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Abstract: In the map verification problem, a robot is given a (possibly incorrect) map
M of the world G with its position and orientation indicated on the map. The task is to find
out whether this map, for the given robot position and orientation in the map, is correct
for the world G. We consider the world model with a graph G = (Vg, E¢) in which, for
each vertex, edges incident to the vertex are ordered cyclically around that vertex. (This
holds similarly for the map M = (Vjs, Ear).) The robot can traverse edges and enumerate
edges incident on the current vertex, but it cannot distinguish vertices and edges from
each other. To solve the verification problem, the robot uses a portable edge marker, that
it can put down and pick up as needed. The robot can recognize the edge marker when
it encounters it in G. By reducing the verification problem to an exploration problem,
verification can be completed in O(|Vg| X |E¢|) edge traversals (the mechanical cost) with
the help of a single vertex marker which can be dropped and picked up at vertices of the
graph world [DJMW1,DSMW?2]. In this paper, we show a strategy that verifies a map in
O(|Va|) edge traversals only, using a single edge marker, when M is a plane embedded
graph, even though G may not be (e.g., G may contain overpasses, tunnels, etc.). In
general, when the map has embedded genus ¢ (intuitively, a plane embedded graph has
genus 0, and each overpass added to it may increase the embedded genus by 1), we show
it can be verified with O(|Eys|) mechanical cost, using g + 1 distinguishable markers.

1 Introduction

There are several aspects of robot navigation which are important in real world environ-
ments. One crucial issue is how to deal with cumulative odometry errors, which may cause
the robot to lose track of its position in the real world. Several different approaches have
been suggested that solve this problem by relating the robot position with the external
features of the environment using a map [BCR,BRS,GMR,KB,LL,PY]. This leads to the



task of map construction (mapping), i.e. learning a cognitive map from observations, as
suggested by Kuipers and Levitt [KL]. Much research has been done on the robot mapping
problem for different external environments [DJMW1,DM,DP,DKP RS].

Naturally, one major class of maps used in robot navigation is geometric. However, it
remains an important and difficult problem how to utilize the map and match it with the
enormous amount of observed geometric information for robot self localization and path
planning. Alternatively, qualitative maps, such as topological graphs, are proposed to
model robot environments which are characterized by a small set of distinct locations and
the routes between them [DJMW1,DM,DP,KB,LL,RS]. Kuipers and Levitt have proposed
a hierarchical spatial representation consisting of four levels: sensorimotor level (a robot
uses sensors to detect local features of the environment); procedural level where the robot
applies its knowledge of the world to find its place in the world and to follow specified
routes; topological level which describes places and their connecting paths, usually with
the graph model; and metric level which includes necessary geometric information related
to the topological representation [KL, also see KB,LL]. These approaches, neither purely
metric nor purely qualitative, leave certain features of the environment out but keep
necessary information helpful for robot motion planning.

The robot’s perception of the world can vary according to the sensors it carries. In
many situations, it is assumed that nodes or edges traversed previously can all be distin-
guished. In contrast, it is assumed in [RS] that nodes are divided into a small number of
classes, for example, white and black colors, and can only be recognized as such. Dudek
et al. [DJMW1] apply the world model introduced by Kuipers and Levitt to a specific
situation in which no global orientation information is possible. They divide the world
into places represented by nodes in a topological (i.e., embedded) graph and use an edge
between two nodes to represent a connecting path between the corresponding two places.
The robot is assumed not be able to distinguish nodes from each other but can recognize
a special local geometric feature: a cyclic order of incident edges at each node. This
emulates the fact that, at the crossroads, paths form a cyclic order because of the local
planar geometric nature of the surface. Dudek et al. [DJMW1] show that it is impossible
to learn the graph in general if the robot uses only information collected under the above
restriction. For instance, this happens when every node in the graph, representing the
world, has the same number of incident edges. On the other hand, they show that in a
total of O(|V| x |E|) traversals of edges, the map can be constructed with the help of a
single marker which can be put down on nodes and picked up by the robot. Deng and
Mirzaian [DM] showed that using |V'| identical node-markers the robot can construct a
map of a plane embedded graph G by traversing each edge at most a constant number of
times (i.e., a total of O(|V]) edge traversals).

