas (and possibly other local declarations) in defining system operations.
Here is an example of an operation schema that uses the state schemaBirthdayBook.

AddBirthday
�BirthdayBook
n? : NAME
d? : DATE

n? 62 known
birthday0 = birthday� fn? 7! d?g

The operation schema includes (via� convention) schemaBirthdayBook. The� notation means (informally) include
two versions ofBirthdayBook, one with all variables unprimed, and the other with all variables annotated with primes.
Primed variables denote final values, while unprimed variables denote initial values.n? and d? are inputs to the
operation. Below the line in the operation schema is the predicate. The schema establishes a final state where the name
n? has been added to the set known, and where the functionbirthdayhas been extended (via the functional overriding
operation�) to include the mapping fromn? to d?.

Z specifications are typically constituted of a set of state schemas and operation schemas that use the state schemas.
Large specifications are constructed by parts from smaller specifications, using theschema calculus. The calculus
includes combinators like conjunction (^), disjunction (_), restriction, and others, as described in [10]. These com-
binators are often used in making schema operations total (i.e., able to handle all values of inputs). The notation is
often used in the context of an ‘established strategy’, which is a set of informal procedures designed to organize the

construction of a specification, and to suggest how implementation is to occur. Part of the established strategy that is
used in the case study in this paper is as follows.

1. Describe the abstract state, using a collection of one or more state schemas.
2. Specify the initial state of the system,as an operation schema. Usually, a proof is carried out to show that there is an

initial state.
3. Specify the successful case of each system operation,as an operation schema. Error cases are ignored (e.g., when the

set knownis full in AddBirthday).
4. Calculate schema preconditions,in order to determine when each operation can be successfully applied. This is done

by existentially quantifying each schema over its poststate.
5. Specify the error casesfor each system operation, as operation schemas.
6. Make the operations total.This is usually done by disjoining the error case schemas with the operation schemas. This

may introduce nondeterminism that should be documented at this point.
7. Provide assistance to the reader,by informally summarizing and documenting the purpose of each schema (this might

be done with comment clauses in Eiffel).

Z is not object-oriented, though it has been suggested that it can be used to describe such systems [1]. In our
translations, we shall map collections of schemas that are related by schema inclusion to a BON class.

2.2 The Business Object Notation

The Business Object Notation (BON) [11] is a simple graphical and textual notation for specifying and describing
object-oriented systems. It provides mechanisms for specifying inheritance and client-supplier relationships between
classes, and has a small collection of techniques for expressing dynamic relationships (e.g., message passing) among
objects. The notation also includes anassertion languagefor specifying preconditions and postconditions of class
methods. The assertion language is a simple dialect of predicate logic (that includes quantifiers).

BON is supported by a rich set of tools (e.g., EiffelCase [7]), and is designed to work seamlessly with the Eiffel
programming language and its tools and libraries. An important implication of this is that in BON specifications the
Eiffel class libraries can be used.

Here is a short example of a BON textual specification of a classCITIZEN (BON also has an equivalent graphical
syntax that we do not use here—see [11]). The class has four attributes, and two methods: a querysingle(which results
in a BOOLEAN) and a commanddivorce, which changes the state of an object. ClassSETis a generic class from the
Eiffel library, as is classBOOLEAN. Preconditions of methods are written asrequire clauses, and postconditions as
ensureclauses. An important feature of BON assertions is that postconditions can refer to the value of anyexpression
when method was called; this is done by prefixing an expression with the keywordold (see methoddivorce, below).
Classes may also haveinvariants, which are predicates that must be maintained by all visible methods. Visibility of
methods and attributes is expressed using thefeatureclause:featurefNONEgmeans that all following class members
are invisible outside of the class;featurefANYg means that all following class members are visible (omission ofANY
is equivalent to including it).

