
A Filtered B-spline model of Scanned DigitalImagesFaramarz Famil Samavati� Nezam Mahdavi-AmiriyJanuary 16, 1998AbstractWe present an approach for modeling and �ltering digitally scanned images. Thedigital contour of an image is segmented to identify the linear segments, the nonlinearsegments and critical corners. The nonlinear segments are modeled by B-splines. Toremove the contour noise, we propose a weighted least squares model to account forboth the �tness of the splines as well as their approximate curvatures. The solutionsof the least squares models provide the control vertices of the splines. We show thee�ectiveness of our approach with several representations constructed from variousscanned images.1 IntroductionCompact representations for digital images have practical applications. Geometric modelscan provide such representations. These models can be used e�ectively in Computer AidedDesign (CAD), where the e�cient construction and manipulation of geometric models arequite important. Recently, Several approaches have been proposed for converting digitalimages to geometric models. In [3], [11], a geometric model of an image is constructedby lines and arcs. B-spline Models have been proposed in [6], [7], [8]. We propose analternative approach by �rst detecting the linear segments, the nonlinear segments andthe critical corners of the image contour, and then modeling only the nonlinear segmentsby B-splines. This o�ers several advantages. Since the identi�cation of the spline modelconstitutes most of the work in this process, we reduce the cost of the process by detectingand separating the linear segments. Moreover, separate modeling of each segment shouldallow for a more compact as well as a more desirable representation of the image.Several features need to be emphasized. We present a weighted least squares model toaccount for both the �tness of the spline to a nonlinear segment and its approximate�Department of Mathematical Sciences, Sharif University of Technology, Azadi Avenue, Tehran, Iran.Present Address: Computer Graphics Laboratory, Computer Science Department, University of Waterloo,Waterloo, Ontario, Canada.yDepartment of Mathematical Sciences, Sharif University of Technology, Azadi Avenue, Tehran, Iran.Present Address: Department of Computer Science, York University, Toronto, Ontario, Canada.1



curvature. The solution of the least squares problem yields the control vertices of thesegment. By varying the weights in the least squares model, one can control the shapeof the image. This also provides a useful capability for the removal of contour noise,commonly present in digital images. The e�ectiveness and utility of our approach areillustrated by various examples.1.1 An OutlineSection 2 presents most of the preliminary notations for B-spline representations. It alsooutlines some desirable features of these models. In section 3, we discuss how to detectthe linear and nonlinear segments along with the critical corners of the image contour. Weexplain these feature extractions in some detail making them convenient for an implemen-tation. We devote section 4 to the presentation of the weighted least squares model andits solution. In section 5, We give an outline of an algorithm for computing the controlvertices of the splines. We also discuss certain computational issues and alternatives. Weend with several illustrative examples to show the e�ectiveness of the least squares model.2 Geometric ModelsThere are various approaches to geometric modeling of data. We consider certain mathe-matical models as approximations to data. In section 2.1, we point out interpolation andintroduce some necessary notations. We discuss the general B-spline approximation insection 2.2 and emphasize its attractive features for modeling.2.1 Interpolating ModelsLet P0; P1; : : : ; PN be points in Rn and denote Pi = (pi1; : : : ; pin); i = 0; 1; : : : ; N . Aparametric interpolating polynomial, Q(t), corresponding to the points Pi is de�ned asQ(t) = (Q1(t); Q2(t); : : : ; Qn(t)); (1)whereQj(t), for each j, is an interpolating polynomial for the points (ti; pij); i = 0; 1; : : : ; N .The parameters ti are a collection of speci�ed real numbers. It is well known that, whenthe ti are distinct ( ti 6= tj, for i 6= j), there exists a unique interpolating polynomialof degree less than or equal to N . There are a number of methods for computing suchpolynomial (see [10]). It is also known that interpolation may not be suitable for graphicalpurposes, the main shortcomings being the lack of su�cient control over the shape of thecurve and on the degree of the polynomial. Although polynomial interpolation does havecertain applications, but, in general, is not practical for geometric modeling and computergraphics (see [2]).An alternative interpolation approach is based on the use of spline models. A spline oforder k + 1 (degree k), S(x), over the joints (or knots) ti (t0 < t1 < : : : < tN ) is apiecewise polynomial of degree k so that the interpolating pieces Si(t) on [ti; ti+1], for2