The world model introduced by Dudek et al. will be used in our discussion [DJMW1].
We consider the map verification problem: The robot is given a single directed edge-
marker and a plane embedded n-vertex map M and the initial position and orientation of
the robot in the map. The task is to verify the correctness of the map in this setting. The
environment graph G may or may not be planar (e.g., it may contain tunnels, overpasses,



Figure 1: A cyclic order of edges incident to a node.

etc.). We demonstrate that the verification of plane embedded graph maps can be done
very efficiently with a single edge marker by introducing a map verification strategy which
traverses each edge at most 4 times. We show how this algorithm can be extended to
the general case of maps which are not plane embedded (i.e. they contain overpasses or
tunnels). The number of edge markers used in this case is g + 1, where g is the embedded
genus ! of the non plane embedded map (intuitively reflecting how many overpasses have
been added to a planar graph to obtain the map). With g+1 edge markers, map verification
is completed in O(|E|) edge traversals.

2 The World Model

As discussed above, the world is an undirected connected graph G = (V, E) embedded
with no edge crossings on a (not necessarily planar) surface [DJMW1]. At each node,
the incident edges are embedded locally in the plane (Figure 1). The local embedding
forms a natural cyclic order for the edges incident to the node. When we have specified
an edge incident to the node as the reference edge for the node, we can name other edges
incident to this node with respect to the reference edge according to this cyclic order (e.g.,
in clockwise order).

The Robot’s Map of the Graph World. In the graph world model, nodes usually
correspond to intersections of passage ways in the real world. To deal with general situa-
tions where landmarks may look similar by the robot’s sensors, Dudek et al. assume the
worst possible situation: nodes in the graph are indistinguishable to the robot. Therefore,
the complete map of the graph is a triple (V, E,S), where V and E are the node set and
the edge set of the graph, and S is the collection of the local planar embeddings of edges
incident to each node.

In Figure 2, we give an example, where, for several nodes, the cyclic orderings of
incident edges are different from those in the topological graph. We thus emphasize the
general situation where local orientations of edges at each node can be arbitrary. In fact,
given any graph G = (V, E) and given any set S of cyclic orders of edges incident to a

'We make a distinction between genus and embedded genus. The latter is the smallest genus of an
orientable surface such that the graph can be embedded with no edge crossings and with the restriction
that it respects the given cyclic ordering of edges incident to each vertex.
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(a) The graph (b) Local embeddings of edges

Figure 2: A map.

node, there is a surface on which the graph can be embedded such that the local planar
embedding of edges incident to each node follows the cyclic order of S [HR|. Even in
the real world, these may happen because tunnels and overpasses can create generally
embedded surfaces.

An alternative representation of the map is its cyclically ordered Adjacency List Struc-
ture. That is, for each node v in the map we associate a cyclically ordered list of the
nodes adjacent to v. The cyclical ordering is the clockwise ordering of the corresponding
incident edges around node v.

Robot Navigation with a Correct Map. Once the correctness of the map is guar-
anteed, the current location of the robot is identified with a node ug on the map, and a
physical path out of the current robot location is matched to an edge eg incident to wug
on the map. The robot can then associate all the physical paths at its current location
with edges on the map incident to wg. If the robot moves to another location through one
of the paths, it knows which map node matches the next location it reaches. The edge
that leads the robot to the next location becomes its reference edge at the new location.
From the local embedding of edges incident to the new node, and with the help of the
reference edge, it can again match edges incident to this new node with paths out of its
new location. This allows the robot to use the map in navigating from one location to
another until it reaches its destination.

The Map Verification Problem. The robot is initially positioned at a certain node of
an unknown embedded graph environment G and oriented along one of its incident edges.
It is also given an embedded map M (say, in the form of the cyclically ordered adjacency
list structure). We let the augmented map M to mean the map M plus the initial position
and orientation of the robot on the map. Let the augmented G be defined similarly.
The map verification problem is defined as follows: for an augmented pair (M, G), verify
whether M is a correct augmented map of the augmented environment G' by navigating
in the environment and comparing the local observations with the given map.



3 The Plane Map Verification Algorithm

A notion of face tracing from topological graph theory [GT] is crucial in our verification
algorithm. The general idea in our algorithm is to trace the faces of the augmented map
M one by one, mimic the same actions on the environment graph, and compare the local
observations with the map. For the world model as discussed above, the local observations
are the degree of the node visited, and the presence or absence of a marker at the current
node or edge. The intricacy of this approach is reflected by the fact that the sequence
of these local observations for any proper subset of faces is not at all enough even for a
partial map but the complete sequence uniquely verifies the map.