classCITIZEN feature fNONEg

name; sex; age: VALUE

spouse: CITIZEN

children; parents: SET[CITIZEN]

feature fANYg

single: BOOLEAN

ensureResult= (spouse= Void) end

divorce

require not single

ensuresingleand (old spouse):singleend

end

3 Translating Z to BON

We now outline a semi-automatable scheme for translating a Z specification into a BON specification. The practical
difficulties with the translation are twofold. First, Z is not object-oriented, while in BON the fundamental construct is
the class. Therefore, in the translation, we must somehow produce classes from collections of (related) Z schemas. The
relationship that we use is that if operation schemas share state schemas, then the translated operations should belong
to the same class (that also includes attributes from the shared state schemas). The second difficulty is in mapping Z’s
predicate notation into BONrequire andensureclauses. A mapping is given in Section 3.2.

The Z notation includes a significant toolkit, containing basic types (e.g., integers, reals), type constructors, and
set-based operators. The toolkit is rich and substantial; we do not attempt to write down a complete translation into
BON’s assertion language here. Due to space constraints, we assume that it is generally possible to map Z types into
assertion language types. We mention one important translation here: for Z function types (i.e., the type ofbirthdayin
the schemaBirthdayBook).

For representing Z function types, we first represent tuples using generic classPAIR, which takes two typesF and
G, and has two attributes.

classPAIR[F;G] feature

first : F

second: G

end

We then introduce a generic classFUNC, which is a translation of the Z function type.FUNC inheritsfrom class
SET; a functionis-a set of ordered pairs. In translating the full Z toolkit, we would produce a BON class for each Z
construct. Each class encapsulates the logic necessary to use the construct. Inheritance could be of further use here:
classFUNCcould inherit from a classPFUNC(a translation of the Z partial function type). In the following, comments
are prefixed by a double dash,��.

classFUNC[D;R] inherit SET[PAIR[D;R]] feature

domain: SET[D] ensureResult= fd : D j 9p : PAIR[D;R] � p:first = d^ has(p)g end

�� returns the domain of the function

select(d : D) : R

require 9p : PAIR[D;R] j p:first = d � has(p)

ensure 9 p : PAIR[D;R] j p:first = d � has(p) ^ Result= p:second

�� apply the function to element d

end

invariant 8d : D; r; r1 : R j (select(d) = r ^ select(d) = r1) � (r = r1)

�� ensure that set is a function

end

3.1 Translating State Schemas

A Z state schema describes data components that are to be used in a system. Here is an example for translating
the schemaBirthdayBookintroduced in Section 2. The state schema can be translated into a textual BON class that
contains translated data attributes and possibly a class invariant. SchemaBirthdayBookcan be translated into the
following BON textual class (supposing that we have declared deferred classesNAMEandDATE).

classBIRTHDAYBOOK feature fNONEg

known: SET[NAME]

birthday : FUNC[NAME;DATE]

invariant known= birthday:domain

end

The general translation from a state schema to a BON class is as follows. LetSbe an arbitrary state schema.

S
a1 : T1
: : :
ak : Tk

P

(The Ti are Z types, andP is a predicate on prestate.)S is translated to the following textual BON class, under the
assumption that the typesT1; : : : ;Tk can be translated into BON types or classes.

classS feature

a1 : T1

: : :

ak : Tk

invariant P

end

whereP in the class invariant ofS is a syntactic translation of the Z predicateP into BON’s predicate notation.P is a
predicate on prestate only. One possible problem with translation will be in the different interpretations of conjunctive
and disjunctive operators in BON. Operators in Z are not short-circuiting, whereas they are in BON. Since both
interpretations will coincide at the specification level, we need not worry about this issue.

In some specifications, state schemas include others (by writing the name of a schema in the declaration part
of the including schema). Such hierarchies can be flattened, by substituting the body of the included schema for all
occurrences of its name. We can translate schemas that use inclusion by first flattening the hierarchies.

