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Abstract

We present an approach for modeling and filtering digitally scanned images. The
digital contour of an image is segmented to identify the linear segments, the nonlinear
segments and critical corners. The nonlinear segments are modeled by B-splines. To
remove the contour noise, we propose a weighted least squares model to account for
both the fitness of the splines as well as their approximate curvatures. The solutions
of the least squares models provide the control vertices of the splines. We show the
effectiveness of our approach with several representations constructed from various
scanned images.

1 Introduction

Compact representations for digital images have practical applications. Geometric models
can provide such representations. These models can be used effectively in Computer Aided
Design (CAD), where the efficient construction and manipulation of geometric models are
quite important. Recently, Several approaches have been proposed for converting digital
images to geometric models. In [3], [11], a geometric model of an image is constructed
by lines and arcs. B-spline Models have been proposed in [6], [7], [8]. We propose an
alternative approach by first detecting the linear segments, the nonlinear segments and
the critical corners of the image contour, and then modeling only the nonlinear segments
by B-splines. This offers several advantages. Since the identification of the spline model
constitutes most of the work in this process, we reduce the cost of the process by detecting
and separating the linear segments. Moreover, separate modeling of each segment should
allow for a more compact as well as a more desirable representation of the image.

Several features need to be emphasized. We present a weighted least squares model to
account for both the fitness of the spline to a nonlinear segment and its approximate
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curvature. The solution of the least squares problem yields the control vertices of the
segment. By varying the weights in the least squares model, one can control the shape
of the image. This also provides a useful capability for the removal of contour noise,
commonly present in digital images. The effectiveness and utility of our approach are
illustrated by various examples.

1.1 An Outline

Section 2 presents most of the preliminary notations for B-spline representations. It also
outlines some desirable features of these models. In section 3, we discuss how to detect
the linear and nonlinear segments along with the critical corners of the image contour. We
explain these feature extractions in some detail making them convenient for an implemen-
tation. We devote section 4 to the presentation of the weighted least squares model and
its solution. In section 5, We give an outline of an algorithm for computing the control
vertices of the splines. We also discuss certain computational issues and alternatives. We
end with several illustrative examples to show the effectiveness of the least squares model.

2 Geometric Models

There are various approaches to geometric modeling of data. We consider certain mathe-
matical models as approximations to data. In section 2.1, we point out interpolation and
introduce some necessary notations. We discuss the general B-spline approximation in
section 2.2 and emphasize its attractive features for modeling.

2.1 Interpolating Models

Let Py, Py,...,Py be points in R” and denote P; = (pj1,...,pin),% = 0,1,... ,N. A
parametric interpolating polynomial, ()(¢), corresponding to the points P; is defined as

Q) = (Q1(2), Q2(t),... , Qn(t)), (1)

where ();(t), for each j, is an interpolating polynomial for the points (¢;, p;;),i = 0,1,... ,N.
The parameters ¢; are a collection of specified real numbers. It is well known that, when
the ¢; are distinct ( ¢; # t;, for i # j), there exists a unique interpolating polynomial
of degree less than or equal to N. There are a number of methods for computing such
polynomial (see [10]). It is also known that interpolation may not be suitable for graphical
purposes, the main shortcomings being the lack of sufficient control over the shape of the
curve and on the degree of the polynomial. Although polynomial interpolation does have
certain applications, but, in general, is not practical for geometric modeling and computer
graphics (see [2]).

An alternative interpolation approach is based on the use of spline models. A spline of
order k + 1 (degree k), S(x), over the joints (or knots) t; (tp < t1 < ... < tn) is a
piecewise polynomial of degree k so that the interpolating pieces S;(t) on [t;,t;41], for



i=0,1,... ,N — 1, are so smoothly joined that the spline is continuous on [y, ¢x] up to
and including its (k — 1)th derivative. That is,

Si(l)(ti+1) :S£21(ti+1)» l=0,1,... .,k -1 (2)
1=0,1,... ,N -2

The above conditions along with (k — 1) additional ones (usually imposed on the endpoints
of the interval) result in a unique representation for S. For graphical purposes, splines
are more desirable than general interpolating polynomials. In fact, under certain condi-
tions, the cubic spline has a minimal curvature (in some sense). However, the lack of a
suitable control over the shape of the curve diminishes the utility of interpolating splines
in geometric modeling.

