
Parallel RAMs with Owned GlobalMemory and DeterministicContext-Free Language RecognitionPatrick W. DymondWalter L. RuzzoTechnical Report 97-02February, 1997
Also University of Washington Computer Science and EngineeringTechnical Report UW-CSE-97-02-03.

Department of Computer ScienceYork UniversityToronto, Canada M3J 1P3

Parallel RAMs with Owned Global Memoryand Deterministic Context-Free LanguageRecognitionPatrick W. Dymond�z Walter L. RuzzoyzFebruary 20, 1997
AbstractWe identify and study a natural and frequently occurring sub-class of Concurrent-Read, Exclusive-Write Parallel Random AccessMachines (CREW-PRAMs). Called Concurrent-Read, Owner -Write,or CROW-PRAMs, these are machines in which each global memorylocation is assigned a unique \owner" processor, which is the onlyprocessor allowed to write into it. Considering the di�culties thatwould be involved in physically realizing a full CREW-PRAM model,it is interesting to observe that in fact, most known CREW-PRAMalgorithms satisfy the CROW restriction or can be easily modi�ed todo so. This paper makes three main contributions. First, we for-mally de�ne the CROW-PRAM model and demonstrate its stability�Department of Computer Science, CCB126, York University, Toronto, CanadaM3J 1P3; dymond@cs.yorku.ca.yDepartment of Computer Science and Engineering, University of Washington, Box352350, Seattle, WA 98195-2350; ruzzo@cs.washington.edu.zParts of this work were done at the Department of Computer Science and Engineering,University of California, San Diego, and at the Computer Science Department, Universityof Toronto, whose hospitalities are gratefully acknowledged. Supported in part by theNatural Sciences and Engineering Research Council and by NSF grants ECS-8306622,DCR-8604031, CCR-8703196, CCR-9002891, and NSF/DARPA grant CCR-8907960.1

2 under several de�nitional changes. Second, we precisely characterizethe power of the CROW-PRAM by showing that the class of languagesrecognizable by it in time O(log n) is exactly the class LOGDCFL oflanguages log space reducible to deterministic context free languages.Third, using the same basic machinery, we show that the recognitionproblem for deterministic context-free languages can be solved in timeO(n1+�=S(n)) for any � > 0 and any log2 n � S(n) � n on a determin-istic auxiliary pushdown automaton having a logn space work tape,pushdown store of maximum height S(n), and random access to itsinput tape. These results extend and unify work of von Braunm�uhl,Cook, Mehlhorn, and Verbeek; Klein and Reif; and Rytter.1 Introduction and Related WorkThere is now a fairly large body of literature on parallel random access ma-chine (PRAM) models and algorithms. There are nearly as many de�nitionsof this model as there are papers on the subject. All agree on the generalfeatures of such models | there is a collection of more or less ordinary se-quential processors with private, local memories, that all have access to ashared global memory. The model is synchronous | in each time unit, eachprocessor executes one instruction. There is much more diversity regardingother features of the model. For example, there are di�erences as to whetherthe model has single- or multiple-instruction streams, how many processorsthere are, how they are numbered, how they are activated, what instructionset they have, what input convention is used, and how simultaneous reador write requests to a single global storage location are arbitrated. Most ofthese variations make little or no di�erence in the power of the model.Two features seem to have a substantial impact on the power of themodel. One is uniformity. In general, we only consider uniform models inthis paper, i.e., ones where a single program su�ces for all input lengths,and where a single processor is initially active, creating other processorsas desired. The second sensitive feature is arbitration of memory accesscon
icts. Two main variants have been most intensively studied. Followingthe nomenclature introduced by Vishkin [37], the CRCW (Concurrent-Read,Concurrent-Write) PRAM allows memory access con
icts. All processorsreading a given location in a given step receive its value. Among all processors

CROW-PRAMs and DCFL Recognition 3writing to a given location in a given step, one is allowed to succeed, e.g.,the one with the lowest processor number. (Other resolution rules for writecon
icts have been proposed. All are known to be equivalent in power upto constant factors in running time, and polynomial factors in number ofprocessors and global memory size, although the models are separated ifprocessors and memory are more tightly constrained.)In the CREW (Concurrent-Read, Exclusive-Write) model, concurrentreads are allowed, as above, but concurrent writes are not. CREW algo-rithms must arrange that no two processors attempt to write into the sameglobal memory location at the same time.In this paper we introduce a third variant, argue that it is a more \natu-ral" model than the CREW PRAM, and give a surprising characterization ofits power. There are several reasons to study this restriction of the CREW-PRAM. The CREW-PRAM model has been criticized for being too powerfulto serve as a realistic model of physically realizable parallel machines due toits \unbounded fanin." Anderson and Snyder [1] point out that the two-stageprogramming process of �rst using the CREW-PRAM model to develop astraightforward fully parallel algorithm (e.g., for the \or" of n bits), and thenemulating this algorithm on a physically realizable network, could lead to asub-optimal algorithm (�((logn)2) for the above example). Nevertheless theCREW-PRAM has arguably been the most popular theoretical model for thedesign, speci�cation and analysis of parallel algorithms, due principally tothe simplicity and usefulness of the global memory model for programmers.It is useful therefore to consider the power of the more restricted CROW-PRAM model, in order to understand its feasibility as a model for parallelprogramming. As noted above, most CREW-PRAM algorithms are in factCROW-PRAM algorithms, or can be easily modi�ed to be so.How can a CREW-PRAM algorithm ensure that it is obeying theExclusive-Write restriction? With two exceptions discussed below, allCREW-PRAM algorithms we have considered achieve, or can be easily mod-i�ed to achieve, write exclusion by the following simple stratagem: eachglobal memory location is \owned" by one processor, which is the only pro-cessor ever allowed to write into that cell. Further, the mapping betweenglobal memory addresses and processor numbers is easy to compute, so thateach processor has no di�culty in determining which cells it owns. For ex-

4ample, processor p might own the block of k consecutive cells beginning atglobal memory address kp. We call this the Owner-Write restriction, and callPRAMs that obey this restriction Concurrent-Read, Owner-Write PRAMs,or CROW-PRAMs. The ownership restriction seems to be a very naturalframework in which to design exclusive-write algorithms. Similar but notidentical notions of \ownership" have appeared in the earlier lower boundwork of Cook, et al. [7], and have also proven useful in practice for certaincache coherence protocols. (See, e.g., Archibald and Baer [2].) In many cur-rent architectures of parallel systems, the machines provide a global memoryprogramming model, implemented using physical hardware in which everymemory cell is local to some processor. Caching or other techniques are usedto ameliorate the cost of access to non-local memory. If non-local writes areprohibited, the necessary cache coherence algorithms are simpli�ed. In fact,a positive solution to the CROW versus CREW problem discussed in Sec-tion 3 would presumably suggest an interesting new approach to the cachecoherence problem.We give a precise de�nition of the CROW-PRAM model in Section 2below. The main goal of this paper is to investigate the power of the CROW-PRAM. Unexpectedly, this question turns out to be intimately related tothe complexity of deterministic context-free language (DCFL) recognition.The recognition problem for a deterministic context-free language L isto decide, given a word x, whether x 2 L. The sequential complexity ofthis problem has been well-studied, and there are many practical sequentialalgorithms for solving it in space and timeO(n). The small-space and paralleltime complexities of the problem are less well-understood. Two main resultsin these areas are by von Braunm�uhl, Cook, Mehlhorn, and Verbeek [5, 38],and by Klein and Reif [20].Cook [5] presents a sequential algorithm for the DCFL recognition prob-lem that runs in polynomial time on a Turing machine using only polynomialin logn space. This result has been improved by von Braunm�uhl et al. [38],who give Turing machine algorithms with optimal time-space product forany space bound in the range from (logn)2 to n.Building somewhat on the ideas of [5, 38], Klein and Reif [20] presentan O(logn) time CREW-PRAM algorithm for DCFL recognition. (It isknown that results of Stockmeyer and Vishkin [35] can be combined with the

CROW-PRAMs and DCFL Recognition 5algorithm of Ruzzo [32] to yield an O(logn) time algorithm for general CFLrecognition, but only on the more powerful CRCW-PRAM model.)Our main result is the following characterization of CROW-PRAMs.Theorem 1 A language L is accepted by a CROW-PRAM in O(logn)time if and only if L is log-space reducible to a DCFL.The class LOGDCFL of languages log-space reducible to DCFLs was �rstde�ned and studied by Sudborough [36], who showed that it is equal to theclass of languages recognizable in polynomial time by log-space bounded de-terministic auxiliary pushdown automata (DauxPDAs), de�ned by Cook [4].Our result appears to be the �rst to precisely characterize a parallel timecomplexity class (up to constant factors) in terms of a sequential one. Forexample, Sudborough's \hardest DCFL" [36] provides a natural example of aproblem complete for CROW-PRAM timeO(logn). Complete problems havebeen discovered by Chandra and Tompa for CRCW-PRAM time classes [3].We know of no analogous natural problems that are complete for CREW-PRAM time classes. Following an earlier version of our paper [12], Langeand Niedermeier [22] established characterizations of other PRAM variantsin terms of sequential complexity classes.We use the DCFL characterization to demonstrate the stability ofCROW-PRAM complexity classes under de�nitional changes. For example,it follows from the DCFL simulation that a CROW-PRAM can be simulatedwithout time loss by a parallel machine on which there is no global memory,but each processor contains a single externally visible register, that may beread (but not written) by any other processor. This model seems to be closerto the way that some parallel machines have actually been constructed thanmodels with an independent global memory not associated with any proces-sor.The DCFL recognition algorithms of von Braunm�uhl et al. [38] and Kleinand Reif [20] are di�cult ones, and use super�cially di�erent approaches. Thethird goal of this paper is to provide a uni�ed approach to both problems,which, although based on both, we believe to be simpler than either.We obtain both a small time parallel algorithm and a small space sequen-tial algorithm for DCFL recognition using the same basic approach. The

