

The Logic of Software Design

Jonathan Ostro�

Richard Paige

Technical Report CS-98-04

July 6, 1998

Department of Computer Science

4700 Keele Street North York, Ontario M3J 1P3 Canada

�

June 25, 1998 1

The Logic of Software Design

Jonathan S. Ostroff and Richard Paige

1

Department Of Computer Science, York University,
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3.

Email:

{jonathan, paige}@cs.yorku.ca

Tel: 416-736-2100 x{77882,77878} Fax: 416-736-5872.

Abstract

: In recent years much progress has been made towards the development of
mathematical methods (“formal methods”) through which it is possible, in principal, to
specify and design software to conform to specifications. Although formal methods have
the potential to offer a basis for software engineering akin to the calculational methods and
tools of other engineering disciplines, these methods have had only a limited effect on
industrial practice. One reason (amongst many) for this state of affairs is that the software
engineering curriculum needs to incorporate these methods and tools if the next genera-
tion of programming professionals are to use them. In this paper, we provide an overview
of how formal methods can be used throughout the software development cycle, and what
methods and tools can be introduced in the computer science curriculum to support soft-
ware development.

Keywords

: Software engineering education, formal methods, logic

E

, logical calcula-
tion, theorem provers, Eiffel.

1. This research was supported with the help of NSERC (National Science and Engineering Research Coun-
cil of Canada).

The Logic of Software Design June 25, 1998 2

Table of Contents

1.0 Introduction..3

2.0 Software Engineering...4

2.1 Requirements, Specifications and Programs..4

2.2 The gap between requirements and programs ...5

2.3 Descriptions ...8

3.0 Using Logic for Descriptions and Calculations ...10

3.1 Informal specification of the password module ...10

3.2 Formalizing the specification — design by contract..11

3.3 Developing programs from specifications ...17

3.4 Logic as a design calculus..18

4.0 A simple case study — cooling tank..19

4.1 A cooling tank example ...20

4.2 Tools...25

4.3 Timed and Hybrid descriptions..27

5.0 Conclusion ...28

6.0 Appendix on Logic E...29

6.1 Derived Inference Rules...29

6.2 Conditional expressions ...30
6.2.1 Theorems of conditional expressions derived from the axioms:30
6.2.2 Proof in Logic E for theorem (10.14a) ..31
6.2.3 “IF-transform” reasoning uses case replacement (CR) and (10.14)....................32

7.0 References..32

List of Figures

FIGURE 1. The phenomena of the real-world domain W and the machine M...............5
FIGURE 2. Airplane overshooting the runway...7
FIGURE 3. Eiffel specification of the password management module.........................11
FIGURE 4. The calculational logic E ...14
FIGURE 5. Using the PVS theorem prover to state and prove conjectures..................16
FIGURE 6. Faulty code for the cooling tank example..20
FIGURE 7. Rough sketch of the cooling tank identifying the phenomena of interest..21
FIGURE 8. Calculational proof of Lemma2...24
FIGURE 9. Calculational proof of Lemma3...25
FIGURE 10. Automated PVS proof of the cooling tank system.....................................26

The Logic of Software Design June 25, 1998 3

1.0 Introduction

Logic is the glue that binds together reasoning in many domains, such as mathematics,
philosophy, digital hardware, and artificial intelligence. In software development, logic
has played an important role in the area of program verification, but its use has not on the
whole been adopted in practice.

Some researchers and practitioners have suggested that logic (and mathematics in gen-
eral) should play a more significant part in software development than it currently does
[4,23]. They argue that software behaviour cannot be specified, predicted, or precisely
documented without the use of mathematical methods. Engineers traditionally use mathe-
matics to describe properties of products. Similarly, software engineers can use mathemat-
ics to describe properties of their products which are programs.

This argument is not generally accepted by the profession at large

2

 for a variety of rea-
sons. It is argued that the use of mathematical methods is expensive, unproven in large-
scale development, and unsupported by usable tools. Many papers (e.g. [5,8,10]) have dis-
cussed the reasons for practitioners not adopting mathematical methods in full or in part.
These arguments will not be recounted in full here, but it is clear that software profession-
als will not adopt mathematical methods until they are easy to use, improve our ability to
deliver quality code on time, provide tool support, and are founded on an appropriate edu-
cational programme.

Electrical engineers are taught mathematical methods (e.g. differential equations or
Laplace transforms) and tools (e.g. Matlab or Spice) for describing the properties of cir-
cuits. Such methods and tools are a key component of an electrical engineering education.
Similarly, engineers use mathematical descriptions in discussions of the deformation of a
beam, the flow of fluid in a pipe and the evolution of a chemical reaction. Methods, tools,
and curriculum components of similar simplicity and ease of use are needed for the educa-
tion and practice of software engineering.

In this paper, we provide an overview of how mathematical methods (“formal meth-
ods”) can be used throughout the software development cycle, and what methods and tools
can be introduced in the computer science curriculum to support software development.
We provide some simple examples of methods and tools to motivate the material.

Organization of the paper

The paper commences with an overview of software engineering, its purpose, and its
fundamental definitions. We describe a method for software design, using logic as the
foundation. Logic is used for describing requirements, specifications, design and pro-
grams. We recap the calculational proof format, presented in [7], and thereafter apply it to
simple examples that illustrate the method. We discuss some of the existing tools that can
support calculational proof and the use of logic for software design. Throughout the paper,
we discuss how logic can be integrated into a CS curriculum.

2. For some examples of where formal methods have been applied in the industrial setting, see Table 1 (end
of Sect. 5.0).

The Logic of Software Design June 25, 1998 4

2.0 Software Engineering

A software application such as a word processor is a

machine

— one similar to a type-
writer, but with more versatility. Similarly, a software telephone switch is a machine —
one similar to an old-fashioned telephone exchange, except that the new kind of machine
does not consist of rotary switches and clattering relays.

The purpose of software development is to build special kinds of machines — those
that can be physically embodied in a general purpose computer — merely by describing
them as programs. A general purpose computer accepts our description of the particular
machine we want (as described in the program), and converts itself into the desired
machine. We summarize below some insights into software development as described by
Jackson [12].

2.1 Requirements, Specifications and Programs

To construct a “software” machine, we must go through normal product development
that engineers perform when constructing “hard” machines like typewriters, bridges, and
motors. This includes requirements elicitation, analysis and design, implementation, test-
ing and documentation.

The purpose of the machine is to be installed in the world and to interact with it. The
part of the world in which the machine’s effects will be felt — and which is of most inter-
est to the customers of the machine — is called the

real-world domain

3

, which we will
denote by the letter

W (

for world). So we have a machine

M

 and the world that it interacts
with

W

.
It is always right to pay serious attention to the real-world domain

W

. If we are develop-
ing a program to control an airplane, we obviously need to understand how the airplane
works, how it lands and takes off on runways, and how it can be controlled while in the air.
We may also need to understand intangibles associated with the real-world domain, such
as the rules for safe aviation. This understanding must be made prior to any attempt to lay
out the data structures and data flow of the software program that will ultimately control
the airplane.

For example, the one million line program GPS (Global Positioning System for satel-
lite navigation) involves an understanding of celestial mechanics, gravity, atomic clocks
and cryptography. The phenomena of the real-world domain for the GPS are clearly dis-
tinct from the phenomena (code and data structure) of the machine required to operate it.
Similarly, a telephone switch deals with telephone calls, a word-processing program deals
with text, and a process control program deals with a chemical plant. These domains (tele-

3. Jackson [12] calls

W

 the “application domain”. We prefer to call

W

 the

real-world

domain, not because
the machine phenomena are not real, but because the phenomena of

W

 predate the requirements. We can
describe the phenomena of

W

 and possibly influence them; but the designer does not create the phenom-
ena of the real-world. By contrast, the machine is initially undetermined (i.e. not “yet” real), and it is the
designer who creates or controls the machine phenomena. We do not use the term “application domain”
because this can be confused with a generic domain denoting a class of applications (e.g. the process con-
trol domain). The word “environment” is also used for

W

, but this suggests something that physically sur-
rounds the machine, whereas

W

 can also include intangible things such as the rules for safe aviation or
employment legislation.

The Logic of Software Design June 25, 1998 5

phones, text and plants) are very different and each has its own peculiar characteristics that
determine how it interacts with the machine.

It is the phenomena of the real-world domain that determine the customer’s

require-
ments

4

. This is what makes requirements capture an almost impossible task, because there
is no way of rigorously checking that we actually understood what the customer wanted
when we deliver the final machine. It is easy for a software developer to ignore the real-
world domain (the realm of their customer’s true requirements), for it is more enjoyable to
turn directly to the machine where one can start implementing the “solution” immediately
(“coding”). But, to focus on the machine too soon, may quickly lead to confusion and
ambiguity. If we were never quite clear on what our customers really wanted then the final
product is likely to disappoint them. This is also why programmers do not always thor-
oughly understand the properties of their products, nor do they apply accepted theory
where it leads to better or safer products.

Requirements are therefore about the phenomena of the real-world domain

W

 and not
about the phenomena of the machine

M

. Not all the phenomena of the real-world domain
are necessarily shared with the machine. But, the machine does share some phenomena
with the real-world. The machine can try to ensure that the requirements are satisfied by
manipulating the shared phenomena at the interface of

W

 and

M

.
An example of a shared phenomenon is the event of a passenger sitting in an aircraft

seat and pushing a button to turn on a light. The push of the button is a shared phenome-
non between the passenger (who is part of

W

) and the aircraft (

M

). To the passenger the
event is “push the button”, and to the machine the event is “input signal on interrupt line
L1”. Similarly, the state in which the machine emits a continuous beep is the same state in
which the user of the machine hears the continuous beep.

