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Abstract

In this paper, we consider the use of the Dulmage-Mendelsohn decomposition and
network flow on bipartite graphs to improve a graph bisection partition. Given a graph
partition [S, B, W] with a vertex separator S and two disconnected components B and
W, different strategies are considered based on the Dulmage-Mendelsohn decomposition
to reduce the separator size |S| and/or the imbalance between B and W. For the case
when the vertices are weighted, we relate this with the bipartite network flow problem.
A further enhancement is made on partition improvement by generalizing the bipartite
network to solving a general network flow problem. We demonstrate the utility of
these improvement techniques on a set of sparse test matrices, where we find top level
separators and nested dissection and multisection orderings.

Key words. Dulmage-Mendelsohn decomposition, network flow, graph bisection,
ordering algorithms, nested dissection. multisection.
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1 Introduction

The ability to find a good separator for a graph is necessary in many application areas [16],
[28]. Our motivation to consider this problem is to determine good sparse matrix orderings
for direct factorization methods [4], [5], [19], [24].

In a recent paper [2], the authors have applied the notion of blocking to obtain an
efficient graph partitioning scheme to find a good vertex separator. The approach has
three basic steps. In the first step, we construct a domain decomposition of the graph,
consisting of a subset of vertices (called a multisector) whose removal decomposes the
graph into a number of domains. Each domain is a connected subset of vertices. The
second step uses a variant of the Kernighan-Lin scheme [21] on the set of domains to
determine an approximation to a good separator. The last step refines the separator using
some techniques from bipartite graph matching. One purpose of this paper is to give a full
explanation of the machinery used in the separator improvement step.

The fundamental tool used in this final step is the Dulmage-Mendelsohn decomposition
[8], which is a canonical decomposition of a bipartite graph based on the notion of matching.
This decomposition has been used extensively to extract a wvertex separator from an edge
separator [15], [20], [23], [26]. The vertices that are incident to an edge in the edge separator
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form a wide vertex separator. A vertex separator is a cover for the edge separator if all edges
are incident to a vertex of the separator. Using the Dulmage-Mendelsohn decomposition,
one can find one or more vertex covering separators of minimum size that are subsets of
this wide vertex separator.

This decomposition has been used to improve a vertex separator in earlier papers
[24], [25]. Let the vertices in the graph be partitioned as a vertex separator S and two
components B and W. We consider the edge separator that contains edges linking vertices
in S to B (or S to W). This defines a wide vertex set containing vertices in S and all
vertices in B (or W) adjacent to S. We use the Dulmage-Mendelsohn decomposition to
find a covering separator of minimum size from this set of vertices!.

The same technique can be applied to the new separator and its new adjacent sets, so
the overall improvement process is iterative in nature. At each step, a wide vertex separator
is taken from the current separator and one of the two components, and a covering vertex
separator subset of minimum size is obtained. It is accepted as the new vertex separator
only if the quality of its induced partition is better.

In this paper, we consider related approaches, initially developed in [2], to improve
a vertex separator. Although the Dulmage-Mendelsohn decomposition is defined only for
unit-weight graphs, we are able to extend it to a special class of weighted graphs, thus
greatly reducing the execution time in many cases. In the extension, we reformulate it
into a much-studied combinatorial problem involving the flow of commodities through an
interconnected network: a maximum network flow problem [9], [11], [12], [18], [27]. The
solution to our separator improvement step is thus transformed to solving a maximum flow
problem on a bipartite network. We also relate the improved separator in the new partition
with the min-cut set in the well-known max-flow min-cut theorem on network flows.

We have explored an additional advantage in the transformation of the bipartite graph
matching problem to bipartite network flow problem. By adding and deleting edges from
the bipartite network we are able to construct a new network that may yield a smaller
separator. The new network is not bipartite and the new separator need not be a covering
separator. By adding vertices and edges we generate larger networks that can yield still
smaller separators.