6small space algorithm provides an improvement to a result by Rytter [33],and a technical re�nement to the optimal results of von Braunm�uhl et al. [38].Rytter had shown, using a sequential implementation of [20], that it is possi-ble to obtain a polynomial time, O(log2 n) space algorithm for DCFL recog-nition using space mainly as a pushdown store (more precisely, a logn spaceDauxPDA with an O(log2 n) bounded pushdown), rather than unrestrictedO(log2 n) space as in [38]. We improve these results by performing our sim-ulation on a DauxPDA (like Rytter) while attaining a time-space productsimilar to that of von Braunm�uhl et al.Section 2 presents the CROW-PRAM model, and discusses variationsin the de�nition. Section 3 presents its simulation by deterministicauxiliary pushdown automata, establishing CROW-PRAM-TIME(log n) �LOGDCFL. Section 4 introduces some de�nitions and notation needed inour DCFL recognition algorithm. Section 5 presents a high level descrip-tion and correctness proof of the DCFL recognition algorithm. Section 6discusses CROW-PRAM implementation of the algorithm, establishing theother inclusion needed for Theorem 1, i.e., LOGDCFL � CROW-PRAM-TIME(log n). Finally, Section 7 re�nes the simulation of Section 5 to obtaina faster sequential algorithm than that obtained by combining the CROW-PRAM algorithm of Section 6 with the general simulation of Section 3.Further work involving the owned global memory concept in PRAMshas appeared following a preliminary version of this paper [12]. Fich andWigderson give a lower bound separating EROW and CROW PRAMs [14].Rossmanith introduces and studies Owner Read, Owner Write PRAMs,showing, for example, that they can do list ranking in O(logn) time [31].Nishimura considers the owner concept in CRCW-PRAMs [29]. Nieder-meier and Rossmanith [27, 26] have considered the owner concept with otherPRAM variants. Lin, et al. show that CROW-PRAMs are su�ciently pow-erful to execute a variant of Cole's parallel merge sort algorithm in timeO(logn) [23]. Work on further restrictions of the CROW-PRAM model byLam and Ruzzo [21] and Dymond, et al. [11] is described at the end of sectiontwo.

CROW-PRAMs and DCFL Recognition 72 De�nition of CROW-PRAMsWe start by de�ning the CREW-PRAM model we will use. As mentionedabove, most of the details of the de�nition are not critical. For speci�city weuse the de�nition of Fortune and Wyllie [15] (called simply a P-RAM there)which has: an unbounded global memory and an unbounded set of processors,each with an accumulator, an instruction counter and an unbounded localmemory. Each memory cell can hold an arbitrary non-negative integer. Theinstruction repertoire includes indirect addressing, load, store, add, subtract,jump, jump-if-zero, read, fork, and halt. The input is placed in a sequence ofspecial read-only registers, one bit per register. The read instruction allowsany processor to read any input bit; concurrent reads are allowed. A forkinstruction causes a new processor to be created, with all local memory cellszero, and with its accumulator initialized to the value in the accumulatorof its creator. Initially, one processor is active, with its local memory zero,and the length of the input given in its accumulator. The model accepts ifthe initially active processor halts with a one in its accumulator. It rejectsif two processors attempt to write into the same global memory location atthe same time.These CREW-PRAMs do not have \processor numbers" or \IDs" as abuilt-in concept, but we will need them. We adopt the following processornumbering scheme. The (unique) processor active initially is numbered 0;the �rst child processor created by processor i will be numbered 2i + 1, itssecond 2(2i+ 1), . . . , and its kth; k � 1 will be numbered 2k�1(2i+ 1). Thiscorresponds to the natural embedding of an arbitrary tree (the processoractivation tree) into a binary tree by the rule \eldest child becomes rightchild, next younger sibling becomes left child." Reverse-preorder traversal ofthe activation tree and the binary tree are identical. As we will see, manyother numbering schemes will also work; this one is fairly natural. Processorsdo not automatically \know" their number, but it is easy to program themto compute it, if needed.De�nition: A CROW-PRAM algorithm is a CREW-PRAM algorithmfor which there exists a function owner(i; n), computable in deterministicspace O(logn), such that on any input of length n processor p attempts towrite into global memory location i only if p = owner(i; n).

8 The intuitive de�nition given earlier said that the owner function shouldbe \simple". We have particularized this by requiring that it be log-spacecomputable and that it be oblivious, i.e., independent of the input, except forits length. We have not required that the model detect ill-behaved programs,i.e., ones that attempt global writes in violation of the ownership constraint.Such programs simply are not CROW programs. These seem to be naturalchoices, but we will also show that our main results are fairly insensitive tothese issues. We could generalize the model in any or all of the followingways:G1. Allow the owner function to depend on the input.G2. Allow the owner function to depend on time.G3. Allow \bounded multiple ownership", i.e., owner(i; n) is a set of sizeO(1) of processor numbers.G4. Allow ill-behaved programs, by de�ning the model to halt and rejectif an attempted write violates the ownership constraint.G5. Allow any processor numbering scheme that gives processors uniquenumbers and allows one to compute in logarithmic space the parent ofa given processor p, the number of older siblings it has, and the numberof its kth child.G6. Allow the owner, parent, and sibling functions above to be computableby a deterministic log-space auxiliary pushdown automaton that runsin polynomial time.Alternatively, we could restrict the model in any or all of the following ways:R1. Require that the owner function be the identity | owner(i; n) = i.This is equivalent to saying that the machine has no global memory;instead it is a collection of processors each with a private local memoryand one globally readable \communications register"R2. Require that processors use only O(1) local memory locations.

CROW-PRAMs and DCFL Recognition 9R3. Require that the machine be write-oblivious, i.e., the times and loca-tions of writes to global memory are independent of the input, exceptfor its length.One consequence of our results is that CROW-PRAMs, even ones satisfyingonly the relatively weak conditions G1-G6, can be simulated by CROW-PRAMs satisfying the strict conditions R1-R3, with only a constant factorincrease in time and a polynomial increase in number of processors.Is it possible that CREW- and CROW-PRAMs have equivalent power?On the positive side, conditions G1-G6 are fairly generous. It is di�cult toimagine a protocol by which a PRAM algorithm could achieve write-exclusionthat would not be covered by these. For example, note that a general CREW-PRAM algorithm can be considered to be a CROW-PRAM algorithm wherethe owner function is allowed to be input- and time-dependent (conditionsG1 and G2 above) and in some sense computable by a CREW-PRAM in real-time. We know that, say, CREW-PRAM time O(logn) can be simulated bya logarithmic space deterministic auxiliary pushdown automaton that runs intime nO(log n), so real-time CREW-PRAM computable functions may not bethat di�erent from nO(1) DauxPDA computable ones. Thus it seems possiblethat time on CROW-PRAMs and CREW-PRAMs might be identical. Atleast, this provides some intuitive support for the empirical observation thatmost known CREW-PRAM algorithms are CROW-PRAM algorithms.In one context, we know the two models are equivalent. Following theappearance of an extended abstract of this paper [12], Ragde (personal com-munication; see also Fich [13], Nisan [28]) observed that nonuniform CROW-PRAMs, i.e., ones having arbitrary instructions, exponentially many pro-cessors initially active, and allowing di�erent programs for each value ofn, running in time t are equivalent to Boolean decision trees of depth 2t.Nisan [28] established that for any set recognized by a (nonuniform) CREW-PRAM in time t(n) = O(logn), for each n there is a equivalent Booleandecision tree problem of depth 2t(n). Taken together these results show timeon the two models is the same up to a constant factor in the nonuniformsetting. This leaves open the stronger conjecture that any set recognizedby a CREW-PRAM in time logn can be recognized on a CROW-PRAM intime O(logn), both of the ordinary, uniform variety and both using polyno-mially many processors. Note that Nisan's simulation of CREW by CROW

10uses nonuniformity in a fundamental way and uses 22t(n) initially active pro-cessors, and that in his nonuniform model all languages are recognizable inO(logn) steps.In one restricted setting we know the two (uniform or nonuniform) modelsto be di�erent. Suppose processors 1 through n are active, each knows onebit bi, and we want to compute the \or" of these bits, given that at most onebi is 1. A CREW-PRAM can solve this in one step: any processor having a 1bit writes it into global location 0. No write-con
ict can happen since there isat most one 1 bit. However, Marc Snir (personal communication) has shownthat a CROW-PRAM requires
(logn) steps to solve this problem from thesame initial state.Snir's result does not settle the general question, however. The problemdiscussed above is de�ned only when at most one input bit is one. (Thishas been called a \partial domain" by Fich, in contrast to the more usualsituation where an algorithm is required to produce a correct answer on alln-bit input sequences.) We know from the results of Cook, et al. [7] that evena CREW-PRAM requires time
(logn) to test whether its input contains atmost one 1 bit. Conceivably, a CREW algorithm that exploited somethinglike Snir's \or" could always be transformed into a CROW algorithm by usingthis \preprocessing" time to better advantage.The only full domain problem known to us where (uniform) CREW-PRAMs seem more powerful that CROW-PRAMs is the recognition problemfor unambiguous context-free languages. For this problem Rytter [34] hasgiven an O(logn) CREW-PRAM algorithm that appears to use the power ofnon-owner exclusive writes in a fundamental way. Loosely speaking, it seemsthat the unambiguity of the underlying grammar allows one to repeatedlyexploit a feature like Snir's \or".While CROW-PRAMs appear to be nearly as powerful as CREW-PRAMs, it is interesting to compare them to a possibly weaker parallel model,the parallel pointer machine of Dymond and Cook [10]. PPMs consist of anunbounded pool of �nite-state transducers, each with a �nite set of pointersto other processors. A PPM operates by sensing the outputs of its neigh-boring processors, and moving its pointers to other processors adjacent toits current neighbors. Cook proposed such a model as an example of thesimplest possible parallel machine with \variable structure" [6].