2.2 The gap between requirements and programs

As we mentioned, not all of the phenomena of the real-world domain are shared with
the machine. There can thus be a gap between the customer’s requirements and what the
machine can deliver directly. We can think of the various phenomena with the help of
Fig. 1, in which is the set of all shared phenomena.

The requirements

R

 are described in terms of

W

, so they may involve phenomena that
are not shared with the machine. The program that will run on

M

 will be written in terms

4. Certain select requirements may also refer to the phenomena of the machine, e.g. the machine code (the
program) must be well-structured and efficient.

FIGURE 1. The phenomena of the real-world domain

W

 and the machine

M

(From Jackson [12, p127])

W M∩

The real-world domain W The machine M

The Logic of Software Design June 25, 1998 6

of the phenomena of

M

. The traditional progression from requirements to an implemented
program is a way of bridging the gap between the phenomena of

W

 and those of .
A rational development process, where each step follows from the previous ones and

everything is done in the most elegant and economic order, does not exist in reality for
complex systems. Nevertheless, we can fake it [22]. We can try to follow an established
procedure as closely as possible, and the final product and documentation is the ideal that
would have resulted had we not departed from the established procedure. There are a num-
ber of advantages to faking it in this way, despite numerous departures from the ideal. The
process will guide us even if we do not always follow it. We will come closer to rational
development, and it will also be easier to measure progress

Rational software development:

1. Elicit and document the

requirements

R

 in terms of the phenomena of

W

.

2. From the requirements

R

, expressed in terms of

W

, we derive a

specification

 of
the machine, expressed in terms of the shared phenomena . Specifications thus
describe the required interface or boundary between the machine and the application
domain.

3. From the specification we derive the program . The program refers to
shared and internal phenomena of

M

.
We must now provide a justification that the program satisfies its requirement

R

. To justify
this claim, we must reason as follows:

1. First, argue that if the machine behaves like , then the specification is
satisfied. i.e.,

implementation correctness

: . (Eq. 1)

The implication states that is a more specific or determinate product than the
more abstract specification . This makes the program more useful and closer to
implementation than the specification, for the program describes how the specification
is implemented, whereas the specification describes what must be implemented, with-
out any unnecessary appeal to internal detail. An example of a specification is

 where is the final value of the program variable . The specifica-
tion asserts that the final value of the program variable must be either zero or one. An
implementation of the specification is a program “ ”, which can be described in
logic by the assertion . Since the predicate is a
theorem of propositional logic, it follows that the machine implementation satisfies its
specification.

2. Next, argue that if the specification is satisfied, then so is the requirement, i.e.

specification correctness

: (Eq. 2)

where we may use our knowledge of the properties of the real-world domain ()
to prove the implication.

3. Having shown implementation and specification correctness, we are then entitled to
conclude that the machine correctly achieves the customer requirements, i.e.

M

M.spec
W M∩

M.spec M.prog

M.prog M.spec

M.prog M.spec→

M.prog

M.spec

x′ 0=() x′ 1=()∨ x′ x

x

x51

x′ 1=() x′ 1=() x′ 0=() x′ 1=()∨→

M.spec

W.desc M.spec∧ R→

W.desc

The Logic of Software Design June 25, 1998 7

system correctness: . (Eq. 3)

In the development process described above, we made a distinction between specifica-
tions and requirements. The term “specification” is one of a trio of terms: requirements,
specifications and programs.

Requirements are all about — and only about — the environment of the machine, i.e.
the real-world phenomena. The customer is interested in these real-world phenomena —
he wants the nuclear plant to run properly or the paychecks to be calculated correctly.
Some of the customer’s interests may coincidently involve shared phenomena at the speci-
fication interface .

By contrast, programs are all about — and only about — the machine phenomena. Pro-
grammers will surely be interested in phenomena at the interface , but this interest
is motivated by the needs to obtain the data on which the machine must operate.

Specifications form a bridge between requirements and programs. Specifications are
only about the shared phenomena . Hence specifications are requirements of a kind
(they are about some of the W phenomena) but they are also partly programs (they are
about some of the M phenomena). Since specifications are derived from customer require-
ments by a number of reasoning steps, they may not make obvious sense to either the cus-
tomer or the programmer. Although specifications are programs of a kind, they may not be
executable. In fact, we would prefer that they not be tainted by implementation bias, i.e.
with irrelevant machine detail.

The quality of the final software will depend critically on getting the description of the
real-world domain and the requirements right. Jackson quotes a well-known
incident in which a pilot landing his airplane had tried, correctly, to engage reverse thrust,
but the system would not permit it, with the result that the pilot overshot the runway. The
pilot could not engage reverse thrust because the runway was wet, and the wheels were
aquaplaning instead of turning. But the control software only allowed reverse thrust to be
engaged if pulses from the wheel sensors showed that the wheels were turning (which they
were not; they were aquaplaning).

FIGURE 2. Airplane overshooting the runway

W.desc M.prog∧ R→

W M∩

W M∩

W M∩

W.desc R

The real-world domain W The machine M

reverse_enabled
moving_on_runway

wheels-turning
wheel_pulses_on

machine M
wheel_pulses_on

reverse_enabled

machine interface

The Logic of Software Design June 25, 1998 8

Fig. 2 shows the phenomena that we are concerned with. The requirement was

requirement R: .

The developers thought that the real-world domain was described by

description of world : (Eq. 4)

So they derived the specification

specification of machine : .

For the above description of the real-world domain, specification correctness (Eq. 2)
given by is indeed a theorem.

Unfortunately, the developers did not understand the real-world domain correctly. The
first property listed in (Eq. 4) was indeed a correct description of the real-world domain.
But, the second property “ ” was not. When the wheels
are aquaplaning on a wet runway, the second property in fact fails to hold, because
“ ” is true but “ ” is false. The correct description of the
real-world was instead

.

With this correct description of the domain, a machine satisfying the specification
listed above will no longer satisfy the requirements, because specification correctness
(Eq. 2) no longer holds. It is thus crucial to get an accurate description of the real-world
domain.

2.3 Descriptions
The central activity of software development is description. Any software project will

need many different kinds of descriptions. These descriptions provide essential documen-
tation of the software. Here are some of the main types of descriptions [21].

• Specifications or requirements state the required properties of a product (e.g.
and). The difference between a requirement and specification was described in the
previous sub-section.

• Behavioural descriptions state the actual properties of an entity or product. Behav-
ioural descriptions describe the visible properties of an entity without discussing how it
was constructed. The real-world description (Eq. 4) is an example of a behavioural
description — in this case it is not a product or program that is being described but the
environment (runway) in which the product (the airplane) will operate.

• Constructive descriptions also state actual properties of a program, but they also
describe how a program is composed of other programs. Program text is an example of
a constructive description. For example, the program text for the module in Fig. 6
describes how the body of the module is constructed from two private routines.

Specifications and requirements are expressed in what grammarians call the optative
mood, i.e. they express a wish. Behavioral and constructive descriptions are expressed in

reverse_enabled moving_on_runway≡

W.desc
wheel_pulses_on wheels_turning≡

wheels_turning moving_on_runway≡

M.spec reverse_enabled wheel_pulses_on≡

W.desc M.spec∧ R→

wheels_turning moving_on_runway≡

moving_on_runway wheels_turning

W.desc
wheel_pulses_on wheels_turning≡
wheels_turning() aquaplaning()∨ moving_on_runway≡

M.spec

M.spec
R

The Logic of Software Design June 25, 1998 9

the indicative mood, i.e. they assert a fact. Thus, a description may include properties that
are not required, and a specification may include properties that a (faulty) product may not
possess.

We cannot necessarily tell from a list of properties whether we are dealing with a
behavioural description of an already existing product, or whether the list of properties is a
specification of what we hope will eventually become a product. It is therefore crucial for
the writer to make the relevant distinction. Once we have demonstrated implementation
correctness (Eq. 1), then the specification itself becomes a description.

Although mathematics can be used for all descriptions, not all descriptions need neces-
sarily be mathematical. We can distinguish between rough sketches, designations, defini-
tions and refutable descriptions [12].

A rough sketch (e.g. Fig. 1) is a tentative and incomplete description of something that
is in the process of being explored or invented. It uses undefined terms to record half-
formed or vague ideas, and is useful especially in the early development phase.

A designation singles out some particular kind of phenomenon that is of interest, tells
us informally in natural language how to recognize it, and gives a name by which it will be
denoted. Here are some designations:

-- designates the situation in which the sensor of airplane x

-- detects that its wheels are turning

-- designates the situation in which airplane x aquaplanes on the runway

Having made designations, we can now proceed with more precise descriptions. Defini-
tions introduce new names in terms of already existing descriptions. Here is a definition of

:

.

A refutable description describes some domain, saying something about it that can —
in principal — be refuted or disproved.

Predicate logic provides a means for expressing refutable descriptions. A predicate can
either be valid (true in all behaviours of the product), a contradiction (false in all behav-
iours) or contingent (true in at least one behaviour and false in at least one).

A useful predicate for specifications and requirements is one that is contingent. The
predicate true (or any theorem for that matter) is not a useful specification of a product
because any behaviour of the product satisfies true. So too, false is not a useful specifica-
tion as it is satisfied by no behaviour. A useful specification is one that satisfies precisely
and only those behaviours that we wish to observe in the product.

Real-world descriptions should also be refutable. For example, the real-world property
“ ” (Eq. 4) is a refutable description. It would be
refuted by an observation in which “ ” is true but “ ” is
false. This is exactly the behaviour that is observed when the wheels aquaplane.