i = 0; 1; : : : ; N � 1, are so smoothly joined that the spline is continuous on [t0; tN ] up toand including its (k � 1)th derivative. That is,S(l)i (ti+1) = S(l)i+1(ti+1); l = 0; 1; : : : ; k � 1 (2)i = 0; 1; : : : ; N � 2:The above conditions along with (k�1) additional ones (usually imposed on the endpointsof the interval) result in a unique representation for S. For graphical purposes, splinesare more desirable than general interpolating polynomials. In fact, under certain condi-tions, the cubic spline has a minimal curvature (in some sense). However, the lack of asuitable control over the shape of the curve diminishes the utility of interpolating splinesin geometric modeling.To introduce more 
exibility, interpolating splines under tension have been proposed [1].More 
exible spline models do not interpolate the data points, however. Instead, thepoints are used as a control device for the shape of the spline. Next, we discuss thesemodels in terms of their basic polynomials, the B-splines.2.2 B-spline ModelsMost of the notations used here are adopted from [2]. The B-spline polynomials,Bj;k(u); j =0; 1; : : : ;m, form a basis for the space of all splines of order k (degree k � 1) over[uk�1; um+1] with respect to the knots fujgm+k0 . The B-splines may be de�ned recur-sively as follows: Bj;1 = ( 1 if uj � u < uj+10 otherwise (3)Bj;r(u) = u� ujuj+r�1 � ujBj;r�1(u) + uj+r � uuj+r � uj+1Bj+1;r�1(u) (4)r = 2; 3; : : : ; k;where any term with a zero denominator is replaced by zero.It can be shown that:� Bj;k(u) is nonnegative and is positive only on its support, the interval (uj ; uj+k).� Pmj=0Bj;k(u) = 1 for all u 2 (uk�1; um+1).A B-spline curve is de�ned as a linear combinations of the B-splines. Assume Vj 2 Rn ; j 2J , for some index set J , are given. The B-spline curve of order k corresponding to thecontrol vertices Vj is de�ned to beQ(u) =Xj2J VjBj;k(u): (5)3



Figure 1: A B-spline Curve and its Control Vertices.Since Bj;k(u) � 0 and PBj;k(u) = 1, we observe that for each u, the value of the splineis a linear convex combinations of the control vertices. Figure 1 shows a B-spline curveassociated with the corresponding control vertices. B-spline curves have several importantproperties making them practical in geometric modeling. These are listed below.� Convex Hull ContainmentThe B-spline is contained in the convex hull1 of its control vertices. In fact, a strongerproperty holds. If we let Qj(u) = Q(u) for u 2 [uj ; uj+1) then Qj(u) is contained inthe convex hull of the vertices fVj�k+1; : : : ; Vjg.This property prevents the spline values from having undue 
uctuations.� A�ne InvarianceIf T is an a�ne transformation on Rn thenQT (u) =Xj Bj;k(u)T (Vj) = T (Q(u)): (6)This not only preserves the shape of the spline but also ensures a fast access to thenew spline under an a�ne transformation (of vertices) such as translation, rotation,or re
ection.� Local ControlThe change of the position of a control vertex a�ects only the shape of the B-splinein the vicinity of the control vertex (see Figure 2).This property is quite useful in an interactive environment where the e�ect of achange to vertex positions can be demonstrated by performing only the necessarylocal computations.In addition to the above properties, a B-spline representation of an image contour willalso possess the following qualities.1The smallest convex set containing the control vertices.4