CROW-PRAMs and DCFL Recognition 11Lam and Ruzzo [21] establish that time on PPMs is linearly related totime on a restricted version of the CROW-PRAM, on which doubling andadding one are the only arithmetic operations permitted. (In fact, they alsoshowed a simultaneous linear relationship between the amounts of hardwareused on the two machines.) Our conjecture that the CROW-PRAM's abilityto access two-dimensional arrays in constant time cannot be directly emu-lated on a CROW-PRAM whose arithmetic capability is so limited has beenproved recently by Dymond, et al. [11]. Since two-dimensional arrays appearto play an important part in the DCFL simulation algorithm of Section 6,this suggests that quite di�erent techniques would be needed to recognizeDCFLs in time O(logn) on the PPM, if this is indeed possible. An analo-gous nonconstant lower bound on two dimensional array access was provedfor sequential unit cost successor RAMs by Dymond [9].3 Simulation of CROW-PRAMs byDauxPDAsIn this section we will prove the �rst half of Theorem 1, namely:Theorem 2 Any set recognized in time O(logn) on a CROW-PRAM isin LOGDCFL.Recall that LOGDCFL is the class of languages log space reducible todeterministic context-free languages. Sudborough [36] de�ned the class, andcharacterized it as the set of languages recognized in polynomial time on alogarithmic space deterministic auxiliary pushdown automaton.The main construction is similar to analogous ones given by Pratt andStockmeyer [30], Fortune and Wyllie [15], and Goldschlager [17] showingthat PRAM time logn is contained in DSPACE(log2 n). We de�ne threemutually recursive procedures:state(t; p) returns the state of processor p at time t, i.e., after the tth in-struction has been executed.local(t; p; i) returns the contents of location i of the local memory of pro-cessor p at time t.

12global(t; i) returns the contents of global memory location i at time t.Each depends only on the values of these procedures at time t � 1, so therecursion depth will be at most t. Furthermore, each procedure will requireonly O(logn) bits of local storage, so by well-known techniques these pro-cedures can be implemented on a logarithmic space deterministic auxiliaryPDA whose pushdown height is at most O(log2 n). This much of the proofis essentially the same as in [15, 17, 30]. The main novelty with our proofis that our algorithm runs in polynomial time, rather than time nlog n as inthe earlier results. This is possible because the owner function allows usin global(t; i) to directly identify the only possible writer of global memorylocation i at time t � 1. This allows each of our procedures to make onlyO(1) recursive calls per invocation, which gives a polynomial running time.If we were simulating a general CREW-PRAM algorithm, it would appearnecessary to check all processors at time t � 1 to see whether any of themwrote into i, and if so, whether more than one of them did. This appears torequire more than polynomial time.Extensions to these basic procedures to accommodate generalizations G1-G6 are quite direct, except for G4, ill-behaved programs. G4 is also possible,but more delicate, since in e�ect we must check at each step that none ofthe many non-owners attempts to write to a global cell, while maintainingthe property that our algorithm makes only O(1) recursive calls per invoca-tion. (It is possible that a similar generalization of the CREW model wouldincrease its power.)Proof of Theorem 2: Detailed descriptions of the three procedures follow.A typical PRAM instruction is \global indirect store l", whose meaning is\store the accumulator into the global memory location whose address isgiven by the contents of local memory location l". We will not describe therest of the PRAM's instruction set in great detail; see Fortune andWyllie [15].The state of processor p at time t is an ordered pair containing theinstruction counter, and the contents of the accumulator of p at theend of the tth step. We de�ne three auxiliary functions accumulator(S),instruction-counter(S), and instruction(S), that, for any state S, give the ac-cumulator portion of S, the instruction counter portion of S, and the instruc-tion pointed to by the instruction counter of S, respectively. Assume that avalue of 0 in the instruction counter designates a \halt" instruction, which by

CROW-PRAMs and DCFL Recognition 13convention will be the instruction \executed" in each step before processorp is activated and after it has halted. Also, assume that instruction(S) willbe a \halt" instruction if it is not otherwise de�ned, e.g., after a jump to alocation beyond the end of the program. It is convenient to assume that thelocal memory of a processor is set to zero as soon as it halts, but its accu-mulator retains its last value. We assume that processor 0 initially executesinstruction 1, and that a processor activated by a \fork l" instruction ini-tially executes instruction l. We also assume that each processor maintainsin local memory location 0 a count of the number of \fork" instructions it hasexecuted. (This count should be initially 0, and is incremented immediatelyafter each \fork" is executed.) It is easy to modify any PRAM algorithmto achieve this. We also use two functions parent(p) and sibling-count(p)that, for any processor number p, return the processor number of the parentof p, and the number of older siblings of p, respectively. For the processornumbering scheme we have chosen these functions are very easy to compute.Namely, if k is the largest integer such that p is evenly divisible by 2k, thensibling-count(p) = k, and parent(p) = bp=2k+1c.procedure Simulate-CROW-PRAMcomment: Main Program.beginlet T = c dlogne comment: An upper bound on the running timeof the PRAM.if state(T; 0) = (0; 1) then acceptendfunction global(t; i)comment: Returns the contents of global memory location i at time t.beginif t = 0 then return 0S := state(owner(i); t� 1)if instruction(S) = \global indirect store l" andlocal(t� 1; owner(i); l) = ithen return accumulator(S)else return global(t� 1; i)end

14 function local(t; p; i)comment: Return the contents of local memory location i of proces-sor p at time t.beginif t = 0 then return 0S := state(t� 1; p)case instruction(S):\halt" : return 0\local store i" : return accumulator(S)\indirect local store l": if i = local(t� 1; p; l)then return accumulator(S)endreturn local(t� 1; p; i)end

CROW-PRAMs and DCFL Recognition 15function state(t; p)comment: Return the state of processor p at time t.beginif t = 0 thenif p = 0then comment: AC is initially length of input.return (1; n)else comment: All other processors are idle at time 0.return (0; 0)S := state(t� 1; p)AC := accumulator(S)IC := instruction-counter(S)case instruction(S) :\load l" : return (IC + 1; local(t� 1; p; l))\indirect load l": return (IC + 1; local(t� 1; p; local(t� 1; p; l)))\global indirect load l": return (IC + 1; global(t� 1; local(t� 1; p; l)))\add", \sub", \read": similar to \load"\store", \fork" : return (IC + 1; AC)\jump l" : return (l; AC)\jump-if-zero l" : if AC = 0then return (l; AC)else return (IC + 1; AC)\halt" : comment: See if parent activated p in this step.p0 := parent(p)S 0 := state(t� 1; p0)if instruction(S 0) = \fork l" andlocal(t� 1; p0; 0) = sibling-count(p)then return (l; accumulator(S 0))else comment: p not activated; just pass AC.return (0; AC)endendCorrectness of the simulation is a straightforward induction on t. Imple-mentation of the procedures on an DauxPDA is also easy. Note that each

16procedure has local variables requiring at most O(logn) bits of storage, sothe DauxPDA needs only that much space on its work tape. The recursiondepth is equal to the PRAMs running time, i.e., O(logn), so the pushdownheight will be at most the product of those two quantities, i.e., O(log2 n).Each procedure makes at most O(1) recursive calls per recursive level, so therunning time of the simulation is (O(1))O(logn) = nO(1). This completes theproof of Theorem 2. 2
The simulation given above is easily adapted to accommodate the gener-alizations G1-G6 to the de�nition of CROW-PRAMs proposed earlier. Al-lowing a more general owner function, say depending on the input or on time(G1,G2) is trivial | just add the appropriate parameters at each call. Us-ing a di�erent processor numbering convention is equally easy, provided thatparent(p), and sibling-count(p) are easily computable (G5). Allowing thesefunctions to be log-space and polynomial time DauxPDA computable willnot e�ect the asymptotic complexity bounds (G6). Bounded multiple own-ership (G3), is also easy | in the global procedure, where we check whetherthe owner of global memory cell i wrote into it, we would now need to checkamong the set of owners to see if any of them wrote. Since this set is only ofsize O(1), the running time would still be polynomial.Changing the procedures to accommodate ill-behaved PRAM algorithms(G4) is more subtle. The �rst change required is that we must now deter-mine the exact running time Ta of the algorithm. Using some upper boundT > Ta might cause us to falsely reject due to an invalid global store bysome processor after Ta. The value of Ta is easily determined by evaluatingstate(t; 0) for t = 0; 1; : : : until processor 0 halts and accepts. (If it does notaccept, there is no need to worry about ownership violations.) The second,and more interesting change, is to check all \store" instructions by all activeprocessors p up to time Ta, basically by doing a depth-�rst search of theprocessor activation tree.