The use of mathematical descriptions throughout software documentation and design is
an idealization. Not all requirements can necessarily be captured by predicates, at least not
easily. Sometimes rough sketches must be used, or we must resort to vague qualifications
such as “approximately” or “preferably”. The requirements will not necessarily remain
constant. Any change may invalidate the entire logical structure (although engineers will

wheel_pulses_onx(): BOOLEAN

aquaplanex(): BOOLEAN

plane_movingx()

plane_movingx()y wheel_pulses_onx() aquaplanex()∨[]

wheels_turning moving_on_runway≡
moving_on_runway wheels_turning

The Logic of Software Design June 25, 1998 10

often find ingenious ways of preserving work already completed). The over-riding impera-
tive to deliver a product on time and within cost will often mean that logical analysis and
calculation cannot always be performed, at least in full detail.

The reality of software development does not mean that precise mathematical descrip-
tions cannot find a place. The software engineer will seek a balance between rough
sketches and precise description and calculation. Useful software development methods
will therefore allow the software engineer to choose the appropriate balance between
mathematical and informal description.

3.0 Using Logic for Descriptions and Calculations

What kind of mathematics should software engineering students be taught? Like other
engineering students they should have a working knowledge of classical mathematics such
as calculus, linear algebra and probability and statistics. But, the description of software
products requires the use of functions with many points of discontinuity. The study of con-
tinuous functions must thus be supplemented with that of predicate logic and discrete
mathematics. We illustrate this type of knowledge with a simple example that will also
illustrate how logic may be used to

• make informal descriptions precise,

• calculate properties of products (by proving theorems), and

• understand the role of counterexamples. A counterexample can be used to show that a
conjecture about a product is not a theorem.

3.1 Informal specification of the password module
Consider the following informal specification:

A personal digital assistant (PDA) needs a PASSWORD_MANAGEMENT
module that allows the user of the PDA to enter a password. The user
should not be allowed to access the verification routine more than six
times. The user only gets five tries at entering the password; if the user
entry matches the stored password, then the PDA can be operated on by the
user. If the password does not match, the PDA remains inoperative. On the
sixth try, no password checking is done — instead an alarm flag is immedi-
ately raised. The alarm flag might be used by other modules to turn off the
PDA or inform the owner of unauthorized access.

We use an Eiffel class [17] to specify the password management module. Eiffel is an
example of a development environment that can be used to build software seamlessly from
specifications to programs. At any one time the developer works on only one product —
the machine — which successive stages and activities will progressively enrich. This does
not mean that there is only one view of the machine. There are a variety of views available.
Each view is a description of a different aspect of the machine. For example, the short for-
mat of a class documents the class interface, i.e. its exported features, their specifications
(pre/post conditions) and the class invariant. The supplier of the class can view the inter-
face as well as the implementation. Class relationships such as the client-supplier relation-
ship or the inheritance relationship can be viewed. Classes can be grouped into clusters,

The Logic of Software Design June 25, 1998 11

which can be related to other clusters using the same relationships that are applied to sin-
gle classes. The designer can start at the abstract architectural design level, and then gener-
ate the Eiffel class skeletons, or start working on individual classes and work up to the
architectural design level, or alternate between these two views.

3.2 Formalizing the specification — design by contract
The password management module can be specified by the Eiffel class shown in Fig. 3.

No implementation detail is given. The class starts by defining the various attributes (state)
of the module. The behaviour of the routine verify_user is specified by a precondition (the
requires clause) and a postcondition (the ensures clause). The precondition describes the
set of all initial states (prestates) and the postcondition describes the set of all final states
(poststates) for the routine. The intermediate states are irrelevant detail and hence are
ignored in the specification.

FIGURE 3. Eiffel specification of the password management module

ccccllllaaaassssssss PASSWORD_MANAGEMENT feature

-- attributes (the Òstate spaceÓ)
alarm: BOOLEAN -- signal illegal entry
operate: BOOLEAN -- user may operate PDA
p1: PASSWORD -- p1 is of password type
i: INTEGER -- count of password tries

-- initialization routines and
-- password change routines to be added.

-- initially:

vvvveeeerrrriiiiffffyyyy____uuuusssseeeerrrr(p2: PASSWORD)
-- routine to verify password p2

rrrreeeeqqqquuuuiiiirrrreeee
-- this is the precondition

eeeennnnssssuuuurrrreeee

-- this is the postcondition

-- where

end

iiiinnnnvvvvaaaarrrriiiiaaaannnntttt
-- all routines preserves the invariant

eeeennnndddd

alarm¬ operate¬ i 0=() p1 some_string=()∧ ∧ ∧

alarm¬ operate¬∧

g1 e1→() g2 e2→() g3 e3→()∧ ∧

g1y old i 6<() old p1 p2=()∧

g2y old i 6<() old p1 p2≠()∧

g3y old i 6≥() old p1 p2≠()∧

e1y i 0=() operate alarm¬ p1 old p1=()∧ ∧∧

e2y i old i 1+=() o¬ perate alarm p1 old p1=()∧¬∧∧

e3y i 0=() o¬ perate alarm p1 old p1=()∧ ∧∧

i 0≥

The Logic of Software Design June 25, 1998 12

The precondition and postcondition express a contract between the client and the pro-
grammer. The client of the module has the obligation to invoke the routine only when the
precondition holds; the client may benefit from the result of the routine as described by the
postcondition. The supplier of the routine (the programmer) has the obligation to ensure
that the postcondition holds; the precondition is a benefit to the supplier for the routine
need not deal with cases not covered by the precondition. This is called design-by-contract
in which the obligations and benefits of clients and suppliers are delineated.

In postconditions, the notation old expression denotes the value of expression in the
prestate. Hence, specifies that the value of i in the poststate must be pre-
cisely one greater than the value of i in the prestate. The routine parameter does not
change value, hence there is no old value for . The class invariant must be pre-
served by each routine.

The specification of the class via routine pre/postconditions and invariants is the formal
counterpart of the informal specification. The precision of the formal specification
improves the documentation of the program as well as serving as a contract between the
client and the supplier. In addition, the formal specification of the class can now be used to
calculate the properties of the class. Here are some questions that we might want to ask
about the specified class.

Conjecture 1 — input coverage: Is every input handled?
The postcondition of the verify_user routine is in a special guarded expression format,

where each guard describes a specific input and its corresponding consequent
describes the required output (Fig. 3). The specifier of the contract might therefore want to
show the validity of

. (Eq. 5)

The above conjecture expresses the assertion that any input satisfying the precondition
must also satisfy the disjunction of the guards in the postcondition. It is up to the client to
ensure that the precondition is satisfied. If the conjecture holds then the specification has
the desirable property that it deals with all inputs allowed by the precondition.

Input coverage (Eq. 5) is an anti-theorem (i.e. it is not a theorem) because the state
described by is a counter-
example to the conjecture.

The counterexample to the conjecture informs the specifier that a certain input is
unhandled. Which input? — the input for which the user of the PDA is on the sixth attempt
with a correct password. The informal specification states that on the sixth try an alarm
should be raised irrespective of whether the supplied password is correct or not. The for-
mal specification would however allow the alarm to be disabled if the password is correct
on the sixth try.

The counterexample to the input coverage conjecture suggests that the routine postcon-
dition be rewritten as follows

i old i 1+=()
p2

p2 i 0≥

gi ei

old alarm()¬ old operate()¬∧ g(→ 1 g2 g3)∨ ∨

old alarm()¬ old operate()¬ old i 6=() old p1 p2=()∧ ∧ ∧

The Logic of Software Design June 25, 1998 13

(Eq. 6)

which is the same as the first specification except for the guard . Using Logic E (see [7]
and discussion below), we can prove that the input coverage conjecture

(Eq. 7)

is a theorem. We assume the antecedent, and prove under this assumption that the conse-
quent is a theorem. The proof transforms the consequent into a known theo-
rem.
Assume: .

= < definitions of >

= < >

= <distributivity of conjunction over disjunction (3.46) >

= <excluded middle (3.28) can be replaced by true, by TE (theorem equivalence)>

= < identity of conjunction (3.39) >

= < arithmetic: >
-- (3.4). Q.E.D.

(In the end, the assumption was not needed for the proof).
The inference rules for Logic E are described in Fig. 4 and derived rules such as theo-

rem equivalence (TE) are provided in the Appendix (Sect. 6.0). Each step is justified by
the Leibniz inference rule (replacement of equals for equals). The hints in angled brackets
mention which theorem was used to obtain the replacement expression (the numbers refer
to theorem numbers in [7])5. The transitivity inference rule is applied five times to con-

5. A list of the basic theorems of logic E, including all the theorems used in this paper, can be obtained from
http://www.ariel.cs.yorku.ca/~logicE/misc/logicE_theorems.pdf.

g1 e1→() g2 e2→() g3 e3→()∧ ∧

where

g1y old i 6<() old p1 p2=()∧

g2y old i 6<() old p1 p2≠()∧

g3y old i 6≥()

e1y i 0=() operate alarm¬ p1 old p1=()∧ ∧∧

e2y i old i 1+=() o¬ perate alarm p1 old p1=()∧¬∧∧

e3y i 0=() o¬ perate alarm p1 old p1=()∧ ∧∧

g3

old alarm()¬ old operate()¬∧ g(→ 1 g2 g3)∨ ∨

g1 g2 g3∨ ∨()

old alarm()¬ old operate()¬∧

g1 g2 g3∨ ∨

g1 g2,
old i 6< old p1 p2=∧() old i 6< old p1 p2≠∧() g3∨ ∨

old p1 p2≠()y old p1 p2=()¬
old i 6< old p1 p2=∧() old i 6< old p1 p2=()¬∧() g3∨ ∨

old i 6< old p1 p2=(old p1 p2=()¬∨∧() g3∨

old i 6<() true∧() g3∨

old i 6<() old i 6≥()∨

old i 6< old i 6≥∨() true≡
true

The Logic of Software Design June 25, 1998 14

clude that the predicate at the top is equivalent to the predicate at the bottom. Finally, since
the bottom predicate is itself a theorem, the equanimity inference rule allows us to con-
clude that is also a theorem.