Figure 2: The E�ect of Local Change to Control Vertices.� Compact RepresentationSince a B-spline curve is completely identi�ed by its control vertices, the B-splinerepresentation of a contour will require much less storage than its digital represen-tation.� Analytic FeaturesThere are e�cient ways to evaluate the B-splines and their derivatives. This will beuseful in solving our weighted least squares problems for �nding the control vertices.3 Contour Features ExtractionA digital image is usually stored compactly with the use of certain formats. We use thegif and pcx formats (see [9]) to store our scanned images. We then convert these formatsto their matrix representations , and apply a noise removal procedure to remove the socalled image noise (see [5]), the noise not belonging to the original image and possiblyintroduced in the scanning phase (see Figure 3). Next, using the matrix representation,we trace the contour2 of the image to extract features such as segmentation points, linearand nonlinear segments. The segmentation points partition the contour into consecutivesegments each of which may be handled individually. We explain the approach throughan example given in Figure 4.Let P = fPi = (xi; yi); i = 0; 1; : : : ; Ng be a set of points (obtained from a digital image)representing an image contour (the contour of 	 in Figure 4). It is obvious that these pointsdo not constitute a continuous curve. A continuous representation, C, may be constructedby the line segments adjoining the consecutive points , and can serve as an approximationof the contour. The vector function C may be de�ned in terms of a parameter s, a scaledrepresentation of its contour length. More precisely, with the de�nitions2The boundary set of points having the same pixel value.
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Figure 3: A Digital Image Before (Left) and After (Right) Noise Removal.

Figure 4: A Contour of 	 (Bottom) and its Features Diagram (Top).
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li =k Pi � Pi�1 k2 i = 1; 2; : : : ; N; (7)L = NXi=1 li; (8)si = Pij=1 ljL i = 1; 2; : : : ; N; (9)the function C may be de�ned as follows:C(s) = ( Pi if s = sitPi + (1� t)Pi+1 if s = tsi + (1� t)si+1, for 0 < t < 1: (10)We may now think of C, a continuous representation on [0; 1], as an approximation ofthe original contour. We de�ne approximations to the left and right derivatives of theoriginal contour at si (corresponding to the point Pi) as the left and right derivatives ofC, respectively. These derivatives would simply be the derivatives of the line segmentsemanating from Pi. So, we haveD�i = yi � yi�1xi � xi�1 i = 1; 2; : : : ; N; (11)D+i = yi+1 � yixi+1 � xi i = 0; 1; : : : ; N � 1: (12)The Di can serve as approximations to the slopes of the tangent lines to the originalcontour at the points Pi. With the use of these approximate derivatives, we de�ne thesegmentation points, T, to be the set of points which identi�es the separated segmentsof the image contour. We de�ne T to be composed of two subsets of points from P asfollows: T = LN [ SC; (13)where LN denotes the set of points at which a linear segment is turned into a nonlinearone, and SC , the set of critical corners, is a set of points at which a segment is turnedinto another with a sharp angle, determined by a given angle �,SC = fiji 2 f1; 2; : : : ; N � 1g; jD+i �D�i j > tan(�)g: (14)The following comments may be considered for an implementation of the segmentationprocedure.� A linear segment may be identi�ed pointwise (for a sequence of points Pi so thatjD+i � D�i j < ", given a small predetermined tolerance "). A nonlinear segment isalso identi�ed for a sequence of points with the inequality being reversed. Figure 4shows the segments of 	 through its features diagram, the set of values of the angles7