3.2 Translating Operation Schemas

An operation schema represents some operation that the system can perform. Typically, an operation schemaincludes
a state schema, and modifies the system state in some way. Here is an example of translating the operation schema
AddBirthday, introduced in Section 2. Translating an operation schema to BON requires mapping the schema to a
command or query of a class. The class is the result of translating a state schema that is affected by the operation. So,
in the example, state schemaBirthdayBookis affected byAddBirthday, thus operation schemaAddBirthdaycan be
translated into a command of classBIRTHDAYBOOK.

AddBirthday(name: NAME;date: DATE)

require name62 known

ensurebirthday= old birthday[fp : PAIR[NAME;DATE] j p:first = namê p:second= dateg

end

It is possible that different operation schemas can share state schemas—i.e., two operation schemas can include
some of the same state schemas. When translating the schemas, we therefore have to decide to which class the trans-
lated operations should belong. We suggest using a simple syntactic algorithm, based on the textual occurrence of
a state schema in an operation schema, to help make the decision. This algorithm would form the basis of a semi-
automated tool that performs the mapping from Z to BON. The algorithm parses Z schemas, and if two operation
schemas share some or all of the same state schemas, then the operationsas wellas the attributes of the state schemas
should belong to the same class. It can be left to the translator to decide the name of this class; a semi-automated tool
might simply choose the name of the first included state schema. This simple “collection” algorithm may lose some of
the structure of the Z specification (e.g., the inclusion relationships). It may also give inappropriate results. Therefore,
it may ideally be used to give a first-pass approximation to a class design, which can be further refined by developers.

Use of this algorithm gives translators and specifiers some very useful information: it can suggests an object-
oriented design for a system. And if it is desired to produce a reusable, extendible system, then it may have been best
to use such an object-oriented design from the start of development.

The general translation from a Z operation schema into a BON feature is as follows. LetOp be a generic schema
as follows, and letSbe a state schema with variablesw. Let T be a state schema that operationOpcan use, but cannot
change. This is expressed using the� convention.

Op
�S
�T
inputs? : I
outputs! : O

P

(Thus,Opcan only change variablesw fromS, but can use any variables inT. Variables inT are implicitly constrained,
by the� convention, to not change.) The operation also has inputsinputs? and producesoutputs!. In translating the
operation to BON, we assume that we can translate the state schemasSandT to BON, and that the typesI andO can
be constructed and expressed in BON as well. The state components ofSandT will be mapped to attributes of a class.
The schemaOpwill then be translated to a feature of, say, classS that takes the following form.

Op(inputs: I) : O

require 9w0; outputs! � P

ensureP[old w=w][w=w0][Result=outputs!]

end

Therequire clause is the precondition of the operation schemaOp. Existential quantification hides the postcondition
in P, revealing only those terms that constrain the precondition inP. Theensureclause is the predicate part of the
operation schema, but with Z’s primed-unprimed notation rewritten using BON’sold notation. In theensureclause,
we use the Z substitution notation:P[a=b] means “substitutea for b in P”. Substitution is left-associative. Therefore,
in theensureclause,old w is first substituted forw in P, and thenw is substituted forw0.

If either inputs? or outputs! in the Z schema are omitted, then they are omitted from the BON translation. If
outputs! is missing, thenOp is a command, and the last substitution involvingResultcan be omitted. Note that a Z
operation schema can include a state schema by� convention, and can also have operation outputs (specified using
the ! annotation). This corresponds to an operation that both changes state and returns a result — i.e., an operation
that is both procedure and function. Since BON and Eiffel do not allow features with side-effects, we cannot directly
translate such operation schemas into BON. Instead, we could remove the operation result, and make the result an
attribute of the class to which the translated operation belongs.

4 Example: The Birthday Book

The Birthday Bookexample is a well-known and standard problem for explaining the use of Z and other formal
methods. A detailed Z specification and development of the problem is in [10]. The problem requires specifying a

system that records birthdays and is able to issue a reminder when the appropriate day arrives. The traditional Z
development of the system begins by introducingbasic typesto stand for the names and birth dates.

[NAME;DATE]

(These could correspond to basic types in BON, or to deferred classes.) The advantage of basic types is that it lets the
specifier name sets without saying what kind of things they contain.