The equales symbol (≡) is used for equality of two expressions that are both of type
boolean. In general, a calculational proof in Logic E mixes equalities (= or ≡) and implica-

FIGURE 4. The calculational logic E

A textbook for logic E [7] provides a list of axioms for propositional logic, pred-
icate logic and theories in various discrete domains (e.g. sets, integers, combinato-
rics, and universal algebra).

In logic E, the predicate is defined to be the same predicate as except
that every free occurrence of in is replaced by the expression using safe sub-
stitution. For example, given the propositional axiom (this is predicate E),
then . Using this notation for safe substitu-
tion, logic E has 4 rules of inference:

An inference rule states that the predicate below the line is a theorem provided the
predicates above the line are also theorems. For example, Substitution asserts that

 is a theorem provided is a theorem. From the axioms and rules of infer-
ence, the text derives a large number of useful theorems in various domains. Proofs
are structured in the equational style:

= < >

The above layout is justified by the Leibniz rule. The hint is usually
obtained by applying the Substitution rule to an axiom or theorem. Substitution is
often used without mention when it is obvious. The inference rule Transitivity is
used to conclude that the first expression in a sequence of calculational steps is equal
to the last expression (or vice versa). Equanimity allows us to conclude that if the
first expression is a theorem, then the last expression is also a theorem. Since the use
of inference rules is obvious from the structure of the proof, we achieve brevity and
readability. It is clear at each step what the justification for the step is. Some addi-
tional theorems, that can be derived using the inference rules, include:

3.84(a):

3.84(b):

where are expressions of the same type, and is a predicate containing an
occurrence of .

E z5P[] E
z E P

q q¬∨
q q¬∨() q5 x 5>()[] x 5> x 5>()¬∨()=

Leibniz:
P Q=

E z5P[] E z5Q[]=
--

Transitivity:
E1 E2= E2 E3=,

E1 E3=
--

Substitution:
E

E z5P[]

Equanimity:
E1 E1 E2≡,

E2

E z5P[] E

E z5P[]

P Q≡
E z5Q[]

P Q≡

e1 e2=() E z5e1[] ∧ e1 e2=() E z5e2[]∧≡

e1 e2=() E z5e1[] → e1 e2=() E z5e2[]→≡

e1 e2, E
z

g1 g2 g3∨ ∨()

The Logic of Software Design June 25, 1998 15

tions (→) because the composition of the relations ≡ and → yields the relation →. There-
fore, to prove that is a theorem, we need only write the following:

A

= < hint why A = B >
B

⇒ < hint why B → C >
C

= < hint why C = D >
D

The brevity of the equational style of Logic E makes it easier to calculate program
properties, and is usually much shorter than trying to show validity by constructing a truth
table (or enumerating all possible states). More importantly, the software engineering stu-
dent will want to make use of modern theorem provers to do routine calculations. The use
of theorem provers presupposes the type of knowledge developed by familiarity with logic
such as formalization of informal arguments, proofs of theorems from axioms and the use
of counterexamples to show that there is no proof.

The following generalization of the input coverage conjecture illustrates the use of the-
orem provers such as PVS [20].

Conjecture 2 — implementability conjecture
An Eiffel specification of a routine with a precondition and a postcondition can be

combined into a single before/after predicate . A before/after predicate is any
predicate that has occurrences of variables prefixed with “old” (which refers to the value
of the variable in the prestate) as well as unadorned variables (which refers to the value of
the variable in the poststate). A before/after specification asserts that if the precondition
holds, then the routine must behave according to , else any behaviour (including non-ter-
mination) is acceptable. This captures the Eiffel notion that the supplier of the routine is
responsible for dealing only with inputs specified by the precondition.

The implementability conjecture states that for any input to a routine that satisfies the
precondition there must exist a well-defined output. For example, consider a routine whose
precondition is true and whose postcondition is . The before/after
specification of the routine is . This specification is not imple-
mentable because

is an anti-theorem (in fact, there is a simple proof in Logic E to show that it is equivalent
to false). No program can implement this specification because there is no output value for
i that can “truthify” the postcondition for a negative input (e.g. old x = -5). Of course, it is
of vital importance that a specification be implementable.

The before/after specification spec for the verify_user routine is

 (Eq. 8)

A D→

P E
old P() E→

E

old x 0≥() i 0=()∧
true old x 0≥()→ i 0=()∧

old x∀ i true old x→ 0≥ i 0=∧∃()()

specy old alarm()¬ old operate()¬∧[] g1 e1→() g2 e2→() g3 e3→()∧ ∧[]→

The Logic of Software Design June 25, 1998 16

where the and are defined in (Eq. 6). The implementability conjecture for this speci-
fication is

. (Eq. 9)

The proof of the above conjecture can be done in Logic E, but it is easier to use the PVS
theorem prover. The implementability conjecture is shown at the bottom of Fig. 5.

FIGURE 5. Using the PVS theorem prover to state and prove conjectures

password : THEORY
begin

% attributes or state
passwordtype: TYPE
alarm,old_alarm,operate, old_operate: VAR bool
i, old_i: VAR nat
p1,p2,old_p1: VAR passwordtype

%% Input Coverage Conjecture
inputs_covered1: CONJECTURE

(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i < 6 AND old_p1 = p2)
OR (old_i < 6 AND old_p1 /= p2)
OR (old_i >= 6 AND old_p1 /= p2))

%% Counter-example is old_i = 6 AND old_p1 = p2, i.e.

%% New before/after specification of verify_user
spec(i,old_i,operate,alarm,p1,old_p1,p2): bool =

(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i < 6 AND old_p1 = p2 IMPLIES

(i = 0) AND operate AND NOT alarm and p1 = old_p1)
 AND

(old_i < 6 AND old_p1 /= p2 IMPLIES
(i = old_i + 1) AND NOT operate AND NOT alarm AND p1 = old_p1)

 AND
(old_i >= 6 IMPLIES

alarm AND NOT operate AND i = 0 AND p1 = old_p1))

%% Input Coverage Conjecture again
inputs_covered2: CONJECTURE

(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i < 6 AND old_p1 = p2)
OR (old_i < 6 AND old_p1 /= p2)
OR (old_i >= 6))

%% QED. That works!

%% Specification Implementability Conjecture
implentability : CONJECTURE

(EXISTS i, operate, alarm, p1:
NOT old_alarm AND NOT old_operate
IMPLIES
spec(i,old_i,operate,alarm,p1,old_p1,p2))

%% By convention, above is universally quantified over all free variables
%% This proves. Q.E.D.
end password

gi ei

old i old p1 p2, i operate alarm p1 spec, ,,∃(),∀()

The Logic of Software Design June 25, 1998 17

In PVS, the input coverage conjecture is proved automatically. However, the imple-
mentability conjecture was proved with some interaction from the user using existential
instantiation three times. This illustrates one of the issues involved in using theorem prov-
ers: where a theorem cannot be discharged automatically, the user has to know a proof in
outline in advance in order to provide proper guidance to the prover.

Another property that we might want specifications to be endowed with is that the
guards should treat disjoint domains. Implementability and disjoint domains are examples
of generic properties that all good specifications should have. In addition, there may be
properties that are unique to a given specification or description. For example, we might
want to show for verify_user that

i.e. a consequence of the verify_user specification is that the alarm is always raised on the
sixth attempt. There is a simple proof in Logic E to show that the above conjecture is a the-
orem. The above calculations show that logic is a powerful tool for validating the correct-
ness and implementability of specifications.

Once we have validated a module specification, Logic E and theorem provers can be
used to develop programs from their contracts [1,6,9,18]. Although the complete develop-
ment from specifications to implementations can be done mathematically, this may not be
necessary in all cases. Nor may it be necessary to provide a complete description or speci-
fication of all the properties of software products. Students need to develop skill in isolat-
ing useful and important properties.

3.3 Developing programs from specifications
We have seen that requirements and specifications are assertions in predicate calculus.

But programs can also be described by predicates [9]. The fundamental construct of
sequential programs is the assignment statement, e.g. , which causes a change of
state in the machine. We have already see how a before/after predicate can be used to
describe such changes. Using Eiffel notation we write

Eiffel convention for before/after predicates: . (Eq. 10)

In the sequel, we will use the Z convention [27] in which primed names such as and
 denote the final values of the variable in the poststate, whereas unprimed names such as

 and stand for their initial values in the prestate. The effect of the assignment can then
be formally described by the predicate

Z convention for before/after predicates: . (Eq. 11)

There is no essential difference between the Eiffel and Z convention. In both cases we
have designations for prestates and poststates. For our purposes the prime notation is more
concise.

The program , which is the simultaneous assignment to x and y, is
described by: . Consider a specification
of a routine of a class defined as follows:

class CCCC feature

xxxx,yyyy: INTEGER -- attributes

mmmm -- routine to double y while keeping (x-y) constant, i.e.

-- :

end C

spec old P()∧ old i() 6≥ alarm→()→

x5x y+

x old x old y+=() y old y=()∧
x′

y′
x y

x′ x y+=() y′ y=()∧

x y5x y+ 2y, ,
x y5x y+ 2y, ,()y x′ x y+=() y′ 2y=()∧ m.spec

m C

m.spec x′ y′– x y–=() y′ 2y=()∧

The Logic of Software Design June 25, 1998 18

We can use logical calculation to derive an implementation (code) for the routine r from
the specification as follows:

= <definition of >

= <Leibniz substitution 3.84(a) (see Fig. 4)>

= <arithmetic: >

= <using the definition of simultaneous assignment>
-- this is the implementation

The above calculation derives a not totally obvious program , defined by
, from its specification . The program satisfies the imple-

mentation correctness condition . Further refinement of the code might
be needed if a programming language is used that does not support simultaneous assign-
ment, but the same kinds of calculation apply to such derivations [9].