corresponding to the slopes D+i and D�i (� arctan of the slopes). We realize thatthe linear segments are shown by horizontal lines. In Figure 4, some segmentationpoints are identi�ed on 	 with 3 belonging to LN and the other numbered pointsbelonging to SC.� For smooth turns at points in LN where a nonlinear segment is adjoined, it is advisedthat a few points nearby the joint be included with the nonlinear segment. With thisinclusion, the B-spline model of the points corresponding to the nonlinear segmentshould join the connecting line segment smoothly.� The case where a linear segment may join another has not been discussed here, butits consideration is a minor implementational issue.� Having identi�ed the segmentation points, an algorithm can generate the contoursegment by segment handling each segment individually.� We note that color images can also be handled, simply by a separate segmentationfor each color.Each nonlinear segment needs a special treatment to be explained in the next section.4 The Least Squares and B-splinesEach nonlinear segment is modeled by a B-spline. A weighted least squares problem isintroduced whose solution provides the control vertices of the B-spline. The idea of usingleast squares models for �tting curves to digital contours have been also considered in [6],[7], [8]. But we believe that our segmentation process in identifying and modeling onlynonlinear segments should produce a more compact representation of the original contourwith less computational e�ort. Moreover, our inclusion of the curvature in the weightedleast squares model tenders a more desirable contour. The least squares model, accountingfor curvature of the segment, has the e�ect of smoothing out the contour noise, the noisecommonly present in a digital contour.4.1 Modeling a Nonlinear SegmentLet P = fPi = (xi; yi); i = 0; 1; : : : ; ng be a set of points corresponding to a nonlinearsegment. We are interested in �nding a set of vertices Vj so that the splineQ(u) = mXj=0VjBj;k(u) (15)is a good representation of P (preferably m� n). In specifying the B-splines Bj;k(u), weneed to identify (1) the knot sequence fujgm+k0 , and (2) the parameters fUign0 correspond-ing to the points Pi so that Q(Ui) serves as an approximation to Pi.8



Since the use of a uniform knot sequence for B-splines is widely practiced, we let8>><>>:u0 = u1 = : : : = uk�1 = k � 1um+1 = um+2 = : : : = um+k = m+ 1uj = uj�1 + 1; j = k; : : : ;m: (16)The repetitions of the �rst and the last k knots with values as speci�ed in (16) result ininterpolating V0 and Vm.We distribute the parameter values fUig proportional to the lengths of the appropriatecontour segments of C, as given by (10). We let8<:U0 = k � 1Ui = Ui�1 + (m� k + 2) liL � (m� k + 2)siL ; i = 1; 2; : : : ; n; (17)where li, L, and si are respectively the lengths of the line from Pi�1 to Pi, the contourC, and the contour piece from P0 to Pi, as given by (7)-(9). With the assignments as(17), the Ui are positioned so that U0 is at uk�1 and Un is at um+1. Any other Ui is at adistance on [uk�1; um+1], with length m� k+2, proportional to the length of the contourpiece (from P0 to Pi) relative to the length of the whole contour C.It remains to specify the Vj . We would like the Vj so that the model Q, as in (15), predictsthe points Pi as closely as possible. Moreover, we would also like the predictor model Qto have as minimal a curvature as possible (the model is to replace a nonlinear segmentand this serves to remove the contour noise). Both of these objectives may be weightedand expressed in a linear least squares problem. We will do this in the next section.4.2 Least Squares and the Control VerticesWe propose a weighted least squares problem whose solution supplies the control verticesVj . We assign the same weights to the errors of the model at the points, but di�erentweights to the curvature. Letting Vj = (Xj ; Yj); (18)we can write Q as follows: Q(u) = (Q1(u); Q2(u)); (19)where Q1(u) = mXj=0XjBj;k(u); (20)9



and Q2(u) = mXj=0YjBj;k(u): (21)The curvature, �(u), of Q at u is known to be�(u) = k Q00(u) k2k Q0(u) k2 = qPj XjB00j;k2(u) +Pj YjB00j;k2(u)qPj XjB0j;k2(u) +Pj YjB0j;k2(u) : (22)To simplify the least squares model (to make it linear), we ignore the denominator in (22)and use an approximation for the curvature as below:�(u) �k Q00(u) k2= r�XXjB00j;k(u)�2 + �XYjB00j;k(u)�2: (23)Denoting X = 264X0...Xm375 and Y = 264Y0...Ym375 ; (24)the least squares problem is hence expressed as:minimize E(X;Y ); (25)where E(X;Y ) = nXi=0�� mXj=0XjBj;k(Ui)� xi�2 + � mXj=0YjBj;k(Ui)� yi�2 (26)+ �X� mXj=0XjB00j;k(Ui)�2 + �Y � mXj=0YjB00j;k(Ui)�2�:The objective function E measures a weighted deviations of the model Q from the pointsPi as well as its approximate curvatures at the parameters Ui (representative of the actualpoints Pi). The weights are set the same for the errors of the model at the points Pi, to�X(� 0) and �Y (� 0) for the two components of the curvature. Of course, the change inthe values of �X or �Y a�ects the weights for all the components of E. The unknowns Xjand Yj are separable in (26), and E can be written as:10