An outline of this paper is as follows. In Section 2, we give a formal description of the
partition improvement problem and introduce the various notations used throughout the
paper. Section 3 starts with a discussion on reducing the size of a separator using bipartite
graph matching. This provides the motivation to the Dulmage-Mendelsohn decomposition
for bipartite graphs. This section is mainly of exposition in nature; the results can be found
in [24] and [25]. Section 4 considers the use of the Dulmage-Mendelsohn decomposition to
improve the balance of a partition.

In Section 5, we introduce the notion of a compressed graph induced by a grouping of
vertices that share the same adjacent sets. Compressed graphs can be considered as a special
kind of weighted graphs. The Dulmage-Mendelsohn decomposition is then generalized to
handle compressed bipartite graphs.

In Section 6, we relate this decomposition on a compressed bipartite graph to a max-
flow solution to a bipartite network problem. We point out the equivalence between the
generalized matching and a max-flow, and between the improved separator and a min-
cut. A new enhancement is also described by transforming the bipartite network to a

Tt is a little-appreciated fact that a covering separator of minimum size may not be a separator of
minimal size — i.e.; a separator of minimal size may not be incident on all the edges of the edge separator.



general network based on the underlying graph structure. We show that a max-flow min-
cut solution to this new general network is at least as good as and is often better than
that of the bipartite network. We also generalize the network flow approach to even wider
separators formed from the separator and many “layers” of adjacent sets from one or both
components in the partition.

Section 7 contains experimental results on separator/partition improvements. We
compare the improvement in partitions based on solving a max-flow problem on a bipartite
network, the induced two-layer network and a centered three-layer wide network. Sparse
matrix ordering statistics are also given when these techniques are used in a nested
dissection and a multisection ordering code [3]. The multisection statistics are at least as
good and often are better than those from the multiple minimum degree ordering approach.
Section 8 contains our concluding remarks.

2 Definitions and Notations
Let G = (V, E) be a given undirected graph. The adjacent set of a vertex v is given by:

Adj(v) ={u #v | (u,v) € E}.

Without loss of generality, we assume the graph is connected. A walk is a sequence of
vertices vg,v1, ...,V such that (v;,v;11) € E. A path is a walk without any repeated
vertices.

A vertex subset S is a vertex separator if the subgraph induced by the vertices in V'
but not in S has more than one connected component. An edge separator is a set of edges
whose removal disconnects the graph. A separator is minimal if no subset of it forms a
separator.

A bisector is a separator whose removal gives at least two connected components.
We shall use the notation [S, B, W] to represent a 2-set partition, where the removal
of the bisector S will give two disconnected portions B and W; that is, Adj(B) C S
and Adj(W) C S. We measure the imbalance of a partition as the dimensionless ratio
max{|B|,|W|}/ min{|B|, |W|}. We shall often assume that B is the bigger portion so that
\B| > |W| and the imbalance is |B|/|W|. Our objective is to determine a well-balanced
partition with a small separator size |S|.

In this paper, we consider methods to improve a given partition. Therefore, we need to
compare the quality of the original and the modified partitions. Following [2], we use this
evaluation function

+[S, B,W] = |S]| (1 +QM> |

min{| B, [W|}

where « is some constant greater than 0. The separator size |S| is the primary metric while
the imbalance is used as a “penalty” multiplicative factor. A large value of the constant «
places a large emphasis on the balance. We have used the penalty cost function v[S, B, W]
with @ = 1 in all the experiments in Section 7.

Throughout the paper we will be concerned with a subset of vertices, those vertices
just “outside” the subset, and those “inside” the subset. To make these concepts clear
we introduce the following notation. Let Y be a vertex subset of V. The interior of Y is
defined to be

Int(Y) ={y €Y | Adj(y) C Y},

and contains all nodes in Y that are adjacent to no nodes outside of Y. The boundary of
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Y or its adjacent set is the set of nodes not in Y that are adjacent to Y,

Adj(Y)={v eV \Y | (y,v) € E forsomey € Y} = (U Adj(y)) \Y.
yey

The border of Y is a subset of Y, namely the boundary of the interior of Y,
Border(Y) = Adj(Int(Y)) =Y \ Int(Y)

or those nodes in Y that are not in the interior of Y.