3.4 Logic as a design calculus
Logical connectives and quantifiers such as conjunction, implication and existential

quantification can be used as a design calculus for software development.
Implication can be used for program refinement, also called program correctness

(Eq. 1). A program implements a specification if , i.e. every
behaviour satisfying the program description also satisfies the specification.

We can hide the internal behaviour of the program with the existential operator. The
visible program behaviour is where stands for the local program variables.
What is observed inside the machine is of no concern to a client of the machine. Then, pro-
vided does not occur free in , program refinement becomes .
This is because (provided does not occur free
in).

Conjunction is a general way to express connection and interaction in an assembly con-
structed from two or more components. As an example, consider two classes which satisfy
the class invariants and respectively. If both classes are in use in a given program
then we are guaranteed that the assembly behaves according to .

If a specification is complex, we can decompose it into two sub-specifications (or
designs) and , provided . Each design can then be implemented by
a separate program and , provided and are the-
orems. The final implementation is , and we are guaranteed by proposi-
tional calculus that .

We have shown how logic can be used for describing requirements, specifications, and
programs. We also showed that logic can be used as a descriptive calculus throughout the
software life-cycle including design, implementation and documentation. Finally, the logi-
cal calculational format can be used in various phases of the software life-cycle, e.g. to

m.spec

m.spec

m.spec

x′ y′– x y–=() y′ 2y=()∧

x′ 2y– x y–=() y′ 2y=()∧

x′ 2y– x y–=() x′ x y+=()≡

x′ x y+=() y′ 2y=()∧

x y5x y+ 2y, ,() m.prog

m.prog
x y5x y+ 2y, ,() m.spec m.prog

m.prog m.spec→

prog spec prog spec→

v prog∃() v

v spec v prog∃() spec→
v prog spec→∀() v prog∃() spec→()≡ v

spec

i1 i2
i1 i2∧

D1 D2 D1 D2∧ spec→
prog1 prog2 prog1 D1→() prog2 D2→()

prog1 prog2∧
prog spec→

The Logic of Software Design June 25, 1998 19

derive a program that implements a specification, or to establish that an assembly of com-
ponents satisfies a requirement if the components satisfy their specifications. The calcula-
tional format has the virtues of brevity and readability that make it easy to use, and the
availability of the text [7] means that the calculational format can be taught to students
early in a Computer Science programme.

At York University in Toronto, we are updating our mathematics and computer science
curriculum to adopt the use of the calculational format. Our first-year logics and discrete
mathematics courses for computer science students are using the calculational approach,
based on the text [7]. The calculational method has also been applied in third year program
verification course. Future changes in our curriculum will likely see the calculational
method applied throughout our software engineering curriculum.

4.0 A simple case study — cooling tank

In the previous section we described how calculational logic can be used in all phases
of software design. In this section, we present a small and simple case study that will illus-
trate the use of logical methods and tools through all phases of software design from
requirements to implementations.

The case study will involve the use conditional expressions such as

if then else (Eq. 12)

where is of type boolean and are any two expressions of the same type. For con-
ciseness we also use the abbreviation

(Eq. 13)

(see Appendix in Sect. 6.0). Logic E as described in [7] provides the two axioms

(10.9) (10.10)

for conditional expressions. We will need more powerful theorems to simplify calculation.
We therefore refer the reader to the Appendix (Sect. 6.0) in which further theorems of con-
ditional expressions are listed. The Appendix also provides a proof of theorem (10.14a)
below which is an illustration of the utility of Logic E for stating and developing new the-
ory.

(10.14a): provided that is a theorem.

Theorem (10.14a) provides a method for simplifying a complex expression consisting of
conditional subexpressions to a simpler expression with the conditional eliminated. Con-
sider a variable with . It follows that is
a theorem. Using “IF-transform” reasoning (Appendix Sect. 6.2.3) the following is a theo-
rem:

. (Eq. 14)

b e1 e2

b e1 e2,

b
e2

e1

b b
e2

e1 e1=
 → b¬ b

e2

e1 e2=
 →

p E z5b
e2

e1→
 p E z5e1[]→()≡ p b→

x type x() NATURAL= x 0=() x 1=() x 1>()∨ ∨

x′ x x 1≤
y
9() x 1≥

z
1()–+=[]

x 0=() x′ x 9 z–+=()→
x 1=()∧ x′ x 9 1–+=()→
x 1>()∧ x′ x y 1–+=()→

≡

The Logic of Software Design June 25, 1998 20

We now present an informal description of the case study.

4.1 A cooling tank example
“A tank of cooling water shall generate a low level warning when the tank
contains 1 unit of water or less. The tank shall be refilled only when the low
level sensor comes on. Refilling consists of adding water until there are 9
units of water in the tank. The maximum capacity of the tank is 10 units, but
the water level should always be between 1 and 9 units. The sensor readings
are updated once every cycle, i.e. once every 20 seconds. Every cycle, one
unit of water is used. It is possible to add up to 10 units of water in a cycle”

A programmer, looking at the above problem, might immediately write plausible code
for the controller module as shown in Fig. 6. The body of the module executes
“set_alarm; fill_tank” once every cycle.

The set_alarm routine raises the flag alarm if the tank level goes below 1 unit. The
fill_tank routine sets the tank input setpoint in to 9 units if the tank level is already at 0
units and to 8 units if the tank level is at 1 unit. In this way, the tank is refilled to exactly 9
units at the end of the cycle.

Apart from the fact that the above program is wrong (as we shall see later), we have
also not followed the recommended design method presented earlier (Sect. 2.0). In fact,
without a specification that satisfies specification correctness (Eq. 2), we cannot even
begin to debug the program.

FIGURE 6. Faulty code for the cooling tank example

MMMMoooodddduuuulllleeee ccccoooonnnnttttrrrroooolllllllleeeerrrr

IIIInnnnppppuuuuttttssss

level: LEVEL -- input from tank, where type LEVEL = {0 .. 10}

OOOOuuuuttttppppuuuuttttssss

alarm: BOOLEAN -- raises tank alarm.Initially false.

in: LEVEL -- setpoint for tank input valve. Initially 0.

BBBBooooddddyyyy

eeeevvvveeeerrrryyyy 22220000 sssseeeeccccoooonnnnddddssss

ddddoooo

set_alarm; fill_tank

eeeennnndddd

PPPPrrrriiiivvvvaaaatttteeee rrrroooouuuuttttiiiinnnneeeessss uuuusssseeeedddd iiiinnnn BBBBooooddddyyyy

sssseeeetttt____aaaallllaaaarrrrmmmm is -- set the alarm if tank level is low

ddddoooo

alarm := (level <= 1)

eeeennnndddd

ffffiiiillllllll____ttttaaaannnnkkkk is -- fill tank if level is low, otherwise do nothing

ddddoooo

if level = 0 then in := 9

elseif level = 1 then in : = 8

else in : = 0

eeeennnndddd

eeeennnndddd

The Logic of Software Design June 25, 1998 21

Our rational software design method (Sect. 2.0) requires that we first divide the system
of interest into the real-world domain W and the machine M, and identify the relevant phe-
nomena. The real-world domain, in this case, is the cooling tank with its outflow of water
out and inflow of water in.

The rough sketch in Fig. 7 illustrates the phenomena of the real-world domain, includ-
ing phenomena shared with the machine (in, level and alarm). The water outflow out is not
a shared phenomenon as the machine cannot measure it. The comment in the figure indi-
cates that the informal requirements cannot be precise; the figure therefore provides a pre-
cise description of the outflow as a function of water level. One of the benefits of
mathematical descriptions is that they can be used to remove ambiguities present in the
informal descriptions.

Having identified the phenomena of interest, the next step is to write the requirements
for the cooling tank. We assume that the machine will read the level sensor at the begin-
ning of a cycle, immediately calculate the new values for in and alarm, and then repeat
this action at the beginning of the next cycle 20 seconds later. We may therefore describe
the requirements in terms of the variables of interest at the beginning and at the end of an
arbitrary cycle.

FIGURE 7. Rough sketch of the cooling tank identifying the phenomena of interest

Real-world phenomena
in, level: LEVEL -- phenomena shared with the machine
alarm: BOOLEAN
out: LEVEL -- phenomena not shared with the machine

Real-world description

(Eq. 15)

The informal requirements state: “every cycle, one unit of water is used”. This cannot be precise. If
 at the beginning of a cycle, then there may not be outflow in that cycle. We will assume

that the above law (Eq. 15) describes the outflow as a function of level. This corresponds to a scenario
in which the outflow valve (a) is automatically opened only when the level reaches 1 unit, and (b)
releases exactly 1 unit every cycle so long as it is open. It is up to the software engineer to ascertain
from the domain specialists the precise behaviour of the real-world phenomena.

out if level 1 then 1 else 0≥=

level 0=()

level

REAL-WORLD DOMAIN

controller
water tank

alarm
bell

MACHINE DOMAIN

out

in

The Logic of Software Design June 25, 1998 22

cooling tank requirement : (Eq. 16)

The initial value of the water level, the alarm signal, and the outflow are designated by
level, alarm and out respectively. The value of the water level at the end of the cycle is des-
ignated by . The requirement thus states that the final value of the water level must
be between the stated bounds, the tank must be filled (at the end of the cycle) if it goes low
(at the beginning of the cycle), and the alarm bell must be sounded (at the beginning of the
cycle) if the level is low.