The first part of the system specification is its state space, described as a state schemaBirthdayBook, which we
repeat here for reference.

BirthdayBook
known: PNAME
birthday : NAME! DATE

known= dombirthday

The schema predicate,known= dombirthday, states that the setknownis the same as the domain of the function
birthday—the set of names to which the function can be validly applied.

Operations for the system can now be specified. We have already seen the operation schema for adding a new
birthday. The next system operation is that to find the birthday of a person known to be in the system. This is described
as operationFindBirthday.

FindBirthday
�BirthdayBook
name? : NAME
date! : DATE

name? 2 known
date! = birthday(name?)

The declaration�BirthdayBookindicates that the operation does not change the state (therefore, it corresponds to a
query). Including�BirthdayBookabove the schema line is equivalent to including�BirthdayBookabove the line, and
the equation

known0 = known^ birthday0 = birthday

below it. TheFindBirthdayoperation takes a namename? as input, and yields the corresponding birthday (in the range
of functionbirthday) as a result.

The final system operation is that to find which people have birthdays on a given date. The operation has one input,
today?, and one outputcards!, which is a set of names of people to whom we want to send birthday cards. Note that
there may be zero, one, or many people with the same birthday.

Remind
�BirthdayBook
today? : DATE
cards! : PNAME

cards! = fn : knownj birthday(n) = today?g

To finish the specification, the initial state of the system must be specified. This is written using an operation schema
InitBirthdayBook. A consequence of the operation is thatbirthday0 is empty, too.

InitBirthdayBook
�BirthdayBook0

known0 = ?

We do not consider steps 5 and 6 of the Z established strategy, due to space constraints. However, the translations that
we have described so far apply without change after having applied these steps to a Z specification.

4.1 Mapping to BON

A transition from Z to the assertion language of BON can now occur. The system consists of one state schema,
BirthdayBook, and a number of operation schemas. We will therefore translate the specification into a single class,
BIRTHDAYBOOK. The class, with only its state attributes, was shown in Section 3.1, but we repeat it here for
completeness.

classBIRTHDAYBOOK feature fNONEg

known: SET[NAME]

birthday : FUNC[NAME;DATE]

invariant known= birthday:domain

end

Translations of Z operation schemas can now occur. The operation schemas will be translated to methods of class
BIRTHDAYBOOK. Operation schemaAddBirthdaywas translated in Section 3.2. TheFindBirthdayoperation schema
is translated to the following method of classBIRTHDAYBOOK.

FindBirthday(name: NAME) : DATE

require name2 known

ensureResult= birthday:select(name)

end

Finally, theRemindmethod is as follows.

Remind(today: DATE) : SET[NAME]

ensureResult= fn : NAME j birthday:select(n) = todayg

end

To translate theInitBirthdayBookoperation schema, we update classBIRTHDAY BOOK to include acreation
method of the same name.

classBIRTHDAYBOOK creation

InitBirthdayBook

feature

InitBirthdayBookensureknown:emptyend

�� other methods as written above

end

BIRTHDAYBOOK is now a type, and (for free) we can create as many instances of theBIRTHDAYBOOKas we
need. By comparison, to create multipleBirthdayBooks in Z, we would need to strengthen the specification to include
a set ofBirthdayBooks and new operation schemas to manipulate the strengthened state.

It is also worthwhile to point out that in the translation, the resulting BON specifications are no larger or more
complex than the initial Z specifications. In fact, the BON specifications are, to us, more readable and understandable,
because they use a more consistent syntax and because they use fewer mathematical notations and more object-oriented
idioms.

4.2 Implementation

The BON specification that we have given is very close to an implementation (AddBirthdaycan be implemented using
theputmethod of classSET, Remindcan be implemented with a loop, andFindBirthdayis already implemented). For
the purposes of illustrating further refinement, we show how to transform the specification into an equivalent one that
uses arrays.