E = EX +EY ; (27)where EX = nXi=0�� mXj=0XjBj;k(Ui)� xi�2 + �X� mXj=0XjB00j;k(Ui)�2�; (28)and EY = nXi=0�� mXj=0YjBj;k(Ui)� yi�2 + �Y � mXj=0YjB00j;k(Ui)�2�: (29)The minimization of E is achieved by separately minimizing EX and EY . The procedureis the same for both cases, so we discuss the details only for EX . To minimize, we musthave @EX@Xl = 0; l = 0; 1; : : : ;m: (30)Di�erentiating EX and setting it to zero, we getnXi=0Bl;k(Ui)� mXj=0XjBj;k(Ui)� xi�+ �X nXi=0B00l;k(Ui) mXj=0XjB00j;k(Ui) = 0; (31)or nXi=0 mXj=0�Bl;k(Ui)Bj;k(Ui) + �XB00l;k(Ui)B00j;k(Ui)�Xj = nXi=0 xiBl;k(Ui); (32)or mXj=0Xj nXi=0�Bl;k(Ui)Bj;k(Ui) + �XB00l;k(Ui)B00j;k(Ui)� = nXi=0 xiBl;k(Ui); (33)l = 0; 1; 2; : : : ;m:The above equation are the so-called normal equations for solving the least squares problemwith EX as the objective function. Similar equations are obtained for the minimization ofEY . The normal equations are also displayed in matrix notation. Let B and B00 denotematrices with respective j-th columns shown belowBj = 264Bj;k(U0)...Bj;k(Un)375 and B00j = 2664B00j;k(U0)...B00j;k(Un)3775 ; (34)11



and let x = 264x0...xn375 ; (35)then the objective function EX (28) is the same asEX =k (BX � x) k22 +�X k B00X k22; (36)and the corresponding normal equations (33) can be written asmXj=0�BTl Bj + �XB00l TB00j �Xj = BTl x; l = 0; 1; : : : ;m; (37)or �BTB + �XB00TB00�X = BTx: (38)The coe�cient matrix in (38) is symmetric positive de�nite, because the parameter valuesUi are distinct, the Bj;k are basis functions, and m < n. One can make an e�ective use ofthe symmetry in (38) and employ the Cholesky factorization (see [4]) to solve the normalequations.5 Computational Considerations and RemarksWe begin with an outline of an algorithm to determine the control vertices Vj of a nonlinearsegment represented by the points Pi.Algorithm: Control Vertex Computations.INPUT: Pi = (xi; yi); i = 0; 1; : : : ; n.Set the weights �X and �Y .Set m and k.Compute the knots fuig; i = 0; 1; : : : ;m+ k according to (16).Compute the parameters fUig; i = 0; 1; : : : ; n according to (17).Compute the matrices B and B00 using (34).Solve the following least squares problems for X and Y respectivelyminimize (k (BX � x) k22 +�X k B00X k22);minimize (k (BY � y) k22 +�Y k B00Y k22):OUTPUT: Vj = (Xj ; Yj); j = 0; 1; : : : ;m. 12