The next step in the recommended design method is to describe the properties charac-
terizing the real-world domain.

real-world description : (Eq. 17)

The domain property is derived from a physical law that says flow must be pre-
served, i.e. the flow at the end of a cycle is what the original level was, adjusted for in-
flows and outflows. The property asserts that the outflow at the beginning of a cycle
is one unit (see informal description) unless there is no water left to flow out (this part was
not in the informal description, but must be added if the description is to be precise).

In the absence of a controller, the “free” behaviour of the cooling tank will not satisfy
the requirements. This is because the inflow setpoint in can be set to any value. In order to
satisfy the requirements, we must therefore specify a machine.

The requirements and real-world descriptions are allowed to refer to the outflow out.
However, since there was no sensor for it, out is not a shared phenomenon, and the
machine (the controller) may therefore not refer to it. Here is a first attempt at the machine
specification:

(Eq. 18)

We have assumed that the machine works much faster than the cycle time of the cooling
tank. Therefore, the machine instantaneously sets in and alarm to the values described
above at the beginning of each cycle. The specification refers to shared phenomena only.

The controller module described earlier (Fig. 6) implements the specification of
(Eq. 18). The specification might at first sight appear correct, for it adds 9 units of water if
the level is zero, and 8 units of water if the level is one (1 + 8 = 9), else nothing is added.
However, the machine specification is wrong, as can be seen by a counterexample. Con-
sider a state at the beginning of a cycle in which . According to the above spec-
ification, . Thus by . Hence, by ,

Ry R1 R2 R3∧ ∧()

R1: 1 l≤ evel′ 9≤()

R2: level′ level 1≤
level out–
9()=

R3: alarm level 1≤≡()

level′

W.descyW.d1 W.d2∧
W.d1: level′ level in out–+()=

W.d2: out level 1≥
0
1()=

W.d1

W.d2

in if (level 0= then 9=

 elseif level 1= then 8

 elseif level 1> then 0)

alarm level 1≤≡()∧

level 1=()
in 8=() out 1=() W.d2 W.d1

level′ level in out–+()=

8=

The Logic of Software Design June 25, 1998 23

so the requirement will not be satisfied because the tank is supposed to be at 9 units of
water at the end of the cycle. The failed specification did not take into account the fact that
there is an outflow of 1 unit when the level is at 1 unit (recall that there is zero outflow
when the level is zero). The counterexample was detected when the logical calculation for
specification correctness (Eq. 2) was performed.

A correct specification for the controller is:

machine specification : (Eq. 19)

which states that 9 units must be added irrespective of whether the level is zero units or
one unit of water at the beginning of a cycle. Specification correctness (Eq. 2) holds if we
can show the validity of

(Eq. 20)

which asserts that no matter what the level is at the beginning of a cycle (provided it is of
type LEVEL), and provided the application domain satisfies the real-world description
W.desc (Eq. 17) and the machine its specification, then the requirements will be satisfied.
By Logic E, this is the same as proving that

. (Eq. 21)

Gathering together all the information, we must prove:

The proof follows from three lemmas. can be obtained directly from (using
reflexivity of implication (3.71)), i.e.,

Lemma1: . (Eq. 22)

Next, we prove the more specific requirement first, in anticipation that it may also be
useful in deriving . In the proof of , it seems worth starting with as it has the
most precise information (it is an equality, not an inequality). The resulting calculation
(see Fig. 8), which also uses the assumptions and , yields:

Lemma2: . (Eq. 24)

The proof of Lemma2 is long (in fact, longer than we had hoped). The proof length is due
to the need to do case analysis (see IF-transform in Fig. 8). It was precisely this case anal-
ysis that provided a counterexample to the naive specification (Eq. 18).

As we originally anticipated, can be derived from (see Fig. 9) to obtain

R2

M.specyM.s1 M.s2∧
M.s1: in level 1≤

0
9()=

M.s2: alarm level 1≤()≡

level: LEVEL W.desc M.spec∧ R→∀()

0(level 10)≤ ≤ W.desc M.spec∧ R→()→

W.d0: 0(level 10)≤ ≤

W.d1: level′ level in out–+()=

W.d2: out level 1≥
0
1()=

M.s1: in level 1≤
0
9()=

M.s2: alarm level 1≤≡()
R1: 1 l≤ evel′ 9≤()

R2: level′ level 1≤
level o– ut
9()=

R3: alarm level 1≤≡()

--

R3 M.s2
p p→

M.s2 R3→

R2
R1 R2 W.d1

W.d2 M.s2

W.d2 M.s1 W.d1∧ ∧ R→ 2

R1 R2

The Logic of Software Design June 25, 1998 24

Lemma 3: . (Eq. 26)

Using the three lemmas, a quick calculational proof shows the validity of specification
correctness .

The cooling tank example can be checked automatically with the help of PVS (Fig. 10)
The PVS descriptions of the real-world domain, requirements, and machine specification
for the cooling tank are shown in the figure. The conjecture system_correctness (end of

FIGURE 8. Calculational proof of Lemma2

= < definition of >

= < assumption >

= < assumption >

= < IF-transform — but, leave “IF” in last conjunct to conform with final form>

= < Leibniz substitution 3.84(b) to first two conjuncts>

= < arithmetic simplification >

= < theorem of prop. logic: , to first two conjuncts>

= < assumption to reinsert >

= < IF-transform >

= < definition of >

.

The above proof is based on the assumptions and . By EDT (see extended deduction
theorem in the Appendix) we have thus established the lemma

from which it is simple to derive the lemma:

Lemma2: . (Eq. 23)

W.d1

W.d1

level′ level in out–+()=

W.d2

level′ level in level 1≥
0
1()–+()=

M.s1

level′ level level 1≤
0
9() level 1≥

0
1()–+()=

level 0=() level′ level 9 0–+=()→
level 1=()∧ level′ level 9 1–+=()→

level 1>()∧ level′ level 0 level 1≥
0
1()–+=()→

level 0=() level′ 0 9 0–+=()→
level 1=()∧ level′ 1 9 1–+=()→

level 1>()∧ level′ level 0 level 1≥
0
1()–+=()→

level 0=() level′ 9=()→
level 1=()∧ level′ 9=()→

level 1>()∧ level′ level level 1≥
0
1()–=()→

p r→() q r→()∧() p q∨ r→()≡

level 1≤() level′ 9=()→

level 1>()∧ level′ level level 1≥
0
1()–=()→

W.d2 out

level 1≤() level′ 9=()→
level 1>()∧ level′ level out–=()→

level′ level 1≤
level o– ut
9()=

R2

R2

W.d2 M.s1
W.d2 M.s1∧() W(.d1 R2)≡→

W.d2 M.s1 W.d1∧ ∧() R→
2

W.d0 W.d2∧() R2 R1→()→

level: LEVEL A.desc M.spec∧ R→∀()

The Logic of Software Design June 25, 1998 25

Fig. 10) is proved automatically when submitted to the PVS prover. The PVS file also
shows an example of a sanity check to ensure that the outflow is correctly described.

4.2 Tools
There are currently a variety of tools available that contain expressive specification lan-

guages, theorem provers and model-checkers that will do large calculations automatically;
such tools can be used to support the design method. We have shown the usefulness of
PVS [20], but there are now a variety of tools available that have been used in selected
industrial applications (Table 1).

The specification language of PVS is based on a typed higher-order logic. The base
types include uninterpreted types that may be introduced by the user, and built-in types
such as the booleans, integers, reals, as well as type-constructors that include functions,
sets, tuples, records, enumerations, and recursively-defined abstract data types, such as
lists and binary trees. PVS specifications are organized into parameterized theories that
may contain assumptions, definitions, axioms, and theorems. PVS expressions provide the
usual arithmetic and logical operators, function application, lambda abstraction, and quan-

FIGURE 9. Calculational proof of Lemma3

= < definition of ; IF-transform; assumption to replace >

= < (10.14b) with >

⇒ < arithmetic and monotonicity MON (see appendix Sect. 6.1) >

= < true is the identity of conjunction (3.39) >

= < assumption and theorem equivalence (TE) >

= < arithmetic theorem >

= < Leibniz substitution 3.84(a) with >

⇒ < weakening theorem (3.76b) and MON >

= < arithmetic simplification>

= < definition of and theorem (3.26), i.e. idempotency of disjunction: >

.

By EDT, we have established the theorem

Lemma3: (Eq. 25)

R2

R2 W.d2 out

level 1≤ level′ 9=()∧[]

level 1> level′ level level 1≥
0
1()–=()∧[]∨

level 1>() level 1≥()→

level 1≤() level′ 9=()∧()
level 1>() level′ level 1–=()∧[]∨

level′ 9=() R1→
R1 level 1>() level′ level 1–=()∧[]∨

R1 level 1>() true level′ level 1–=()∧∧[]∨

W.d0: 0(level 10)≤ ≤
R1 l(evel 1)> 0(level 10)≤ ≤∧ level′ level 1–=()∧[]∨

l(evel 1)> 0(level 10)≤ ≤∧ 2(level 10)≤ ≤=

R1 2(level 10)≤ ≤ level′ level 1–=()∧[]∨

level level′ 1+=

R1 2(level′ 1+ 10)≤ ≤ level′ level 1–=()∧[]∨

p q∧ p→
R1 2(level′ 1+ 10)≤ ≤∨

R1 1(level′ 9)≤ ≤∨

R1 p p∨() p=

R1

W.d0 W.d2∧() R2 R1→()→

The Logic of Software Design June 25, 1998 26

tifiers, within a natural syntax. An extensive prelude of built-in theories provides useful
definitions and lemmas.