We can represent the birthday book by two arrays (of a constantmaxsize),namesanddates, and a countercount,
specifying how much of the arrays is in use. We refine classBIRTHDAYBOOKso that it includes these new attributes.
Each operationFindBirthday, Remind, andAddBirthdayis then refined to use the new data structures. In order to prove
that these refinements are consistent with the initial specification in terms of sets, we have to produce anabstraction
relation [7] that relates the new data structures with the original data structures. An abstraction relation, written in
BON’s assertion language, is

known= fi : 1::count� names:item(i)g ^

8 i : 1::countj 9 j 2 birthday j j:first = names:item(i) ^ j:second= dates:item(i)

The abstraction relation states that the setknowncorresponds to all valid entries in the arraynames, while every entry in
the arraydateshas a corresponding entry inbirthday. Applying the abstraction relation to the classBIRTHDAYBOOK
would produce the following additions toBIRTHDAYBOOK. First are the attributes and refined creation command
(we are omitting the the technical details and simplifications that need to be carried out, but they are straightforward
and follow the techniques suggested in [7]).

classBIRTHDAYBOOK creation

InitBirthdayBook

feature fNONEg

names: ARRAY[NAME]

dates: ARRAY[DATE]

count : INTEGER

end

Each method must also be transformed to use the new representation. The results of this transformation are as
follows (we omit the details and simplifications, which are straightforward). MethodInitBirthdayBookis refined to the
following specification.

InitBirthdayBookensurecount= 0 end

Theensureandrequire clauses ofAddBirthdayare transformed as follows.

AddBirthday(name: NAME; date: DATE)

require 8 i : 1::count� name6= names:item(i) ^ count< max

ensurecount= old count+ 1 ^ names:item(count) = namê dates:item(count) = date^

8 i : 1::old count� names:item(i) = old names:item(i) ^ dates:item(i) = old dates:item(i)

end

To add a new entry that is not already in the birthday book, we incrementcountand fill in the name and date in the
arrays, without changing the rest of the arrays. The second operation,FindBirthday, is transformed to the following.

FindBirthday(name: NAME) : DATE

require 9 i : 1::count� name= names:item(i)

ensure 9 i : 1::count� name= names:item(i) ^ Result= dates:item(i)

end

This specification says that there is an indexi at which thenamesarray contains the input,name, and for which
the result is the corresponding entry of thedatesarray. Finally, we transform theRemindoperation.

Remind(today: DATE) : SET[NAME]

ensureResult= fj : 1::count j dates:item(j) = today� names:item(j)g

end

An advantage of mapping Z into BON/Eiffel is that Eiffel supports sets. In the standard refinement of the Z
specification for operationRemind[10], theSETresult is implemented as an array and a second counter. This makes
the development longer than we need to have in a mapping to Eiffel.

Operations can now be implemented in Eiffel. We assume that there areis equalqueries forNAME andDATE,
and a constant array sizemax. We strengthen methodInitBirthdayBookso that it includes Eiffel code to attachARRAY
objects tonamesanddates. We omit implementedensureclauses due to lack of space, but we include translations of
require clauses.

InitBirthdayBookis

do count := 0 !!names:make(1; max) !!dates:make(1; max) end

AddBirthday(name: NAME; date: DATE) is

require not names:full and not names:has(name)

do

count := count+ 1

names:put(name; count)

dates:put(date; count)

end

FindBirthday(name: NAME) : DATE is

require names:has(name)

local i : INTEGER

do

from i := 1

until names:item(i):is equal(name)

loop i := i + 1 end

Result:= dates:item(i)

end

Remind(today: DATE) : SET[NAME] is

local i : INTEGER

do

from i := 1

until i > count

loop

if dates:item(i):is equal(today) then Result:put(names:item(i)) end

i := i + 1

end

end

5 Discussion and Conclusions

We have outlined how Z users can make a transition to object-oriented specifications and executable implementations
via a mapping into BON. This transition integrates the Z established strategy of [1] with a seamless development
method, and can be used to suggest an object-oriented design for Z specifications. While we have not shown all
the technicalities associated with a transition (due to space constraints), we have provided sufficient detail so that
developers can make a move from Z to BON and thereupon to Eiffel. The technique suggests a strategy for producing
an object-oriented design from a (non-object oriented) Z specification. This provides a basis for semi-automatable tool
that implements a mapping from Z to BON (and thereafter to Eiffel). An implementation of such a tool would be able
to make use of the existing Eiffel environment, as well as the existing and substantial Eiffel libraries.