5.1 Computational IssuesWe discuss our choice of settings for the parameters of the algorithm and also point outsome alternatives for the least squares model and its solution.� Setting m and kWe set k, the order of the spline, to 4. This gives us a cubic model and serves wellfor most practical purposes. The value of m is set in relation with the value of n.Other than imposing the lower bound value of k and the upper bound of 500, thevalue of m is set as follows: m = (n DIV 12) + 5: (39)� Solving the Least Squares ProblemsWe solve the least squares problems by the normal equations and the use of Choleskyfactorization. It is possible to solve these problems by orthogonalization methodssuch as the QR or the SVD (see [4]). For these methods, the coe�cient matrix ofthe objective function EX (for use in orthogonalization) is displayed in the followingalternative formulation:EX =k " Bp�XB00 #X � " x0 # k22 : (40)� Spline Parameters SettingOur choice of the parameters Ui results in a linear least squares model. With thecomplication of introducing a nonlinear least squares model, one can leave the pa-rameters to be decided as the solution of the model along with the control verticesVj. Alternatively, for known values of m and k, it may be interesting to investigatethe choice of the parameters Ui so that certain structures may arise in the leastsquares model.� Segment Joints ContinuityCare is taken to make sure that the segments of the model are joined together at thejoints. For this, the last control vertex of a preceding segment and the �rst controlvertex of the succeeding one may both be set to the average of the two vertices.In most of our examples, these two vertices were found to be practically the samewithout a need for this setting.5.2 RemarksWe used our segmentation scheme along with the linear least squares models (for thenonlinear segments) to represent various digital contours. Figures 5-7 show some repre-sentatives. Figure 7 shows the e�ect of the weights �x and �y on the removal of contournoise as well as on the smoothness of the model. Smoother contours may be obtainedby increasing these weights. Of course, this is achieved at the expense of losing a slight13



Figure 5: A Digital Contour of 	 (Right) and its Geometric Model (Left).

Figure 6: A Digital Image (Right) and its Geometric Model (Left).accuracy in the model predicting the digital image, since the increase of the weights forthe curvature results in the relative decrease of the weight for compatibility of the modelwith the nonlinear segment.Finally, Figure 8 shows a contour representation constructed from a somewhat complicatedimage.AcknowledgementsThis work has been supported by Sharif University of Technology. The authors are thank-ful to Richard Bartels of University of Waterloo for his support and collaborations duringthe �rst author's visit at Waterloo. The second author is specially grateful to Joseph Liuof York University for the provision of support and hospitality throughout his sabbaticalperiod at York. Thanks are also due to Eshrat Arjomandi and Andy Mirzaian for theircooperations to facilitate the second author's stay at York.
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Figure 7: A Noisy Digital Contour (Right) and its Geometric Models with IncreasingCurvature Weights (Left).References[1] B. A. G. Barsky. Computer Graphics and Geometric Modeling Using Beta-Splines.Springer Verlag, 1987.[2] R. H. Bartels, J. C. Beaty, and B. A. G. Barsky. An Introduction to Splines for Usein Computer Graphics and Geometric Modeling. Kau�man and Morgan, 1987.[3] M. Gangent. Approximation of digitized contours. In Theoretical Foundations ofComputer Graphics and CAD, NATO ASI Series, Vol. F40. Clarendon Press, 1988.[4] G. H. Gloub and C. F. Van Loan. Matrix Computations. The Johns Hopkins Univer-sity Press, third edition, 1996.[5] R. C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley, 1987.[6] A. Gueziec and N. Ayache. Smoothing and matching of 3d curves. In Lecture Notesin Computer Science 588. Computer Vision, 1992.[7] C. Potier and C. Vercken. Geometric modeling of digitized curves. In First Interna-tional Conference on Document Analysis and Recognition, 1991.[8] P. Siant-Marc and G. Medioni. B-spline contour representation and symmetry detec-tion. In First European Conference on Computer Vision, Antibies, 1990.[9] R. T. Stevens. The C Graphics Handbook. Academic Press, 1992.[10] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer Verlag, 1980.[11] Kai Xin, Kah Bin Lim, and G. Soon Hong. A scale-space �ltering approach for visualfeature extraction. Pattern Recognition, 82(8):1145{1158, 1995.
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Figure 8: A Scanned Image (Right) and its Reconstructed Contour (Left).
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