CROW-PRAMs and DCFL Recognition 17procedure Simulate-G4-CROW-PRAMcomment: Modi�ed Main Program, incorporating G4.begint := 0while instruction(state(t; 0)) 6= \halt" do t := t + 1if accumulator(state(t; 0)) 6= 1 then halt and rejectTa := ttreewalk(0; 0)halt and acceptendprocedure treewalk(t; p)comment: \Visit" processor p at each time � between t and Ta, and(recursively) any descendants created during that interval. For each,verify that no non-owner writes occur.beginfor � := t to Ta doS := state(�; p)if instruction(S) = \global indirect store l" andowner(local(t� 1; p; l)) 6= pthen halt and reject; comment: Owner violation; quit.if instruction(S) = \fork"thenp0 := child's processor numbertreewalk(� + 1; p0)endCorrectness of this procedure is argued as follows. If the CROW-PRAMalgorithm has no owner write violations, then the procedure is correct, asbefore. On the other hand, suppose there is a violation, say at time t byprocessor p. Our procedures correctly determine the state of the PRAM upuntil time t. After time t, the state of the PRAM is unde�ned, whereasour procedure calls return values as if the violation had not occurred. How-ever, eventually treewalk will detect the fault. It may reject when evaluatingstate(t0; p0) for some t � t0 � Ta with p0 6= p, but on a branch of the processoractivation tree that happens to be explored before p's branch. At the latest,however, it will detect the fault after evaluating state(t; p). We can count

18on this, since our simulation is faithful up to time t � 1, and the state ofthe PRAM at that time contains all the information we need to deduce thatprocessor p is active at time t, and about to execute a \store" in violationof the ownership constraint. Hence, eventually we will evaluate state(t; p),detect the fault, and halt.The running time of this algorithm is still polynomial, since treewalk({; p)is called exactly once for each active processor p, and there are at mostpolynomially many processors to be checked.Thus we have shown the following.Theorem 3 Any set recognized in time O(logn) on a generalizedCROW-PRAM, i.e., one satisfying generalizations G1-G6 of the basic de�-nition, is in LOGDCFL.This completes the proof of the \only if" direction of Theorem 1. Theconverse is shown in the following sections.4 DPDA De�nitions and NotationWe assume familiarity with deterministic pushdown automata (DPDA), asde�ned for example by Harrison [19], as well as standard variations on thismodel.Our DPDAs have state set Q, input alphabet � and pushdown alphabet�. The empty string is denoted by �, the length of string S by jSj, and stringconcatenation by \�". At each step either the current topmost pushdownsymbol is popped o� the pushdown, or a single new symbol is pushed ontothe pushdown above the current symbol. We assume the transition function� is de�ned for every possible state, input symbol and pushdown symbol.Thus � : Q� (� [f�g)� � ! Q� (� [fpopg)The DPDA begins in state q0 with
 2 � as the initial pushdown contents,with the input head at the left of the input, and accepts by entering state qawith
 as the only pushdown contents after having advanced the input headto the right end of the input. We assume the DPDA never fails to read all

CROW-PRAMs and DCFL Recognition 19the input and always empties its pushdown of all symbols except
 at theend of the computation. Furthermore, we assume that for all � 2 � there issome transition pushing �. By standard techniques (see, e.g., Harrison [19,Section 5.6]), there is a constant c > 0 such that the DPDA can be assumedto have the above properties and to halt in time c �n at most, with maximumpushdown depth n, on any input of length n.The e�cient simulation of a DPDA to be described makes use of theconcepts of surface con�guration and instantaneous description, which arede�ned relative to a particular input x = x0x1 : : : xn�1; xi 2 �. A surfacecon�guration is a triple (q; i; �) where q is a state, i is an integer coded in bi-nary between 0 and n representing the position of the input head, and � 2 �represents the topmost pushdown symbol. The set of all surface con�gura-tions is denoted U . An instantaneous description (id) of the DPDA is a pairhu; Si where u is a surface con�guration and S 2 �� is a string representingall but the topmost symbol of the pushdown (with bottommost pushdownsymbol represented by the rightmost position of S). For convenience, werefer to S as the stack. Thus, the initial id is h(q0; 0;
); �i and the unique ac-cepting id is h(qa; n;
); �i. An id where the stack component is � is called an�-id. (Note an �-id corresponds to a pushdown of one symbol, in the surfacecon�guration.) For an id I = hu; Si we de�ne height(I) to be jSj, and de�neprojection functions surface(I) = u, and stack(I) = S.A surface con�guration u = (q; i; �) is said to be popping if the transitionde�ned for q, xi and � pops the pushdown, and is pushing otherwise. An idis popping or pushing as its surface con�guration is popping or pushing.We write I1 ` I2 if id I2 follows from id I1 in one step of the DPDA oninput x, I1 `t I2 if I2 follows I1 in exactly t steps, and I1 `� I2 if I1 `t I2for some t � 0.By our de�nition, ids only represent con�gurations of the machine withat least one pushdown symbol; if I1 is a popping �-id there is no id I2 suchthat I1 ` I2. Thus, a popping �-id is said to be blocked. This is true eventhough the DPDA makes one �nal move from I1 (depending on the inputsymbol, state, and single pushdown symbol in the surface con�guration) toempty its pushdown.For convenience we assume the �nal accepting con�guration is de�nedto pop, so that it will be a blocked id. We denote by hu; S1i � S2 the id

20hu; S1 � S2i, i.e., hu; S1i modi�ed so that the symbols of S2 are placed belowthe symbols of S1 on the stack. We illustrate some of the notation with threeuseful propositions.Proposition 4 (Bottom-padding) For all surface con�gurations u; v andstrings S1; S2; S3 2 ��hu; S1i `k hv; S2i) hu; S1i � S3 `k hv; S2i � S3:Note the converse is not true in general, but is in the following case.Proposition 5 (Bottom-unpadding) For all surface con�gurations u; vand strings S1; S2; S3 2 ��, ifhu; S1 � S3i `k hv; S2 � S3iand 8 j � k hu; S1 � S3i `j I) height(I) � jS3jthen hu; S1i `k hv; S2i:Proposition 6 (Block-continuation) For all surface con�gurationsu; v; w and strings S1; S2; S3 2 ��hu; S1i `j hv; �i and hv; S2i `k hw; S3i) hu; S1 � S2i `k+j hw; S3i:In addition to the restrictions on DPDAs discussed above, we assume thatno id can occur twice in a computation of the DPDA when started at anygiven id [19, Section 5.6]. This justi�es using ids as references to particularpoints in computations. E.g., if I `t J , we could refer to the id J to uniquelyidentify the point in the computation t steps after id I.

CROW-PRAMs and DCFL Recognition 215 The Basic DPDA Simulation AlgorithmWe now will describe a procedure to e�ciently simulate a DPDA on inputx of length n. Our algorithm is motivated by the \repeated doubling" ideaused, e.g., by Fortune and Wyllie [15, 39] and Klein and Reif [20], which canbe described in our setting as follows.Suppose we have computed for all surface con�gurations u 2 U and allstrings S 2 ��, the 2k step transition function Dk(hu; Si), i.e., hu; Si `2kDk(hu; Si). Then we could easily compute the 2k+1 step transition functionDk+1 by composing Dk with itself:Dk+1(hu; Si) = Dk(Dk(hu; Si)):However, e�ciency considerations preclude de�ningDk for all possible stacks.Observing that in a computation of 2k steps only the top 2k symbols of thestack are accessed, S can be \split" by writing S = S1 �S2 where S2 containseverything after the �rst 2k symbols of S. (S2 will be empty if S has length� 2k.) Then the above could be rewrittenDk+1(hu; S1 � S2i) = Dk(Dk(hu; S1i) � S2):Although this could be used to limit the number of stacks considered to thoseof length at most 2k, there are still too many for a polynomial number ofprocessors to compute in O(logn) time. A key observation in constructingan e�cient algorithm is that the number of stacks that need to be consideredcan be much more limited than suggested above. It will be shown that it issu�cient to consider a polynomial-sized set of stacks, provided we use bothstack splitting and a somewhat more complicated doubling technique. Tosimplify the set of stacks considered, we compute a function �k in place ofDk described above, that gives the result after at least 2k steps rather thanexactly 2k steps. The advantage is that we can use appropriately chosenbreak points to keep the stacks simple.We �rst describe the algorithm assuming that all of the stacks are explic-itly manipulated. In Section 6, we describe a PRAM implementation thatavoids this by using a more succinct representation than the stacks them-selves. Two functions on ids are used, �k and LOW k, each of which isde�ned inductively on the parameter k. For an id I1; �k(I1) returns an id