In Algorithm 1, a single edge-marker is used. When we refer to the map M, we describe
robot actions as putting down or to pick up the edge-marker or moving along an edge. The
actual action is carried out on the graph environment G, while a corresponding symbolic
operation is performed on M.

Remark 1: Instead of considering an embedding on the plane, it is preferable to think of
the embedding on the sphere. In this way, there is no distinguished “outer” face. []

ALGORITHM 1: We have an augmented pair (M, G) and a directed edge-marker. M
is a given planar embedded map represented, say, by its cyclically ordered adjacency list
structure, and G is the yet unknown augmented environment graph.

The cases when M has a single node or edge can be handled and proved trivially. Now
consider the general case.

Assume that the robot is initially positioned at node n, of M and oriented along edge
eo = (no,m1). Place an edge-marker on edge e, in the direction of robot’s orientation. In
general, suppose the robot is currently at node n; and is oriented along edge e; = (n;, njy1).
Record the degree of node n; and let us denote that by d;. The robot moves to node n;1.
Now let ej+1 = (ni+1,nit+2) be the edge clockwise next to edge e; at node n;;1. Increment
i by one and repeat the same process. The robot stops before iteration, say, [, when
the directed edge e; = (n;,m;y1) it is about to traverse contains the edge-marker in the
direction of the traversal.

At that point, the robot picks up the marker. That is, the marker on the edge e = (u, v)
is directed from u to v and it is picked up when we are about to move from u to v again and
realize this by noticing that the marker is along this direction. The robot has completed
tracing a face, say, f of M. Let D(f) = (do,dy,---,d;) denote the node degree sequence
the robot observed during the tracing of face f. In our map verification algorithm we will
use D(f) as the signature for face f. Note that the signature of a single face by itself does
not uniquely identify the topological structure of the face. We will show, however, that
the collection of all signatures together will.

The robot then backtracks along the most recent edges traversed (during forward trac-
ing of faces) until it reaches the first edge, say, e of M that it has traversed only once.
(Note that during the backtracking, we consult the map M, not G, to figure out the edge
e.) The robot then uses this edge e as the starting edge of the next face to trace. It places



the edge-marker on that edge in the direction not yet traversed (according to the map M)
and follows the same face tracing procedure described above.

To help the backtracking process, the robot can stack up all its forward movements by
pushing an appropriate id of the edge of M just traversed onto a stack of edges traversed
only once. Then, during the backtracking, it pops the top id from the stack and performs
the reverse move. During the backtracking no id’s are pushed onto the stack and we do
not need to check node degrees.

If during the backtracking the stack becomes empty, the robot terminates its traversal:
all faces of M have been traced, and we have the signatures of each face in the order they
have been traced.

To complete the description of our map verification algorithm we should add that the
robot mimics the same edge tracing actions on the embedded environment graph G as it
performed on the map M (eg, taking the next edge clockwise). If ever during the process
it notices a mismatch of local observations between M and @, it immediately halts and
declares the augmented map is incorrect. The local observations that the robot matches
are during the forward movements (tracing faces) and that is observing and matching the
degree of the current node and the presence or absence of the edge-marker on the current
edge and its direction on that edge.

If a mismatch occurs, it is obvious that the augmented map is incorrect. The crux
of the matter is to prove that if no mismatch occurs, then indeed the augmented map is
correct, and hence the algorithm always gives the correct answer. [

The verification algorithm We now summarize the algorithm described above with
the following notes.

s M is the map and G is the graph-like world.

s All robot actions take place "mentally” on M and physically on G.

m Node degrees are measured in G, and counted on M at the same time. A clockwise
order is assumed available at each node of G and M.

m As the robot moves, it checks whether its perception in G agrees with its expectation
based on M. If a discrepancy occurs, then verification fails.

m Discrepancy of type 1: node degree observed on G not the same as expected based
on M.

» Discrepancy of type 2: edge-marker not found where expected (or found where not
expected) based on M.

» For each edge e of M, trace(e) indicates how many times has edge e been traversed
in either direction during the forward face tracing traversals.