The description language Z is based on a typed version of ZF set theory [27]. It is per-
haps the most widely used formal specification notation in industry, particularly in
Europe. It has been harder to develop mechanized help for Z since it was not designed
with automation in mind. Nevertheless, tools such as Z/Eves support the analysis of Z
specifications by syntax and type checking, schema expansion, precondition calculation,
domain checking, and general theorem proving [26].

PVS and Z do not provide explicit support for the transition from specifications to
implementations. The Eiffel programming language does provide lightweight formal
methods support, especially with its clean implementation of design-by-contract. It is an
ideal tool for the development of programs from specifications. By contrast, the newer

FIGURE 10. Automated PVS proof of the cooling tank system

ttttaaaannnnkkkk:::: TTTTHHHHEEEEOOOORRRRYYYY

BBBBEEEEGGGGIIIINNNN

LEVEL: TYPE = {x:nat | x <= 10}

% Designations. We use "level_f" for the final value of "level"
level, level_f, inn, out: VAR LEVEL
alarm: VAR bool

% Description of the real-world domain
rrrreeeeaaaallll____wwwwoooorrrrlllldddd____ddddeeeessssccccrrrriiiippppttttiiiioooonnnn(inn, out, level, level_f): bool =

out = (IF level >= 1 THEN 1 ELSE 0 ENDIF)
AND
(level_f = level + inn - out)

% The requirements document
rrrreeeeqqqquuuuiiiirrrreeeemmmmeeeennnntttt(level,level_f,out,alarm): bool =

(1 <= level_f AND level_f <= 9)
AND
(level_f = (IF level <= 1 THEN 9 ELSE level-out ENDIF))
AND
(alarm = (level <= 1))

% The machine specification
mmmmaaaacccchhhhiiiinnnneeee____ssssppppeeeecccc(level,inn,alarm): bool =

inn = (IF level <= 1 THEN 9 ELSE 0 ENDIF)
AND
alarm = (level <= 1)

ssssyyyysssstttteeeemmmm____ccccoooorrrrrrrreeeeccccttttnnnneeeessssssss: CONJECTURE
real_world_description(inn,out,level,level_f)
AND
machine_spec(level,inn,alarm)
IMPLIES
requirement(level,level_f,out,alarm)

ssssaaaannnniiiittttyyyy____cccchhhheeeecccckkkk: CONJECTURE
real_world_description(inn,out,level,level_f)
IMPLIES
(out = 0 OR out = 1)

EEEENNNNDDDD ttttaaaannnnkkkk

The Logic of Software Design June 25, 1998 27

Java language — for all its important features, such as type safety, automatic garbage col-
lection, and web applets — does not even have the simple assert statements of C++.
Although a certain amount of assert functionality can be implemented in a Java program
[24], it does not match the Eiffel features for design-by-contract. This means that compo-
nents in Java cannot be specified with the same degree of precision or ease as those in
Eiffel.

The B-Method (with associated machine support from the B-Tool) uses a Z-like
Abstract Machine Notation (AMN), and it supports development of specifications in AMN
all the way down to executable programs [1]. Perhaps the most well known example using
B is the development of the Paris Metro braking system software. In the Paris Metro, the
choice was between reducing the timing between trains by increasing the assurance in the
system as a whole, or building a new tunnel at vast cost.

Students can be introduced to the use of automated tools, such as PVS or the B-Tool, in
the later stages of their undergraduate education, e.g., third or fourth year software engi-
neering courses, and in particular after they have a thorough grounding in the calculational
logic E. Without a grounding in logic, students will have difficulty understanding the
proof steps that they are applying, and will certainly have complications in continuing
proofs when difficulties or apparent dead-ends arrive.

4.3 Timed and Hybrid descriptions
In the cooling tank example we abstracted out time by restricting our attention to a sin-

gle arbitrary cycle. This prevents us from describing liveness properties such as “eventu-
ally the tank will be filled to 9 units of water”. To describe such properties we can extend
our logic with temporal operators so that we can assert conjectures such as:

. The temporal formula means eventually at some time after the initial
state must hold, and means q must hold continually. Thus means that in every
state of a computation there is always some future occurrence of p (see [16]).

Sometimes, even more specific timing information must be described. To express the
property that the tank should always be filled to 9 units every 10 cycles (i.e. every 200 sec-
onds) can be expressed as in real-time temporal logic [19].

In some situations a hybrid approach must be followed in which there is a mixture of
continuous and discrete mathematics. For example, in a more precise model of the outflow
we might want to express the relationship between the tank outflow and the valve setting

 as

where is the total amount drained from the tank up to time t, and is the outflow
valve setting as a function of time.

The StateTime [19], STeP [15] and Hytech tools [2] are examples of toolsets that can
analyze and calculate properties of systems described with real-time temporal logic or
hybrid descriptions using algorithmic and theorem proving techniques. These tools enable
the designer to analyze concurrent and nondeterministic reactive programs.

Upper-year undergraduate, and introductory graduate-level courses, may best make use
of tools for real-time systems. At York University, our fourth-year real-time systems
course makes use of such tools. But the course also requires a grounding in mathematical

he level 9=() ep
p hq hep

he≤200 level 9=()

v t()

td
d

out t() c1v t() c2level t()+=

out t() v t()

The Logic of Software Design June 25, 1998 28

methods, in particular, the calculational logic, which the students can use for hand calcula-
tions, for designing small systems or small components, and as a supplement to the auto-
mated tools when difficulties arise in proof.

5.0 Conclusion

Logic can be used throughout the software development life-cycle both as a design cal-
culus and for documenting requirements, specifications, designs and programs. The use of
logic provides both precision and the ability to predict software behaviour, thus providing
the developer with a tool akin to that used in other Engineering disciplines. Learning the
methods and tools of logic should be an important component in the education of software
professionals.

Logic and logical calculation methods can and should be used right at the beginning of
a Computer Science education. Here we summarize briefly a curriculum that makes use of
calculational methods, from introductory undergraduate courses, through upper-year soft-
ware engineering courses.

• The logic text by Gries and Schneider [7] can be used in two courses (each lasting a
semester) in logic and discrete mathematics in the first and second years. This will pro-
vide the student with familiarity and comfort in logical calculation right from the begin-
ning. This course will also help in future material such as understanding design-by-
contract and theorem provers. The first-year mathematics programme for CS students at
York University is now teaching such courses, based on Gries’ text.

• The usual CS1 and CS2 courses can be taught in Eiffel stressing design-by-contract
[13,17]. The trend currently is to use Java in the first year. This provides an opportunity
for a text book for Java that will develop suitable design-by-contract constructs for Java
[24]. Until such books, and assertional techniques, for Java appear, use of mathematical
logic in CS1 and CS2 courses that use Java may occur by treating pre- and postcondi-
tions as comments or annotations. The table specification methods developed by Parnas
[23] may also be of help for languages that do not have design-by-contract built in.

• A third year course in the use of tools such as PVS and the B-Tool can build on the
material of the first few years. Such a course could use languages that support design-
by-contract, such as Eiffel, in a software engineering project. PVS or the B-Tool could
be used to formally derive programs from specifications (that would be eventually
implemented in Eiffel). The calculational logic would be used as the foundation for
understanding proofs and provers, and to do small calculations by hand. A comprehen-
sive text on object-oriented specification, design, and programming, with emphasis on
the production of quality software using BON/Eiffel is also available [17].

• A fourth year course can introduce the formal methods of reactive systems (e.g using
STeP [15], SPIN [11] or SMV [3]). Suitable textbooks are available for each of these
courses, but more need to be written, emphasizing the use of mathematical methods and
calculation in design.

A variety of applications of formal methods to industrial systems have been reported as
shown in the Table 1. These applications can be used for case studies in more advanced

The Logic of Software Design June 25, 1998 29

classes. Students should also apply their skills to case studies such as that of the Therac-25
radiotherapy machines [14] and the Ariane 5 heavy launcher [13], which illustrate the
need for professional standards in all aspects of design.

We should not underestimate the effect that education can have in practice. “Spice” is a
general purpose electronic circuit simulation program that was designed by Donald Peder-
son in the early 1970s at the University of Berkeley. Circuit response is determined by
solving Kirchoff’s laws for the nodes of a circuit. During the early 1970s, Berkeley was
graduating over a 100 students a year who were accustomed to using Spice. They started
jobs in industry and loaded Spice on whatever computers they had available. Spice quickly
caught on with their co-workers, and by 1975 it was in widespread use. Spice has been
used to analyze critical analog circuits in virtually every IC designed in the United States
in recent years [25].

In software development, the practitioner has to sub-ordinate everything to the over-
riding imperative to deliver an adequate product on time and within budget. This means
that the theory and tools we do teach must be useful and as simple as possible. Logic E,
design-by-contract, Eiffel and PVS embody useful theory and tools that can be taught and
used now, and that will contribute to professional engineering standards for software
design and documentation.

6.0 Appendix on Logic E

6.1 Derived Inference Rules
The fact that conjunction is monotonic in its first argument is expressed by the theorem:

(4.2) Monotonicity of conjunction: .

a. PVS was used to specify and verify the Rockwell AAMP5 microprocessor having
500,000 transistors; 108 out of the 209 instructions of the microcode were
described. The exercise found one error that was a missing requirement. Also
found, was a coding error (improperly sized stack) that would not have been
detected in ordinary assurance testing [28].

TABLE 1. Some examples of the use of tools in industrial practice

Tool System Application

PVS hardware AAMP5 Microprocessora.

SMV hardware HP Summit Bus.

Spin communication protocol Ethernet collision avoidance.

software Requirement analysis of Space Shuttle
GPS Change Requests

Z/Eves communication protocol A Micro-flow modulator that controls
flow of information from a private sys-
tem to a public system.