22I2 that results after t steps of the DPDA starting in id I1. The value of tis implicitly determined by the algorithm itself, but it will be shown thatt � 2k, unless a blocked id is reached from I1 in less than 2k steps | in thiscase t is the number of steps needed to reach the blocked id. Formally, forids I1 and I2, �k will satisfy:�k(I1) = I2) I1 `t I2 and either t � 2k or I2 is blocked. (1)The function LOW k(I1) returns the id I2 that is the id of lowest heightamong all ids in the computation from I1 to �k(I1) inclusive, and if there ismore than one id of minimal height in this computation, is the earliest suchid, i.e., the one closest to I1. More formally,LOW k(I1) = I2 , for some t1; t2 � 0 :(a) I1 `t1 I2 and I2 `t2 �k(I1);(b) 8 0 � t < t1; I1 `t J) height(J) > height(I2); and (2)(c) 8 0 < t � t2; I2 `t J) height(J) � height(I2):Given these de�nitions, to determine if the DPDA accepts x, it is su�cientto check whether �dlog2 c�n e(h(q0; 0;
); �i) = h(qa; n;
); �i;since the DPDA runs in time at most c � n on any input of length n.As discussed above it is necessary to restrict the number of stacks onwhich �k must be de�ned. By careful de�nition of � the information neededto compute �k+1 from�k can be restricted to consideration of ids whose stackcontents are su�xes of stacks produced by �k operating on �-ids, of whichthere are only polynomially many, O(n) in fact. To state this more precisely,we de�ne SSk (mnemonic for \simple stacks") to be the set of strings over�� that represent the bottom portions of stacks in ids in the range of �koperating on all �-ids, i.e.,SSk = fS 2 �� j S is a su�x of stack(�k(hu; �i)) for some u 2 Ug:Because jU j = O(n), SSk contains O(n2) elements | one for each u 2 Uand for each su�x of the unique stack determined by u. To motivate this

CROW-PRAMs and DCFL Recognition 23

t
t t

t
..

......................................
......................................

pp
ppp

ppS2 S2hw; S2i hy; S2iS1 S2 Timehu; �i
HeightStack �k(hu; �i) = hv; S1i

Figure 1: Illustrating SSk.de�nition of SSk, consider the diagram in Figure 1, plotting stack heightversus time in a part of a computation of the DPDA. The diagram showsa stack S1 built up by a �k-computation starting from hu; �i. There mustbe a complementary computation, starting at hv; S1i that eventually emptiesthis stack. In Figure 1, part of S1 is removed in the computation starting athv; S1i and continuing to hw; S2i. The rest of S1 (consisting of S2) is removedlater beginning at hy; S2i. Note that S2 is a su�x of S1 | which illustrateswhy SSk contains not only stacks arising from �k operating on �-ids, butalso all su�xes of such stacks.We will show later that for k � 0, the stacks in SSk+1 are further re-stricted in that each is the concatenation of two strings in SSk, i.e.,SSk+1 � SSk � SSk for k � 0: (3)For technical reasons, it will be important to maintain the information spec-ifying how a stack in SSk+1 is split into two stacks from SSk, rather thansimply treating stacks as undi�erentiated character strings. In the interestof simplicity, however, we will largely ignore this issue in the current section.It will be treated fully in Section 6.In arguing the correctness of our algorithm, we prove the following byinduction on k.

24 Correctness condition: �k and LOW k are well-de�ned for all ids with stacks from SSk; and �k; LOW kand SSk satisfy properties (1), (2) and (3) above, respec-tively. (�)The crux of our algorithm and its correctness proof is captured by the fol-lowing lemma, which shows that we can progress at least 2k steps in the sim-ulation while simultaneously restricting attention to a limited set of stacks,by applying �k only at selected low points.Lemma 7 (The LOW-� Lemma.) Let I = hu; Si be an id with S 2 SSk,let L = LOW k(I), and let J = �k(hsurface(L); �i) � stack(L). Then(a) I `t J for some t � 0,(b) if J is unblocked, then t � 2k, and(c) stack(J) 2 SSk � SSk.Proof: See Figure 2, which plots stack height versus time in the com-putation of the DPDA. There are three distinct cases. In the �rst andsimplest (not shown in the diagram), the DPDA blocks (attempting to popwhen stack height is zero) before completing 2k steps. In the second, the�k-computation from hsurface(L); �i blocks before completing 2k steps, butwe will argue that the overall LOW-� computation does complete at least2k steps. In the third case, none of the sub-computations block.Part (a) follows directly from properties (1) and (2).From correctness property (2), L is the lowest point in the computationfrom I to L (at least), so stack(L) must be a su�x of stack(I) = S, whichis in SSk by assumption. Thus, stack(L) is in SSk. From the de�nition ofSSk, stack(�k(hsurface(L); �i)) is also in SSk. Thus, stack(J) is in SSk �SSk,satisfying (c).Now assume J is unblocked. Let M = �k(hsurface(L); �i), hence J =M � stack(L). If M is itself unblocked, then from the correctness property(1) for �k, J is at least 2k steps past L and part (b) follows. On the otherhand, if M is blocked but J is unblocked, then stack(L) must have non-zero height. In this case J cannot precede �k(I), since otherwise the idsucceeding J would be a point of lower height than L in the range from I

CROW-PRAMs and DCFL Recognition 25
......................................HeightStack

t
t t tt

.
... ..

...
......................................

...
ppp

ppS 2 SSk�k(I) � 2k
I

L �k(hsurface(L); �i)
or

Time
stack (J) 2 SSk+1stack (�k(hsurface(L); �i))
stack (L) 2 SSk2 SSkJ

Figure 2: The LOW-� Lemma.to �k(I), inclusive, contradicting correctness property (2). It follows that�k(I) is unblocked, and part (b) again follows from correctness property (1).2The expression for J in the lemma above occurs so frequently that it isconvenient to introduce a special notation for it. We de�ne e�k(L) to be�k(hsurface(L); �i) � stack(L). For example, the LOW-� Lemma shows thate�k(LOW k(I)) either progresses 2k steps or blocks.Note that for I; L; J as in the LOW-� Lemma, if height(L) > 0, then J isnecessarily unblocked, and so e�k(LOW k(I)) necessarily progresses 2k steps.The LOW-� Lemma applies to an id I only when its stack is in SSk. Wewill need an analogous result when I has a stack consisting of two or threesegments each from SSk. The desired low point in such a stack is foundby the following Iterated LOW function. It will be useful later to de�ne thefunction to handle any constant number d of stack segments rather than justthree. See Figure 3.

26
..
.. .t

t t t t t tt......................................
...

.
.

..

.. ..
..
...

.

......................................ppp
ppp

ppp ppp
Time e�k(I-LOW k(I)) � 2kSdSi0+1Si0S2StackHeight
I

T
e�k(L)J =LS1 u0

Figure 3: I-LOW k.function I-LOW k(I : id) returns idcomment: Assuming I 2 U�(SSk)d, return the id of a LOW k pointof nonzero height in a computation from I, if one exists. If not,return the resulting �-id.beginlet I = hu; S1 � S2 � � � � � Sdi, where S1; S2; : : : ; Sd 2 SSkfor i := 1 to d dohu; Si := LOW k(hu; Sii)if height(hu; Si) > 0then return hu; S � Si+1 � Si+2 � � � � � Sdicomment: Every segment emptied.return hu; �iendThe desired generalization of the LOW-� Lemma is the following.

CROW-PRAMs and DCFL Recognition 27Lemma 8 (The I-LOW-� Lemma.) Let I = hu; Si be an id with S 2(SSk)d, and let J = e�k(I-LOW k(I)). Then(a) I `t J for some t � 0,(b) if J is unblocked, then t � 2k, and(c) stack(J) 2 (SSk)d+1.Proof: Part (a) follows from propositions (1) and (2). Let L =I-LOW k(I). Since I-LOW k modi�es the stack of its argument only by call-ing LOW k, it follows that stack(L) is a su�x of stack(I), and hence byhypothesis is in (SSk)d. The stack segment added by the call to e�k is inSSk, establishing part (c).The key point in establishing (b) is that L = I-LOW k(I) is a \LOW kpoint," hence the LOW-� Lemma can be applied. Speci�cally, let i0 be thelast value taken by i in the for loop, and let u0 be the value taken by u beforethe last call to LOW k. Let I 0 = hu0; Si0i, and L0 = LOW k(I 0). Note that L0is the last value taken by hu; Si before return. Then, letting J 0 = e�k(L0),and T = Si0+1 � � � � � Sd, it is easy to see that I `� I 0 � T , L = L0 � T , andJ = J 0 �T . Now, the LOW-� Lemma applies to I 0; L0; J 0. In particular, if J 0is unblocked, then it is at least 2k steps past I 0, hence J is at least 2k pastI, satisfying part (b). Thus it su�ces to show that J 0 is unblocked wheneverJ is unblocked. There are two cases to consider. First, suppose I-LOW kreturns because height(L0) > 0. Then as noted earlier, J 0 will necessarilybe unblocked. On the other hand, if I-LOW k returns with height(L0) = 0,then by inspection i0 = d, hence T = �, so J 0 = J . Thus in either case J isunblocked if and only if J 0 is unblocked, and part (b) follows. 2In the code for I-LOW k given above we do not indicate how to determinethe decomposition of its stack parameter into d segments from SSk. In brief,as suggested in the remark following the de�nition of SSk, we will retain thisdecomposition information when the stacks are initially computed. Detailedexplanation of this issue is deferred to the next section.In de�ning LOW k, it will be convenient to use an auxiliary function\min", that takes as argument a sequence of ids and returns the id of minimalheight in the sequence. If there are several of minimal height, it returns theleftmost; for our applications, this will always be the earliest in time.