Main algorithm:
Set ES (edge stack) to empty.
For each (undirected) edge e in M, set trace(e) < 0.
Select edge ey = (ng,n1) out of initial node ny.
Place edge-marker on ey in the direction ng — n;.
ForwardTraverseFace F of M defined by the directed edge-marker.
Loop until ES is empty.
Pop ES to obtain edge e = (n;, nj+1).
if trace(e) = 2 then Backtrack along edge e.
else /* trace(e) =1 %/
Place the edge marker on e in the direction not yet traversed n;;1 — n;.
ForwardTraverseFace defined by the directed edge-marker.
end Loop

Procedure:
ForwardTraverseFace defined by edge e = (n;,n;+1) and direction dir = (n; = njy1)
Repeat
Verify degree of current node of M against G (type 1).
Traverse edge e in the direction dir.
Push e, in the direction of traversal, on ES.
set trace(e) + trace(e) + 1.
Select the next edge ey out of the current node.
(clockwise wrt to the previous edge traversed).
set e <— e; and update dir accordingly.
Verify whether presence/absence of edge-marker on e agrees on
M and G (type 2).
until edge-marker is detected on e.
pick up the edge-marker.
end ForwardTraverseFace

Examples To appreciate some of the subtleties of this seemingly simple algorithm, we
present several illustrative examples.

Example 1: In this example we consider only the actions taken by Algorithm 1 re-
garding the map. Figure 3 shows a map M with 3 faces, indicated by f; through f3
in the order they are traced by the algorithm. The edge indicated by a directed ar-
row and labeled m; is the position and orientation of the marker at the starting edge
of face f;. The remaining forward moves are shown by dotted arrows. However, the
backtracking traversals are not shown on the figure. The robot tracing face f; visits edges
(ab, be, ed, de, ec, cb, ba, ag, gh, hi, ig, ga), with the signature D(f;) = (2,2,3,2,2,3,2,2,3,2,2,3,2).
Then it picks up the marker and backtracks along edge ag. Positions the marker along edge
g1 and starts tracing the second face fo = (gi,ih, hg) with signature D(f2) = (3,2,2,3).



Picks up the marker and backtracks along edges (gh, hi, ig, gi,ih, hg, ga,ab, bc) and places
the marker along edge ce. It then starts tracing the third face f3 = (ce, ed, dc) with signa-
ture (3,2,2,3). It then backtracks along edges (cd, de, ec, ce, ed, dc, cb,ba). At this point
the stack is empty. The process is complete. []
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Figure 3: Tracing faces of M by the algorithm.

Example 2: In this example M is an incorrect augmented map of G as shown in Figure 4.
The arrows indicate the starting edge of each face. Algorithm 1 does not notice the
difference between M and G until the fourth face of the map is traversed. []

Figure 4: An incorrect map.

Example 3: We can simulate the effect of an edge-marker by two distinct node-markers,
placing them at the two ends of the edge, or three homogeneous node-markers by placing
one at one end and two at the other end. However, in this example we show that using
a single node-marker which is placed at the starting node of each face does not work
correctly. In Figure 5 we see a situation where we have an incorrect map, but the robot
will not detect the error. The arrows indicate starting edges of each face. The node-marker
is placed at the start of the corresponding starting edge. While tracing face f; of M, the
robot will double-trace the “outer” face of G. Also, while tracing faces fo and f3 of M,
the robot will trace the same portion of the “inner” face of G. It will never visit the two
leaf nodes in G and their incident edges. The robot will observe the same signatures (and
presence or absence of the node-marker) as it traces the faces of M and copies the same
actions on G. [



<

i

M G

Figure 5: A single node-marker is not enough.

Example 4: Algorithm 1 does not work when the map is not embedded in the plane.
For instance, consider the example in Figure 6. The augmented Map M has the single
face with signature 2,2,3,3,3,2,2,3,3,3,2. The corresponding face of G has the same
signature. Map M in this example can be embedded in a torus, and has embedded-genus
1. Algorithm 1 will fail to observe any mismatch. However, the algorithm of section 5 will
detect the mismatch using two markers.

PE==

Figure 6: A non-plane map.

4 Proof of Correctness of Algorithm 1 for Plane Maps

We will show that Algorithm 1 of the previous section works correctly when the given map
M is embedded in the plane (even though the environment graph G may not be). We
will also show that the total number of edges traversed by the robot during the algorithm
(forward and backtracking included) is at most 4 times the total number of edges of the
map.