To introduce more flexibility, interpolating splines under tension have been proposed [1].
More flexible spline models do not interpolate the data points, however. Instead, the
points are used as a control device for the shape of the spline. Next, we discuss these
models in terms of their basic polynomials, the B-splines.

2.2 B-spline Models

Most of the notations used here are adopted from [2]. The B-spline polynomials, B; ;(u), j =

0,1,... ,m, form a basis for the space of all splines of order k (degree k — 1) over
[ug_1,umt1] with respect to the knots {u;}0"**. The B-splines may be defined recur-

sively as follows:

1 ifu; <u<wuiy
B:i = — ]+
71 { 0 otherwise (3)
U — U Uiny — U
Bjp(u) = ———Bj, 1(u) + ————Bj 1, 1(u) (4)
Ujtr—1 — Uj Ujtr — Uj+1
r=23,...,k,

where any term with a zero denominator is replaced by zero.

It can be shown that:
e Bj(u) is nonnegative and is positive only on its support, the interval (u;, w;yx)-

° ZT:O Bj’k(u) =1forall u € (ug_1,ums1)-

A B-spline curve is defined as a linear combinations of the B-splines. Assume V; € R",j €
J, for some index set J, are given. The B-spline curve of order k corresponding to the
control vertices V; is defined to be

Qu) = Y V;Bjx(u). (5)

JjEJ



Figure 1: A B-spline Curve and its Control Vertices.

Since Bji(u) > 0 and ) Bji(u) = 1, we observe that for each u, the value of the spline
is a linear convex combinations of the control vertices. Figure 1 shows a B-spline curve
associated with the corresponding control vertices. B-spline curves have several important
properties making them practical in geometric modeling. These are listed below.

e Convex Hull Containment
The B-spline is contained in the convex hull® of its control vertices. In fact, a stronger
property holds. If we let Q;(u) = Q(u) for u € [u;,u;41) then Q;(u) is contained in
the convex hull of the vertices {V;_j11,...,V;}.

This property prevents the spline values from having undue fluctuations.

e Affine Invariance
If T is an affine transformation on R" then

Qr(u) = Bj(uw)T(V;) = T(Q(u)). (6)
i

This not only preserves the shape of the spline but also ensures a fast access to the
new spline under an affine transformation (of vertices) such as translation, rotation,
or reflection.

e Local Control
The change of the position of a control vertex affects only the shape of the B-spline
in the vicinity of the control vertex (see Figure 2).

This property is quite useful in an interactive environment where the effect of a
change to vertex positions can be demonstrated by performing only the necessary
local computations.

In addition to the above properties, a B-spline representation of an image contour will
also possess the following qualities.

!The smallest convex set containing the control vertices.



Figure 2: The Effect of Local Change to Control Vertices.

e Compact Representation
Since a B-spline curve is completely identified by its control vertices, the B-spline
representation of a contour will require much less storage than its digital represen-
tation.

e Analytic Features
There are efficient ways to evaluate the B-splines and their derivatives. This will be
useful in solving our weighted least squares problems for finding the control vertices.

3 Contour Features Extraction

A digital image is usually stored compactly with the use of certain formats. We use the
gif and pcx formats (see [9]) to store our scanned images. We then convert these formats
to their matrix representations , and apply a noise removal procedure to remove the so
called image noise (see [5]), the noise not belonging to the original image and possibly
introduced in the scanning phase (see Figure 3). Next, using the matrix representation,
we trace the contour? of the image to extract features such as segmentation points, linear
and nonlinear segments. The segmentation points partition the contour into consecutive
segments each of which may be handled individually. We explain the approach through
an example given in Figure 4.