We have shown that in the mapping, the specifications that result from translating Z to BON are no more complex
to read or use than the initial Z specifications. Hopefully, we have provided some evidence to show that in the situations
where an object-oriented design or implementation is desired, Z can be avoided, and specifications and designs can be
done using BON from the start, without loss of expressiveness or of the ability to write concise specifications.

Use of the approach has several other advantages. A transition from Z to BON can eliminate some of the weak-
nesses associated with development in Z, such as the lack of an implementation of Z constructs. The transition also
can give Z developers the ability to use object-oriented technologies, which are important in developing reusable,
extendible quality software.

On the other hand, the approach has some limitations. Translation of the schema calculus—and in particular,
schema inclusion—may require unfolding of operations, or unfolding of state schemas, before translation. This could
result in large translations and a complicated translation process, though this is not apparent in the example that we
have shown here. As well, in translating we must be able to express the Z toolkit (and, in particular, Z types) in BON’s
assertion language. Therefore, there may be some preprocessing work that has to be done before the translation from
Z specifications into BON can be carried out.

The integration of the Z established strategy with the seamless development method bypasses a standard step:
making Z operations total, by applying the Z schema calculus. We do not make the operations total, because this is
defensive programming that is obviated by design-by-contract, which is inherent in BON. Therefore, Z developers
who are used to making their operations total may find it difficult to transition to BON. On the other hand, experience
with Z in practice has often showed that specifiers are confused or uncomfortable with using the Z schema calculus.
So by transitioning to BON, we could make Z more attractive to some developers.

The aim of any method integration is to acquire some of the strengths and eliminate some of the weaknesses
of the methods involved [9]. In combining Z with BON, we have removed several of the noted limitations with Z,
while acquiring the strengths of a seamless development method. Future work will explore the transition in larger case
studies, as well as an implementation of the mapping, based on the suggested algorithm.

References

1. R. Barden, S. Stepney, and D. Cooper.Z in Practice,Prentice-Hall, 1994.
2. R. Duke, G. Rose, and G. Smith, Object-Z: A Specification Language advocated for the description of standards,Com-

puter Standards and Interfaces17(5) (1995).
3. J. Gibbons. Formal Methods: Why Should I Care? The development of the T800 transputer floating-point unit. InProc.

13th New Zealand Computer Society Conference,1993.
4. A. Hall, Using Formal Methods to Develop an ATC Information System,IEEE Software13(2), 1996.
5. M. Hinchey and J. Bowen.Applications of Formal Methods,Prentice-Hall, 1995.
6. I. Houston and S. King. CICS Project report: experience and results for the use of Z in IBM. InProc. 6th Annual Z Users

Meeting, Springer-Verlag, 1992.
7. B. Meyer.Object-oriented Software Construction, Second Edition, Prentice-Hall, 1997.
8. C.C. Morgan.Programming from Specifications, Prentice-Hall, Second Edition, 1994.
9. R.F. Paige. A Meta-Method for Formal Method Integration. InProc. Formal Methods Europe 1997,LNCS 1313,

Springer-Verlag, 1997.
10. J.M. Spivey.The Z Notation: A Reference Manual, Prentice-Hall, Second Edition, 1992.
11. K. Walden and J.-M. Nerson.Seamless Object-Oriented Software Architecture, Prentice-Hall, 1995.
12. J.B. Wordsworth.Software Development with Z, Addison-Wesley, 1992.