Theorem 1 Algorithm 1 of the previous section correctly verifies any augmented plane
embedded map using a single directed edge-marker. Furthermore, the total number of edges
traversed by the robot is at most 4 times the number of edges in the map.

Proof: Suppose M is an n—node augmented map and G is the augmented environment
graph. It is not hard to see that each edge of the map will be traversed at most 4 times:
Each edge is forwardly traversed twice, and with each such move the robot pushes an id



of the edge onto the stack. Each edge backtracked corresponds to popping a previously
pushed id from the stack.

Now let us consider the correctness of the algorithm. If the algorithm finds a mismatch,
then clearly the returned answer that M is not a valid augmented map is correct. Now
suppose the algorithm returns the answer that M is a correct augmented map. We will
prove the correctness of the answer by induction on the number of faces of M.

Bastis: In this case M has only one face and since it is embedded in the plane, it must be a
tree. However, G may be any embedded graph. Suppose to the contrary that M is not a
correct augmented map of G, but the algorithm makes the incorrect conclusion. Consider
the smallest counter-example, that is, one in which M has fewest possible number of nodes.
We will reach a contradiction by showing that there is even a smaller counter-example.
From the description of the algorithm, M is not a single node or edge. Since each edge of
M is a bridge (i.e., an edge whose removal will disconnect the graph), each edge of M will
be traversed twice (in opposite directions) during the tracing of the single face of M. In
other words, the length of the face of M, that is the number of edges incident to the face,
is 2n — 2. While tracing the face of M, suppose the robot is tracing a face f of G. Since
it will check the presence or absence of the edge-marker along edges, it will make exactly
one complete round around face f of G. Hence, length of f is also 2n — 2.

Since M is a tree, it must contain a leaf node other than the two ends of the starting
edge. Let z be the first such leaf of M that the robot reaches during the tracing of the
face of M. When it reaches node x of M, suppose the robot is at node y of G. Since the
degrees match, y must be a leaf of G, and the unique nodes adjacent to = in M and to y
in G must also have equal degrees. As the robot continues the tracing of the face of M, it
will encounter the leaf node = only once. Similarly, since it traces face f of G exactly one
round, it will encounter leaf node y of G only once. Now consider the smaller counter-
example pair (M', G') in which G’ is the same as G with leaf node y and its incident edge
removed, and M’ is M with leaf node z and its incident edge removed. Furthermore,
consider the same initial position-orientation of the robot. When the algorithm is applied
to (M',G") it will observe the same signature and hence return the incorrect answer that
M' is a correct augmented map of G’. This contradicts the minimality of M.

Induction: In this case M has at least two faces. Suppose f; and fo are respectively the
first and second faces of M traced by the algorithm. Suppose e; = (v;,u;), 1 = 1,2, is
the starting directed edge of face f;. Let f;, & = (04, 0;), © = 1,2, be the corresponding
objects of G. Because of the use of the edge-marker, length of f; is the same as length
of fi, 1 = 1,2, and they have a matching signature. Because of the backtracking process,
edge ey is the first edge, in opposite direction, incident to face fi; that was traversed only
once during the tracing of f;. Hence, faces f; and fy are incident to edge es. Thus, ey is
not a bridge of M. Therefore, faces f1 and fo of M are distinct and share edge es.

As it makes the backtracking in M, the robot makes the same number of backtracking
moves to trace back from edge é; to edge é>. Now we show that é; cannot be a bridge
of G. At the start of tracing of the second face, the edge-marker is placed at the starting
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Figure 7: (a) Before the surgery, (b) after the surgery.

edges ez and é, of faces fo and fg of M and G, respectively. Since ey is not a bridge of
M, the edge-marker on es will be seen only once at the start and once at the end of the
tracing of fy. Therefore, the same must hold in G, that is, the edge-marker on és will be
seen only once at the start and once at the end of the tracing of face fg. We conclude that
é2 cannot be a bridge of G either. If it were, then the edge-marker would have been seen
once more, in the reverse direction, in the middle of the tracing of fg. Therefore, faces fl
and fg are distinct and share the edge é,.