28 Construction: We are �nally ready to de�ne �k and LOW k for allk � 0.[Correctness: Following the parts of the de�nitions of the functions, weprovide, enclosed in square brackets, appropriate parts of the correctnessarguments establishing that �k;LOW k; and SSk satisfy (�).]Basis (k = 0): For all ids I with height(I) � 1:�0(I) = (J if 9 J such that I ` JI otherwise (i.e., if I is blocked);and LOW 0(I) = min(I;�0(I)):[Correctness: By our assumption that for all � 2 � there is some statepushing �, we see that SS0 must be exactly � [f�g, which is exactly theset of stacks in the domain of �0 and LOW 0. By inspection, for all I inthis domain I `t �0(I), where t � 20 unless �0(I) is blocked. Thus (1) issatis�ed. (2) holds because there are only two points in the range of pointsunder consideration, and min selects the lower of these. (3) holds vacuously.]The inductive de�nition of �k+1 and LOW k+1 is done in two phases, �rstconsidering ids with empty stacks, which determine SSk, then consideringids with stacks in SSk � f�g.Inductive Definition of �k+1 and LOW k+1 on empty stacks: (SeeFigure 4.) For k � 0, and for all u 2 U :�k+1(hu; �i) = e�k(LOW k(�k(hu; �i)));and LOW k+1(hu; �i) = hu; �i:Basically, this procedure computes �-LOW-�. Assuming the compu-tation does not block, the id reached by the �rst � is 2k steps past thestarting point, and satis�es the hypothesis of the LOW-� Lemma. Thus,the subsequent LOW-� pair achieves another 2k steps progress, and keepsthe resulting stack simple (i.e., in SSk+1). This argument is the main in-gredient in the correctness proof, below. The case where the initial id has a

CROW-PRAMs and DCFL Recognition 29

t
t t t t......................................

..
.......................

..........
...
...
...

pp
pp

pp
HeightStack

hu; �i �k+1(hu; �i) � 2k+1LOW k(I)I
Time�k(hu; �i) � 2k e�k(LOW k(I)) � 2k

or e�k(LOW k(I))

Figure 4: �k+1(hu; �i).non-empty stack will turn out to be similar, except that we need to precedethis with another LOW or two.[Correctness: Let I = �k(hu; �i). Note that by the de�nition of SSk,stack(I) 2 SSk, so the hypothesis of the LOW-� Lemma is satis�ed byI. If �k+1(hu; �i) is blocked, then (1) is immediately satis�ed. If it is notblocked, then neither is I, so I is at least 2k steps past hu; �i, by property(1). Applying the LOW-� Lemma, e�k(LOW k(I)) is at least 2k steps pastI, hence 2k+1 past hu; �i. Thus, �k+1(hu; �i) also satis�es (1). Clearly hu; �iis the earliest id of height zero at or after itself, so property (2) is triviallysatis�ed by LOW k+1(hu; �i). Property (3) follows directly from the LOW-�Lemma.]To complete the de�nition of �k+1 and LOW k+1 we must now de�nethem on all ids with non-empty stacks S 2 SSk+1 (as de�ned by �k+1'saction on �-ids).Inductive Definition of �k+1 and LOW k+1 on non-empty stacks:Using I-LOW k we de�ne �k+1(I) and LOW k+1(I) for all I = hu; Si withu 2 U , and S 2 SSk+1�f�g as the result of the following computations (see

30
..

Time
tt t

......................................
t

t
t. t.

......................................
...
...
..

...................................... ..
..................................

.. ...
..

.............. ..
ppp pp

pp
ppHeightStack I-LOW k(I)e�k(I-LOW k(I)) � 2k�k+1(I) � 2k+1 e�k(I-LOW k(J)) � 2kI-LOW k(J)J e�k(I-LOW k(J))oror

I

Figure 5: �k+1(I); stack(I) 6= �.Figure 5): J = e�k(I-LOW k(I));�k+1(I) = e�k(I-LOW k(J));and LOW k+1(I) = min(I-LOW k(I); I-LOW k(J)):[Correctness: Property (1) follows immediately by applying the I-LOW-�Lemma twice. Property (2) is satis�ed by LOW k+1(I) since the two points towhich min is applied subsume all the low points of all the subcomputationscomprising �k+1. Property (3) is inapplicable.]We remark that from the I-LOW-� Lemma stack(J) above may consistof three stack segments, even though stack(I) contains only two. This is themain reason for de�ning I-LOW k on more than two stack segments.Finally, we remark that I-LOW k is the identity function on ids withempty stack, and is equal to LOW k when d = 1. Thus, when stack(I) = �,

CROW-PRAMs and DCFL Recognition 31the above de�nition reduces to exactly the same computation as given earlierfor the empty stack case, since J = e�k(I-LOW k(I)) = �k(I) 2 U � (SSk)1in this case. Similarly, this de�nition of LOW k+1(I) also su�ces in the casewhen stack(I) = �. Thus, one could use these more general de�nitions tohandle both cases.This completes the de�nitions of � and LOW, and the proof of theircorrectness. To summarize, the key features of this construction are thatLOW k+1 and �k+1 each require only a constant number of calls to the levelk procedures, they guarantee at least 2k+1 progress in the simulation, andthey need to be de�ned on domains of only polynomial size. In the nexttwo sections we will exploit these features to give fast implementations onPRAMs, and small space implementations on PDAs.6 CROW-PRAM ImplementationThe one important issue ignored in the discussion so far is the question ofe�ciently handling the stacks. To obtain the desired O(logn) running time,we need to manipulate stacks of length
(n) in unit time. In particular,when de�ning �k+1(hu; Si) and LOW k+1(hu; Si), where S 2 SSk+1 � SSk �SSk, it is necessary to be able to split S into two segments, each a stackin SSk. This can be done by retaining the information splitting S intocomponents when S is originally constructed by �k+1(hv; �i) for some v.In fact, the decomposition information is really the only information aboutS needed to apply the inductive de�nitions | the actual contents of thestacks are never consulted in the de�nitions, except in the base cases. Thisfact allows us to replace the actual stacks with abbreviations, avoiding theexplicit manipulation of long character strings, provided the decompositioninformation is kept available.We now introduce the more succinct notation for stacks, revise the algo-rithms using this notation, and then discuss the CROW-PRAM implemen-tation using this notation.By de�nition any stack S 2 SSk is a su�x of stack(�k(hu; �i)) for somesurface con�guration u. We can name S by specifying k; u, and a value hgiving the length of the su�x being considered.

32 De�nition: A stack reference of level k � 0, abbreviated \(k)-reference,"is a pair (u; h) with u 2 U and 0 � h. If 0 � h � height(stack(�k(hu; �i))),the stack reference is said to be valid. A (k)-reference (u; h) is said to havebase u, height h, and level k. For convenience, � will also be considered avalid (k)-reference, denoting the empty stack of height 0.For k � 0, the algorithm will maintain an array SUMMARY k indexedby surface con�gurations. The value stored in SUMMARY 0[u] will be theactual symbols of stack(�0(hu; �i)). The value of SUMMARY k+1[u] will bea pair of valid (k)-references, which will turn out to (recursively) specify theactual symbols of stack(�k+1(hu; �i)).A valid (k)-reference (u; h) may refer to any su�x of stack(�k(hu; �i)).Thus, it is convenient to extend the summary notation to handle references.The summary of a valid (k)-reference R = (u; h), is denoted SUMMARY k[R].For k = 0 it is the length h su�x of SUMMARY 0[u]. For k � 1 it isthe pair of (k)-references from SUMMARY k[u] adjusted to height h. Thisadjustment is carried out as follows. Suppose SUMMARY k[u] is the orderedpair of (k)-references (v1; h1) and (v2; h2). If h > h2, then SUMMARY k[R]is the ordered pair (v1; h � h2) and (v2; h2), and otherwise it is the single(k)-reference (v2; h). This corresponds to popping the referenced stack untilthe desired height h is reached.Below, we de�ne variants rk, Lk, I-Lk, MIN of the functions �k, LOW k,I-LOW k, min, respectively, of Section 5, that will operate using stack ref-erences and their summary information in place of the stacks themselves.The function MIN behaves like the version of Section 5, except that it nowreturns the surface con�guration and height (rather than the full id) of theleftmost (earliest) of those of its arguments that are of minimum height. Thecode for rk only needs to be provided for the case of an empty stack. (Thede�nition of �k(hu; Si); S 6= � was given in Section 5 only to support thede�nition of LOW k(hu; Si) and the associated correctness assertions; it wasnot otherwise used.) Finally, we note that, in the code below, the contentsof global array SUMMARY k are always set by the function rk before beingreferenced by Lk.