Let P ={P; = (z;,yi),i =0,1,... , N} be a set of points (obtained from a digital image)
representing an image contour (the contour of ¥ in Figure 4). It is obvious that these points
do not constitute a continuous curve. A continuous representation, C, may be constructed
by the line segments adjoining the consecutive points , and can serve as an approximation
of the contour. The vector function C' may be defined in terms of a parameter s, a scaled
representation of its contour length. More precisely, with the definitions

2The boundary set of points having the same pixel value.



Figure 3: A Digital Image Before (Left) and After (Right) Noise Removal.

Figure 4: A Contour of ¥ (Bottom) and its Features Diagram (Top).



li=|P—P12 i=12,...,N, (7)
N

L=2 b (®)
i=1

. 22:1 lj
L

Si

i=1,2,... N, (9)

the function C' may be defined as follows:

_ -P’L ifS:S,L'
Cls) = { tP,+ (1 —t)Pyy if s =ts; + (1 —t)s;q, for 0 <t < 1. (10)

We may now think of C, a continuous representation on [0, 1], as an approximation of
the original contour. We define approximations to the left and right derivatives of the
original contour at s; (corresponding to the point P;) as the left and right derivatives of
C, respectively. These derivatives would simply be the derivatives of the line segments
emanating from P;. So, we have

py =YY 12N, (11)
Ti — Tj—1

pro YU g N (12)
Titl — Tj

The D; can serve as approximations to the slopes of the tangent lines to the original
contour at the points P;. With the use of these approximate derivatives, we define the
segmentation points, T, to be the set of points which identifies the separated segments
of the image contour. We define T to be composed of two subsets of points from P as
follows:

T = LN USC, (13)

where LN denotes the set of points at which a linear segment is turned into a nonlinear
one, and SC | the set of critical corners, is a set of points at which a segment is turned
into another with a sharp angle, determined by a given angle «,

SC = {ili € {1,2,... ,N —1},|D;/ — D;| > tan(a)}. (14)

The following comments may be considered for an implementation of the segmentation
procedure.

e A linear segment may be identified pointwise (for a sequence of points P; so that
|Dj” — D;7| < e, given a small predetermined tolerance £). A nonlinear segment is
also identified for a sequence of points with the inequality being reversed. Figure 4
shows the segments of U through its features diagram, the set of values of the angles



corresponding to the slopes Di+ and D; (—arctan of the slopes). We realize that
the linear segments are shown by horizontal lines. In Figure 4, some segmentation
points are identified on ¥ with 3 belonging to LN and the other numbered points
belonging to SC.

e For smooth turns at points in LN where a nonlinear segment is adjoined, it is advised
that a few points nearby the joint be included with the nonlinear segment. With this
inclusion, the B-spline model of the points corresponding to the nonlinear segment
should join the connecting line segment smoothly.

e The case where a linear segment may join another has not been discussed here, but
its consideration is a minor implementational issue.

e Having identified the segmentation points, an algorithm can generate the contour
segment by segment handling each segment individually.

e We note that color images can also be handled, simply by a separate segmentation
for each color.

Each nonlinear segment needs a special treatment to be explained in the next section.

4 The Least Squares and B-splines

Each nonlinear segment is modeled by a B-spline. A weighted least squares problem is
introduced whose solution provides the control vertices of the B-spline. The idea of using
least squares models for fitting curves to digital contours have been also considered in [6],
[7], [8]. But we believe that our segmentation process in identifying and modeling only
nonlinear segments should produce a more compact representation of the original contour
with less computational effort. Moreover, our inclusion of the curvature in the weighted
least squares model tenders a more desirable contour. The least squares model, accounting
for curvature of the segment, has the effect of smoothing out the contour noise, the noise
commonly present in a digital contour.

4.1 Modeling a Nonlinear Segment

Let P = {P; = (zi,yi),i = 0,1,... ,n} be a set of points corresponding to a nonlinear
segment. We are interested in finding a set of vertices V; so that the spline

Qu) = Z ViBj i (u) (15)
j=0

is a good representation of P(preferably m < n). In specifying the B-splines B; (u), we
need to identify (1) the knot sequence {u;}7""*, and (2) the parameters {U;}? correspond-
ing to the points P; so that Q(U;) serves as an approximation to P;.