PVS hardware/software IEEE-compliant subtractive division
algorithm.

B-tool software Paris metro.

p q→() p r∧ q r∧→()→

The Logic of Software Design June 25, 1998 30

Conjunction and disjunction are monotonic in both arguments, and implication is mono-
tonic in its second argument (its consequent). The derived rule MON provided above, can
be extended to include predicates with quantifiers.

Extended Deduction Theorem (EDT): Suppose we can prove provided we add the
(temporary) axioms to Logic E with the variables of the considered to be
constants. Then is a theorem.
(In the course of the proof of , Substitution may not be applied to any temporary axiom
or to any temporary theorem that is derived in the course of the proof, if the variable being
substituted for appears in one of the original assumptions.)

6.2 Conditional expressions
We denote the conditional expression by IF where IF is a function with three parame-
ters, i.e.

Hence, and for some type . It also fol-
lows that . We assume that any use of IF satisfies these typing constraints.
The two axioms for reasoning about conditional expressions are [7]:

(10.9) (10.10)

6.2.1 Theorems of conditional expressions derived from the axioms:

(10.14a): provided that is a theorem.

Modus Ponens (MP)
Theorem Equivalence (TE)

Case Replacement (CR) Monotonicity (MON)

provided (a) occurs exactly once in predicate , and (b) does
not occur in an operand of an equivalence or inequivalence, a
negation or the antecedent of an implication. (Conjunction and
disjunction are monotonic in both operands, and implication is
monotonic in its consequent.)

(10.11) (10.12)

(10.13a):

provided

(10.13b)

provided

p p q→,
q

p q,
p q≡

q1 q2 q3∨ ∨

p

q1 p→()

a q2 p→()

a q3 p→()

≡

--- p q→
E z5p[] E z5q[]→
--

z E z

Q
P1 P2 … Pn, , , Pi

P1 P2 … Pn∧ ∧ ∧ Q→
Q

b
e2

e1

IF : BOOLEAN T T T→××
type b() BOOLEAN= type e1() type e2() T= = T

type IF() T=

b b
e2

e1 e1=
 → b¬ b

e2

e1 e2=
 →

true
e2

e1

 e1= false

e2

e1

 e2=

b
e2

e1

 b e1→()(b¬ e2→()∧=

type e1() type e2() BOOLEAN= =

b
e2

e1

 b e1∧()(= b¬ e2∧())∨

type e1() type e2() BOOLEAN= =

p E z5b
e2

e1→
 p E z5e1[]→()≡ p b→

The Logic of Software Design June 25, 1998 31

(10.14b): provided that is a theorem.

(10.14c): provided that is a theorem.

(10.14d): provided that is a theorem.

Proof of theorem (10.11)

--- (10.9)[]

= <left identity of implication (3.73) (i.e.) >

Hence, by equanimity, (10.11) is a theorem.

6.2.2 Proof in Logic E for theorem (10.14a)
By the derived rule Modus Ponens (MP), it is sufficient to prove that

is a theorem. Here is the proof.

= < distributing implication over equales (3.63) >

= < shunting (3.65) >

= < (3.66) to antecedent >

= <replace b by true in the consequent because b is in the antecedent (3.85b) >

= < axiom (10.11) for conditional expressions >

= < identity of equales (3.3), (3.4) and derived rule TE >

= < right zero of implication (3.72) >
-- (3.3)

p E z5b
e2

e1∧
 p E z5e1[]∧()≡ p b→

p E z5b
e2

e1→
 p E z5e2[]→()≡ p b¬→

p E z5b
e2

e1∧
 p E z5e2[]∧()≡ p b¬→

true true
e2

e1

 e1=

 → b5true

true p→() p≡
true

e2

e1

 e1=

p b→() p E z5b
e2

e1→
 p E z5e1[]→()≡→

p b→() p E z5b
e2

e1→
 p E z5e1[]→()≡→

p b→() p E z5b
e2

e1 E z5e1[]≡
 →→

p p b→()∧() E z5b
e2

e1 E z5e1[]≡
 →

p b∧() E z5b
e2

e1 E z5e1[]≡
 →

p b∧() E z5true
e2

e1 E z5e1[]≡
 →

p b∧() E z5e1[] E z5e1[]≡()→

p b∧() true→

true

The Logic of Software Design June 25, 1998 32

6.2.3 “IF-transform” reasoning uses case replacement (CR) and (10.14)
Consider a variable with . It then follows that

 (Eq. 27)

is a theorem. We may then use the derived rule CR, (10.14a) and (10.14c) to show that the
following is a theorem:

IF-transform :

Here is the proof.

= < case replacement (CR) with (Eq. 27) >

= < (10.14a) with to first conjunct >

= < (10.14c) with to first conjunct >

= < applying the same type of reasoning to the 2nd and 3rd conjunct >

7.0 References
[1] Abrial, J.-R. The B-Book: Assigning programs to meanings. Cambridge University Press, 1996.

[2] Alur, R., T.A. Henzinger, and P.-H. Ho. “Automatic Symbolic Verification of Embedded Systems.”
IEEE Transactions on Software Engineering, 22(3): 181-201, 1996.

[3] Burch, J.R., E.M. Clarke, K.L. MacMillan, D.L. Dill, and L.J. Hwang. “Symbolic Model Checking:
10^20 States and Beyond.” Information and Computation, 98(2): 142-170, 1992.

x type x() NATURAL=

x 0=() x 1=() x 1>()∨ ∨

x′ x x 1≤
y
9() x 1≥

z
1()–+=[]

x 0=() x′ x 9 z–+=()→
x 1=()∧ x′ x 9 1–+=()→
x 1>()∧ x′ x y 1–+=()→

≡

x′ x x 1≤
y
9() x 1≥

z
1()–+=[]

x 0=() x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 1=()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 1>()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 0=() x 1≤()→

x 0=() x′ x 9 x 1≥
z
1()–+=()→

x 1=()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 1>()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 0=() x 1≥()¬→

x 0=() x′ x 9 z–+=()→

x 1=()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 1>()∧ x′ x x 1≤
y
9() x 1≥

z
1()–+=()→

x 0=() x′ x 9 z–+=()→
x 1=()∧ x′ x 9 1–+=()→
x 1>()∧ x′ x y 1–+=()→

The Logic of Software Design June 25, 1998 33

[4] Dean, C.N. and M.G. Hinchey, eds. Teaching and Learning Formal Methods. Vol. London: Academic
Press, 1996.

[5] Glass, R.L. “The Software Research Crisis.” IEEE Software, 11(6): 42-47, 1994.

[6] Gries, D. The Science of Programming. Springer-Verlag, 1985.

[7] Gries, D. and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, 1993.

[8] Hall, A. “Seven Myths of Formal Methods.” IEEE Software, 11-19, 1990 (September).

[9] Hehner, E.C.R. A Practical Theory of Programming. Springer Verlag, New York, 1993.

[10] Hinchey, M. and J. Bowen. Applications of formal methods. Prentice Hall, 1995.

[11] Holzmann, G. “The Model Checker Spin.” IEEE Trans. on Software Engineering, 23(5): 279-295,
1997.

[12] Jackson, M. Software Requirements & Specifications. Addison-Wesley, 1995.

[13] Jezequel, J.-M. and B. Meyer. “Design by Contract: the Lessons of the Ariane.” IEEE Computer, 30(1):
129-130, 1997.

[14] Leveson, N.G. and C.S. Turner. “An Investigation of the Therac-25 Accidents.” Computer, 26(7): 18-41,
1993.

[15] Manna, Z. “STeP: The Stanford Temporal Prover.” Dep. of Computer Science, Stanford University.
STAN-CS-TR-94-1518, 1994.

[16] Manna, Z. and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
New York, 1992.

[17] Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1997.

[18] Morgan, C. Programming from Specifications. International Series in Computer Science, ed. Prentice
Hall, 1994.

[19] Ostroff, J.S. “A Visual Toolset for the Design of Real-Time Discrete Event Systems.” IEEE Trans. on
Control Systems Technology, 5(3): 320-337, 1997.

[20] Owre, S., J. Rushby, N. Shankar, and F.v. Henke. “Formal Verification for Fault-Tolerant Architectures:
Prolegomena to the Design of PVS.” IEEE Trans. on Software Engineering, 21(2): 107-125, 1995.

[21] Parnas, D.L. “Mathematical Descriptions and Specification of Software.” In Proceedings of IFIP World
Congress 1994, Volume I August 1994, 354-359, 1994.

[22] Parnas, D.L. and P.C. Clements. “A Rational Design Process: How and Why to Fake it.” IEEE Trans. on
Software Engineering, SE-12(2): 251-257, 1986.

[23] Parnas, D.L., J. Madey, and M. Iglewski. “Precise Documentation of Well-Structured Programs.” IEEE
Transactions on Software Engineering, 20(12): 948-976, 1994.

[24] Payne, J.E., M.A. Schatz, and M.N. Schmid. “Implemeting assertions for Java.” Dr. Dobb's Journal,
281): 40-44, 1998.

[25] Perry, T.S. “Donald O. Pederson.” IEEE Spectrum, 35(6): 22-27, 1998.

[26] Saaltink, M. “ Proceedings ZUM'97: The Z Formal Specification Notation (10th International Confer-
ence of Z Users).” In Reading, UK (April 1997), Springer-Verlag, Lecture Notes in Computer Science
1212, 72-85, 1997.

[27] Spivey, J.M. The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs, N.J., 1989.

[28] Srivas, M. and S.P. Miller. “Applying Formal Verification to a Commercial Microprocessor.” In Pro-
ceedings of the 1995 IFIP International Conference on Computer Hardware Description Languages,
Chiba, Japan, 493-502, 1995.