CROW-PRAMs and DCFL Recognition 33function r0(u: surface) returns (surface, (0)-reference)comment: Returns the surface and reference corresponding to�0(hu; �i), and as a side e�ect, stores stack(�k(hu; �i)) in the globalarray SUMMARY 0[u].varv : surfaceR : (0)-referencebeginif u is popping thenSUMMARY 0[u] := �return (u; �)let hu; �i ` hv; �i where � 2 � ;SUMMARY 0[u] := �R := (u; 1)return (v; R)end
function L0(u: surface, R: (0)-reference)returns (surface, (0)-reference)comment: Returns the surface and reference of the low point in theinterval (u;R) to r0(u;R).varv : surfaceS; S1 : stringbeginif R = � then return (u; �)S := SUMMARY 0[R]let hu; Si ` hv; S1i comment: Either S1 = � or S1 =
1
2;
i 2 �.if jSj < jS1j then return (u; R)return (v; �)end

34 function I-Lk(u: surface, R1; R2; : : : ; Rd: sequence of (k)-references)returns (surface, sequence of (k)-references)comment: Returns the surface and a sequence of (k)-references de�n-ing the stack of an unblocked low point (if any) in a computationstarting from (u;R1 �R2 � � � � �Rd). Note this procedure handles any�xed number d of (k)-references.varR: (k)-referencebeginfor i := 1 to d do(u;R) := Lk(u;Ri)if height(R) > 0 then return (u; R;Ri+1; : : : ; Rd)return (u; �)end
function rk+1(u: surface) returns (surface, (k + 1)-reference)comment: Returns the surface and reference corresponding to�k+1(hu; �i) and as a side e�ect, stores the summary forstack(�k+1(hu; �i)) in SUMMARY k+1[u].varv2; v3 : surfaceR2; R3 : (k)-referenceR : (k + 1)-referencebegin(v2; R2) := Lk(rk(u))(v3; R3) := rk(v2)SUMMARY k+1[u] := (R3; R2)R := (u; height(R2) + height(R3))return (v3; R)end

CROW-PRAMs and DCFL Recognition 35function Lk+1(u : surface; R : (k + 1)-reference)returns (surface, (k + 1)-reference)comment: Returns the surface and reference corresponding to thelow point in the interval (u;R) to rk+1(u;R).varS; S1; S2; S3 : sequence of (k)-referencesu1; u2; u3; u0; w : surfaceR0 : (k + 1)-referenceR2 : (k)-referenceh; h0 : integerbeginlet R be (w; h)S := SUMMARY k+1[R](u1; S1) := I-Lk(u; S)(u2; R2) := rk(u1)let S2 be the result of prepending R2 to the sequence S1(u3; S3) := I-Lk(u2; S2)(u0; h0) := MIN((u1; S1); (u3; S3))R0 := (w; h0)return (u0; R0)endCorrectness follows from the argument given in Section 5 using the cor-respondence elucidated below. We inductively de�ne a string bR associatedwith each valid (k)-reference R as follows. With each valid (0)-referenceR = (u; h), the string bR consists of the length h su�x of the stringstored in SUMMARY 0[u]. Furthermore, for each k � 0 and each valid(k + 1)-reference R = (u; h), we associate (inductively) the string bR = cR1�cR2,where SUMMARY k+1[R] = (R1; R2). By induction on k, one can show thatbR, the string associated with the (k)-reference R returned byrk(u), is exactlystack(�k(hu; �i)) as de�ned in Section 5, provided that in the algorithm ofSection 5, each stack bS is decomposed as speci�ed by SUMMARY [S]. (Re-call that the exact decomposition used in I-LOW k was left unspeci�ed inSection 5. We note that, the proofs given there, in particular the proof ofLemma 8, the I-LOW-� Lemma, hold for any decomposition of a stack in(SSk)d into d substrings each in SSk, although we only need the proofs tohold for the speci�c decomposition given by SUMMARY .)

36 Finally, the functions rk and Lk de�ned above can be used for a timeO(logn) parallel algorithm for DCFL recognition on a CROW-PRAM. Thealgorithm tabulates rk, SUMMARY k and Lk for successively higher valuesof k. for k := 0 to dlog cn e dofor all u 2 U do in parallelCompute rk(u) and store in a table in global memory. As aside e�ect, store SUMMARY k[u].for all u; v 2 U and all h � 0 for which R = (u; h) is a valid(k)-reference do in parallelCompute Lk(v; R) and store in a table in global memory.Accept i� rdlog cne((q0; 0;
)) = ((qa; n;
); �).Each iteration of the loop can be performed with a constant number ofreferences to previously stored values of rk; Lk, and SUMMARY k.The implementation of tables indexed by surface con�gurations and ref-erences, and the initialization of a unique processor for every array entry aredone using now-standard parallel RAM programming techniques; see Gold-schlager [17] or Wyllie [39] for examples. Each surface and reference canbe coded by an integer of O(logn) bits, which can be used as a table sub-script. These techniques also su�ce to implement the above algorithm on aCROW-PRAM satisfying restrictions R1{R3.Since there are only O(n) surfaces and O(n2) references, the number ofarray entries (and hence the number of processors) can be kept to O(n3) byreusing array space rather than having separate arrays for each value of kfrom 0 to logn. The values of SUMMARY k, for example, can be discardedas soon as the values of SUMMARY k+1 have been computed.Thus we have shown the following theorem.Theorem 9 Every DCFL can be recognized by a CROW-PRAM satisfy-ing restrictions R1{R3 in time O(logn) with O(n3) processors.Theorems 2 and 9 together establish Theorem 1. We also obtain thefollowing corollary.

CROW-PRAMs and DCFL Recognition 37Corollary 10 CROW-PRAMs satisfying generalizations G1{G4 can besimulated by CROW-PRAMs subject to restrictions R1{R3 with only a con-stant factor time loss and with only a polynomial increase in number of pro-cessors.Proof: It was shown in Section 3 that generalized CROW-PRAMs sat-isfying G1{G6 can be simulated by deterministic auxiliary PDAs with lognspace and polynomial time, and thus that languages recognized by such ma-chines are in Sudborough's class LOGDCFL of languages log space reducibleto deterministic context-free languages. A log space-bounded reduction canbe done on a CROW-PRAM in time O(logn) using the deterministic pointer-jumping technique of Fortune and Wyllie [15]. See Cook and Dymond [8]for a detailed description the simulation of log space by a parallel pointermachine in O(logn) time, and see Lam and Ruzzo [21] for a simulation ofthe later model by a O(logn) time-bounded CROW-PRAM. This simulationis easily made to obey restrictions R1{R3. Finally, by Theorem 9, the result-ing language can be recognized by a CROW-PRAM also obeying restrictionsR1{R3. 2Following appearance of an earlier version of this paper, Monien, et al. [25]gave a CREW-PRAM algorithm for DCFL recognition that, for any � >0, uses O(logn) time and n2+� processors. Their algorithm uses functionssimilar to ours, and suggests an approach to improving the processor boundof the CROW-PRAM algorithm of Theorem 9.7 Small Space Sequential ImplementationIn Section 3 we presented an algorithm for simulating an O(logn) timeCROW-PRAM by a deterministic auxPDA using polynomial time andO(log2 n) stack height. This, combined with Theorem 9, yields an alternateproof of the following result of Rytter.Theorem 11 (Rytter [33].) L is accepted by a polynomial time loga-rithmic space DauxPDA if and only if L is accepted by such a machine thatfurthermore uses stack height O(log2 n).

38 An analogous result was previously known for nondeterministic PDAs(Ruzzo [32]), but the best result previous to Rytter's for stack height reduc-tion in DauxPDAs required superpolynomial time (Harju [18]; c.f. [32] for analternative proof).Corollary 12 (Harju [18].) DCFLs are in DauxPDA space O(logn) andstack height O(log2 n).The following result is also a corollary.Corollary 13 (Cook [5]; von Braunm�uhl, et al. [38].) DCFLs are inSC2.The time bound for the algorithm sketched above, while polynomial, isnot particularly attractive. As shown by von Braunm�uhl, Cook, Mehlhorn,& Verbeek [38], DCFL recognition is in simultaneous space S(n) and timeO(n1+�=S(n)) on DTMs with random access to their input tapes, for any� > 0 and any log2 n � S(n) � n. Their algorithm makes general use of itsspace resource, i.e., it is not used as a pushdown store, or even as a stack (inthe stack automaton sense; Ginsburg, Greibach, and Harrison [16]).The goal of the remainder of this section is to sketch an improvement toour algorithm to achieve time bounds matching those of von Braunm�uhl, etal., while still using a DauxPDA. Our modi�cations borrow some of the keyideas from the von Braunm�uhl, et al. constructions.First, we outline a more direct algorithm, bypassing the simulation of ageneral CROW-PRAM. In Sections 5 and 6, we presented an algorithm forsimulating a DPDA, based on the procedures rk and Lk. Our procedure rksets the global SUMMARY k array as a side e�ect, and Lk reads from it. It iseasy to reformulate these procedures recursively. In a fully recursive version,rk would return the summary information as an additional component ofits function value, and accesses to SUMMARY k in Lk would be replaced byappropriate calls to rk, to (re-)compute the desired stack summaries.Recursive procedures have a straightforward implementation on a space-bounded deterministic auxiliary PDA. The auxPDA's work tape needs tobe long enough to hold the local variables of a procedure, and the pushdown