Since the use of a uniform knot sequence for B-splines is widely practiced, we let

U[]:Ul:...:Uk,l:k*l
Umil = Umao = ..o = Uppp = m + 1 (16)
u; = uj_1 + 1, j=k,...,m.

The repetitions of the first and the last & knots with values as specified in (16) result in
interpolating Vy and V.

We distribute the parameter values {U;} proportional to the lengths of the appropriate
contour segments of C, as given by (10). We let

o~

U=k -1
{ i S; . (17)
Ui=U;1+(m—k+2)—=m—-k+2)—, i=12,....,n,

L L
where [;, L, and s; are respectively the lengths of the line from P, ; to F;, the contour
C, and the contour piece from Py to Pj, as given by (7)-(9). With the assignments as
(17), the U; are positioned so that Uy is at ug_q1 and U, is at up4+1. Any other Uj; is at a
distance on [ug_1, Um41], with length m — &k + 2, proportional to the length of the contour
piece (from Py to P;) relative to the length of the whole contour C.

It remains to specify the V;. We would like the V; so that the model @, as in (15), predicts
the points P; as closely as possible. Moreover, we would also like the predictor model @)
to have as minimal a curvature as possible (the model is to replace a nonlinear segment
and this serves to remove the contour noise). Both of these objectives may be weighted
and expressed in a linear least squares problem. We will do this in the next section.

4.2 Least Squares and the Control Vertices

We propose a weighted least squares problem whose solution supplies the control vertices
Vj. We assign the same weights to the errors of the model at the points, but different
weights to the curvature. Letting

Vi = (X7, (18)
we can write Q as follows:
Q) = (@1(u), Qo) (19)
where
@w=i&&mx (20)
2



and

= Z Y;Bj k. (u). (21)
§=0

The curvature, k(u), of @ at u is known to be

Q) 2 /X5 XiBl (w) + 5, V3B, ()
H QI(U) ||2 \/Z] XjB;"kQ(“) + Zj Y}B}-’kQ(u).

r(u) = (22)

To simplify the least squares model (to make it linear), we ignore the denominator in (22)
and use an approximation for the curvature as below:

() %1 Q" (w) = /(20 X B () + (X Y Bl () (23)

Denoting
Xy Yo
X=1": and Y =|: [, (24)
Xm Yo
the least squares problem is hence expressed as:
minimize E(X,Y), (25)

where

E(X,Y) = Z{[Z X;Bji(U;) — xz Z — yl] (26)
0" j=0 j=0
X(ZXjB}/,k(Ui))QJrMY(ZYj }',k(Ui))Q}-
Jj=0 j=0

The objective function E measures a weighted deviations of the model @) from the points
P; as well as its approximate curvatures at the parameters U; (representative of the actual
points P;). The weights are set the same for the errors of the model at the points P;, to
px (> 0) and py (> 0) for the two components of the curvature. Of course, the change in
the values of j1x or py affects the weights for all the components of E. The unknowns X
and Yj are separable in (26), and E can be written as:

10



E=FEx + Ey, (27)
where

Ex::22{[§:)Ql%¢(Uﬂ-—xﬂQ%—Mx(E:)QE%kHADQ}, (28)

and

n

Ey :Z{ zrj: —yl] + py ZY Ui))2}. (29)

i=0 j=0

The minimization of E is achieved by separately minimizing Ex and Ey. The procedure
is the same for both cases, so we discuss the details only for EFx. To minimize, we must
have

X, 1=0,1,... ,m. (30)

Differentiating F'x and setting it to zero, we get

> BiiU) D> X;Bjk(Ui) — xi) + pux »_ Bl'w(Ui) Y X;Bj (U;) =0, (31)
i=0 j=0 i=0 §=0
or
> > [Bus(Ui)B;s(Us) + pux Bl (Us) B] zfr B (32)
i=0 j=0
or
ZX]Z Blk U)+,MXBlk(U Z«TzBlk (33)
j=0 =0

l:QLZ”wm

The above equation are the so-called normal equations for solving the least squares problem
with Ex as the objective function. Similar equations are obtained for the minimization of
Ey. The normal equations are also displayed in matrix notation. Let B and B” denote
matrices with respective j-th columns shown below

B x(Uo) B (Up)
B; = : and Bl = : : (34)
Bj,k(Un) B;Ck(Un)

11



and let
Zo
T,
then the objective function Ex (28) is the same as
o 2 " 2
Ex = (BX —z) [|5 +ux || B'X |3,
and the corresponding normal equations (33) can be written as
m
j=0

or

(BB + uxB"' B")X = B" 1.