Figure 7(a) shows the situation in M. Now we will perform a local surgery on M to
construct a map M’ with one fewer face than M. Simply remove edge ez from M. This
will reduce the degrees of nodes vy and ug by 1. The surgery is depicted in Figure 7(b).
This surgery effectively merges the two faces fi; and fo into a new face denoted by f o.
Similarly, let G’ be obtained from G be removing edge é;. This merges the two faces fl
and fo into a new face f172. Now consider the instance (M’ ,G') with the same initial
position-orientation of the robot as in the instance (M, G). Since f; and f; had the same
length and the same signature, for s = 1,2, the new faces f; > and fl,g also have the same
length and signature. Furthermore, the remaining faces, if any, traced by the robot will be
exactly as before the surgery (except that end nodes of ey and é; have reduced degrees).
Thus, if the instance (M',G') was the input, the robot would still answer that M’ is a
correct augmented map of G'. Since M' has one fewer face than M, by the induction
hypothesis, M’ is indeed a correct map of G’. Furthermore, since before the surgery we
had matching signatures and matching backtracking length, in (M’, G') the pair of node
vo and ue will respectively match the pair of nodes 0o and is. Therefore, M is a correct
map of G. This completes the proof. [1.
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5 Maps of Higher Embedded-Genus

As Example 4 shows, Algorithm 1 does not work when the map is not embedded in the
plane. In general, we can calculate the embedded-genus of a graph map by the Euler
formula: 29 +n + f = e 4+ 2, where g stands for embedded—genus, n for the number of
nodes, f for the number of faces, and e for the number of edges. (See, for example, the
Euler characteristic formulas in [GT] or chapter 10 of [HR]. Instead of embedded-genus,
the term combinatorial genus is used in [Ed].).

One of the reasons the proof of the previous section does not carry over to maps of
positive embedded-genus is that the local surgery (cutting an edge) may in fact increase
the number of faces rather than decrease it. If we cut the edge indicated by the arrow
in Figure 6, the number of faces of M increases by one. However, the embedded-genus
is reduced by 1. This observation allows us to extend the above algorithm to graphs
of general embedded—genus. Our result is stated in the following theorem, which is a
significant improvement over previously known results for low embedded—genus maps.

Theorem 2 There is a strategy to verify any map of embedded-genus g using g+ 1 dis-
tinguished markers and mechanical cost O(|E|).

Proof: The intuitive idea is to "break up” ¢ of the edges to make the map embedded
in the plane; verify the planar portion; then match up the broken edges and glue their
corresponding ends together.

To obtain such g edges, we start with the Euler formula 2¢g +n + f = e+ 2. We notice
that the embedded genus g decreases by one if we cut a non-bridge edge both sides of
which belong to the same face. This observation allows us to obtain a polynomial time
algorithm to calculate a set of g such edges of the map (see the Remark below).

Then, after (momentarily) “ignoring” the g edges with distinguished markers, the rest
is a planar embedded map. We verify that part using Algorithm 1. To verify the original
graph, we need to match the two end nodes of each marked edge. This can be done
by depth first search on a spanning tree of unmarked edges. The total number of edge
traversals by the robot is bounded by O(|E|). O

Remark: Here is one such algorithm: Repeatedly find a non-bridge edge both of whose
sides belong to the same face. Remove that edge and repeat until there are no such edges.
At this point the embedded-genus is 0 (i.e., plane). One iteration above can be done as
follows: First mark all bridges of the map. This can be done in linear time by a minor
modification of the Tarjan-Hopcroft Biconnectivity algorithm [AHU]. Then traverse each
face of the map one by one. For each face traversed, determine whether any unmarked
edge is traversed twice. Select one such edge and remove it (as one of those genus-reducing
edges). At the end unmark all edges. Alternatively, sometimes, we may be able to reduce
the number of markers used to verify the map. We can put a distinguished marker at each
node incident to one of the g selected edges. A pair of the markers on two end nodes for

12



an edge provides a de facto edge marker for the edge. Therefore, we may want to choose
a set of g such edges with the minimum number of incident nodes. []

6 Remarks and Discussion

In the paper we presented an efficient algorithm for map verification by a robot in a graph
world, with the aid of one or more edge markers. The number of edge markers required
depends on the embedded-genus of the graph world. We assumed that the robot is told
its initial position on the map. If the robot is not told this information, then the problem
is one of self-location [DJMW?2]: the robot is required to locate itself on the map, while
verifying the map at the same time. It is an open question whether this can be achieved
in linear mechanical cost, with a single edge marker in the planar case.
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