CROW-PRAMs and DCFL Recognition 39height must be d times as large, where d is the depth of recursion, to holdd \stack frames", each holding copies of the local variables, return address,etc.For our procedures, the local variables consist of a few integers plus abounded number of surfaces, requiring O(logn) space. The recursion depth isat most dlog2 cne. Thus, our procedures can be implemented on a DauxPDAusing space O(logn) and pushdown height O(log2 n). Furthermore, for ourprocedures, each level k + 1 procedure makes a bounded number of callson level k procedures. Since the depth of recursion is O(logn), the totalnumber of calls is at most (O(1))O(logn) = nO(1). Exclusive of recursive calls,each procedure takes time O(logn) to manipulate the surfaces, etc., plus,if necessary O(n) to read inputs. Thus, the total time for the algorithm ispolynomial.The main idea in improving the time bound is to generalize the construc-tion in Section 5 to give, for any integer d � 2, procedures rkd, etc., thatre
ect computations of length at least dk, rather than 2k as before. Thisis easily done with the machinery we have already developed. For example,rkd is basically the d-fold composition of frkd(I-Lkd(�)) with itself. Each levelk + 1 procedure makes O(d) calls on level k procedures. Thus, the numberof recursive calls, which is the main component of the running time, will be(O(d))logd n = nlogd O(d) = n1+O(1= log d):Again, to keep the induction simple, we can arrange that the stacks thatneed to be considered are su�xes of those built by rk+1d (u), which turn outto be the concatenation of su�xes of at most d stacks built by rkd(v), forvarious v's. As before, it is important that the list of these v's provides asuccinct but useful \summary" of the stack contents.One �nal re�nement of this idea is to simulate S(n) steps of the DPDAin the base case of our procedures, rather than just one step. Then rkd willsimulate at least S(n) � dk steps.Implementation of these procedures on a DauxPDA with O(logn) worktape and O(log2 n) stack height is straightforward, as before.Random access to the input tape is useful in our algorithm and in vonBraunm�uhl, et al.'s for the following reason. Simulation of pop moves re-quires recomputation of portions of the stack, necessitating access to the

40portions of the input read during the corresponding push moves. With ordi-nary sequential access to the input tape, even though repositioning the tapehead may be time-consuming (
(n)), von Braunm�uhl, et al. show that DCFLrecognition is possible in simultaneous space S(n) and time O(n2=S(n)), forlog2 n � S(n) � n. This is provably optimal. Our techniques appear likelyto be useful in this case as well, although we have not pursued this.AcknowledgementsWe thank Michael Bertol, Philippe Derome, Faith Fich, Klaus-J�orn Lange,Prabhakar Ragde, and Marc Snir for careful reading of early drafts, and foruseful discussions. Special acknowledgement is due Allan Borodin, withoutwhom we would never have begun this research.References[1] R. J. Anderson and L. Snyder. A comparison of shared and nonshared memorymodels of parallel computation. Proceedings of the IEEE, 79(4):480{487, Apr.1991.[2] J. Archibald and J.-L. Baer. Cache coherence protocols: Evaluation using amultiprocessor simulation model. ACM Transactions on Computer Systems,4(4):273{298, 1986.[3] A. K. Chandra and M. Tompa. The complexity of short two-person games.Discrete Applied Mathematics, 29(1):21{33, Nov. 1990.[4] S. A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM, 18(1):4{18, Jan. 1971.[5] S. A. Cook. Deterministic CFL's are accepted simultaneously in polyno-mial time and log squared space. In Conference Record of the Eleventh An-nual ACM Symposium on Theory of Computing, pages 338{345, Atlanta, GA,Apr.-May 1979. See also [38].[6] S. A. Cook. Towards a complexity theory of synchronous parallel compu-tation. L'Enseignement Math�ematique, XXVII(1{2):99{124, Jan.-June 1981.Also in [24, pages 75{100].

CROW-PRAMs and DCFL Recognition 41[7] S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds forparallel random access machines without simultaneous writes. SIAM Journalon Computing, 15(1):87{97, Feb. 1986.[8] S. A. Cook and P. W. Dymond. Parallel pointer machines. ComputationalComplexity, 3(1):19{30, 1993.[9] P. W. Dymond. Indirect addressing and the time relationships of some modelsof sequential computation. Int. J. of Computers and Math. with Applications,5:195{209, 1979.[10] P. W. Dymond and S. A. Cook. Hardware complexity and parallel computa-tion. In 21st Annual Symposium on Foundations of Computer Science, pages360{372, Syracuse, NY, Oct. 1980. IEEE.[11] P. W. Dymond, F. E. Fich, N. Nishimura, P. Ragde, and W. L. Ruzzo. Point-ers versus arithmetic in PRAMs. Journal of Computer and System Sciences,53(2):218{232, Oct. 1996.[12] P. W. Dymond and W. L. Ruzzo. Parallel random access machines withowned global memory and deterministic context-free language recognition. InL. Kott, editor, Automata, Languages, and Programming: 13th InternationalColloquium, volume 226 of Lecture Notes in Computer Science, pages 95{104,Rennes, France, July 1986. Springer-Verlag.[13] F. E. Fich. The complexity of computation on the parallel random accessmachine. In J. H. Reif, editor, Synthesis of Parallel Algorithms, chapter 20,pages 843{899. Morgan Kaufmann, 1993.[14] F. E. Fich and A. Wigderson. Towards understanding exclusive read. SIAMJournal on Computing, 19(4):717{727, 1990.[15] S. Fortune and J. C. Wyllie. Parallelism in random access machines. InConference Record of the Tenth Annual ACM Symposium on Theory of Com-puting, pages 114{118, San Diego, CA, May 1978.[16] S. Ginsburg, S. A. Greibach, and M. A. Harrison. Stack automata and com-piling. Journal of the ACM, 14(1):172{201, 1967.[17] L. M. Goldschlager. A universal interconnection pattern for parallel comput-ers. Journal of the ACM, 29(4):1073{1086, Oct. 1982.[18] T. Harju. A simulation result for the auxiliary pushdown automata. Journalof Computer and System Sciences, 19:119{132, 1979.

42[19] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley,1979.[20] P. N. Klein and J. H. Reif. Parallel time O(log n) acceptance of deterministicCFLs on an exclusive-write P-RAM. SIAM Journal on Computing, 17(3):463{485, June 1988.[21] T. W. Lam and W. L. Ruzzo. The power of parallel pointer manipulation. InProceedings of the 1989 ACM Symposium on Parallel Algorithms and Archi-tectures, pages 92{102, Santa Fe, NM, June 1989.[22] K.-J. Lange and R. Niedermeier. Data-independences of parallel randomaccess machines. In R. K. Shyamasundar, editor, Foundations of SoftwareTechnology and Theoretical Computer Science, Thirteenth Conference, Lec-ture Notes in Computer Science, pages 104{113, Bombay, India, Dec. 1993.Springer-Verlag.[23] D. Lin, X. Deng, and P. W. Dymond. Implementing Cole's parallel mergesortalgorithm on owner-write parallel random access machines. Technical report,York University Department of Computer Science, 1995.[24] Logic and Algorithmic, An International Symposium Held in Honor of ErnstSpecker, Z�urich, Feb. 5{11, 1980. Monographie No. 30 de L'EnseignementMath�ematique, Universit�e de Gen�eve, 1982.[25] B. Monien, W. Rytter, and H. Schapers. Fast recognition of deterministicCFL's with a smaller number of processors. Theoretical Computer Science,116(2):421{429, 16 Aug. 1993. Corrigendum, ibid., 123(2):427, 31 Jan. 1994.[26] R. Niedermeier and P. Rossmanith. On optimal OROW-PRAM algorithms forcomputing recursively de�ned functions. Parallel Processing Letters, 5(2):299{309, June 1995.[27] R. Niedermeier and P. Rossmanith. PRAM's towards realistic parallelism:BRAM's. In H. Reichel, editor, Fundamentals of Computation Theory: 10thInternational Conference, FCT '95, volume 965 of Lecture Notes in ComputerScience, pages 363{373, Dresden, Germany, Aug. 1995. Springer-Verlag.[28] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing,20(6):999{1007, Dec. 1991.[29] N. Nishimura. Restricted CRCW PRAMs. Theoretical Computer Science,123(2):415{426, 31 Jan. 1994.

CROW-PRAMs and DCFL Recognition 43[30] V. R. Pratt and L. J. Stockmeyer. A characterization of the power of vectormachines. Journal of Computer and System Sciences, 12(2):198{221, Apr.1976.[31] P. Rossmanith. The owner concept for PRAMs. In C. Cho�rut andM. Jantzen, editors, STACS 91: 8th Annual Symposium on Theoretical As-pects of Computer Science, volume 480 of Lecture Notes in Computer Science,pages 172{183, Hamburg, Germany, Feb. 1991. Springer-Verlag.[32] W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and SystemSciences, 21(2):218{235, Oct. 1980.[33] W. Rytter. On the recognition of context-free languages. In A. Skowron,editor, Computation Theory: Fifth Symposium, volume 208 of Lecture Notesin Computer Science, pages 318{325, Zabor�ow, Poland, Dec. 1984 (published1985). Springer-Verlag.[34] W. Rytter. Parallel time O(logn) recognition of unambiguous context-freelanguages. Information and Computation, 73(1):75{86, 1987.[35] L. J. Stockmeyer and U. Vishkin. Simulation of parallel random access ma-chines by circuits. SIAM Journal on Computing, 13(2):409{422, May 1984.[36] I. H. Sudborough. On the tape complexity of deterministic context-free lan-guages. Journal of the ACM, 25(3):405{414, 1978.[37] U. Vishkin. Synchronous parallel computation - a survey. Technical ReportTR-71, Department of Computer Science, Courant Institute NYU, 1983.[38] B. von Braunm�uhl, S. A. Cook, K. Mehlhorn, and R. Verbeek. The recognitionof deterministic CFL's in small time and space. Information and Control,56(1-2):34{51, Jan./Feb. 1983.[39] J. C. Wyllie. The Complexity of Parallel Computations. PhD thesis, CornellUniversity, Department of Computer Science, 1979. TR 79-387.
(Last RCS Revision: 1.42; Date: 1997/02/20 02:20:21 .)