S (B'Bj +uxB/ B X; =Bz, 1=0,1,... m,

(36)

(38)

The coefficient matrix in (38) is symmetric positive definite, because the parameter values
U; are distinct, the Bj are basis functions, and m < n. One can make an effective use of
the symmetry in (38) and employ the Cholesky factorization (see [4]) to solve the normal

equations.

5 Computational Considerations and Remarks

We begin with an outline of an algorithm to determine the control vertices V; of a nonlinear

segment represented by the points F;.

Algorithm: Control Vertex Computations.

INPUT: P, = (%,v),i =0,1,... ,n.

Set the weights px and py.

Set m and k.

Compute the knots {u;},i =0,1,... ,m + k according to (16).
Compute the parameters {U;},7i = 0,1,... ,n according to (17).
Compute the matrices B and B” using (34).

Solve the following least squares problems for X and Y respectively

minimize (|| (BX —x) |3 +pux || B"X ||3),
minimize (|| (BY —vy) |53 +py || B"Y |3).

12



5.1 Computational Issues

We discuss our choice of settings for the parameters of the algorithm and also point out
some alternatives for the least squares model and its solution.

e Setting m and k
We set k., the order of the spline, to 4. This gives us a cubic model and serves well
for most practical purposes. The value of m is set in relation with the value of n.
Other than imposing the lower bound value of k£ and the upper bound of 500, the
value of m is set as follows:

m = (n DIV 12)+5. (39)

e Solving the Least Squares Problems
We solve the least squares problems by the normal equations and the use of Cholesky
factorization. It is possible to solve these problems by orthogonalization methods
such as the QR or the SVD (see [4]). For these methods, the coefficient matrix of
the objective function Ey (for use in orthogonalization) is displayed in the following
alternative formulation:

By =] [\B;;HB]X_[O] 3. (40)

e Spline Parameters Setting
Our choice of the parameters U; results in a linear least squares model. With the
complication of introducing a nonlinear least squares model, one can leave the pa-
rameters to be decided as the solution of the model along with the control vertices
Vj. Alternatively, for known values of m and k, it may be interesting to investigate
the choice of the parameters U; so that certain structures may arise in the least
squares model.

e Segment Joints Continuity
Care is taken to make sure that the segments of the model are joined together at the
joints. For this, the last control vertex of a preceding segment and the first control
vertex of the succeeding one may both be set to the average of the two vertices.
In most of our examples, these two vertices were found to be practically the same
without a need for this setting.

5.2 Remarks

We used our segmentation scheme along with the linear least squares models (for the
nonlinear segments) to represent various digital contours. Figures 5-7 show some repre-
sentatives. Figure 7 shows the effect of the weights 41, and p, on the removal of contour
noise as well as on the smoothness of the model. Smoother contours may be obtained
by increasing these weights. Of course, this is achieved at the expense of losing a slight

13



Figure 5: A Digital Contour of ¥ (Right) and its Geometric Model (Left).

Figure 6: A Digital Image (Right) and its Geometric Model (Left).

accuracy in the model predicting the digital image, since the increase of the weights for
the curvature results in the relative decrease of the weight for compatibility of the model
with the nonlinear segment.

Finally, Figure 8 shows a contour representation constructed from a somewhat complicated
image.
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Figure 7: A Noisy Digital Contour (Right) and its Geometric Models with Increasing
Curvature Weights (Left).
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Figure 8: A Scanned Image (Right) and its Reconstructed Contour (Left).
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