3 Partition Improvement and the Dulmage-Mendelsohn Decomposition
3.1 A Partition Improvement Algorithm by Moves

Let [S,B,W] be a 2-set partition of a given graph G. Consider a subset Z of S. Let
Z — W be the move of Z to W that moves the subset Z from S to W, thereby creating
the following new partition:

BZHW:B\Ad](Z), Wy ow=WUZ, and SZHW:(S\Z)U(Ad](Z)ﬂB)

We use the notation [S, B, W], ., to refer to the new partition.

We consider a partition improvement scheme that uses moves by finding subsets Z that
will help in reducing the evaluation function y[S, B, W]. A high-level description of the
improvement algorithm is described in Figure 1. The scheme makes a first attempt to
reduce the evaluation function of the partition by moving a subset from S to the smaller
portion W. If no such move can be found, it tries to improve the partition by moving a
separator subset to the larger portion B. It continues until no reduction can be obtained.

PARTITION-IMPROVE [S, B, W]
Improved = true
while Improved do
if | B| < |W| then interchange B and W // make B the larger portion
if a subset Z of S is found with y([S, B, W], /) <~7[S, B, W] then
[S,B,W]=1S.B, W]Z»—)W
else
if a subset Z of S is found with ([S, B, W], _, ) <[S, B, W] then
[S,B,W]=1S.B, W]Z»—)B
else
Improved = false
end if
end if
end while

Fia. 1. Partition Improvement Scheme.

3.2 Improving the Separator Size by Graph Matching

Recall that the evaluation function y[S, B, W] on a partition is given by the penalty function
based on the separator size and the imbalance ratio. In practice, the weight « is chosen to
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be close to one so that the separator size has a strong influence on the partition evaluation.
Therefore, one way to look for an improvement to the partition is to reduce the separator
size. Consider the move Z — W. The new separator size is given by:

Szow! =S| |Z] + | Adj(Z) N B,

Therefore, if we can find a subset Z of S such that |Z| > |Adj(Z) N B|, the move of Z to W
will result in a reduction of the separator size by an amount of |Z| — |Adj(Z) N B|. (Note
that this does not always guarantee a reduction in the evaluation function value.)

In [24], the technique of bipartite graph matching is used to find such a subset Z of
S with |Z| > |Adj(Z) N B|. We shall first describe the necessary terminologies in graph
matching and state the results relevant to this approach.

A bipartite graph is an undirected graph whose node set can be divided into two disjoint
sets X and Y such that every edge has one endpoint in X and the other in Y. A matching
of a bipartite graph H is a subset M of edges such that no two edges in this subset have a
node in common. A node that is incident to some edge in M is said to be covered; otherwise,
it is ezposed. If (x,y) belongs to the matching M, then z = mate(y) and y = mate(z). The
number of edges in M is called the size of the matching. A mazimum matching is one with
the largest possible size. A complete matching is a matching of size min{|X|, |Y|}.

We now consider the results in graph matching relevant to our context of improving
a 2-set partition [S, B, W]. Assume that B is the larger portion. Consider the bipartite
graph H = (S, Border(B), Ef;) where Ep contains the set of edges between vertices in S
and those in Border(B) of the original graph G. Recall that Border(B) = B N Adj(S). For
simplicity, we often refer to this bipartite graph by H(S, B), and the two defining sets as
S and B. However, it is implicit that only the subset Border(B) of B is used in H. For
a node z in this bipartite graph H, we shall use Adjy(z) to represent the set of adjacent
nodes of z in the bipartite graph H. We extend the notation to Adjy(U) for the adjacent
set of a subset U of nodes. Note that we use Adj(z) and Adj(U) to represent the adjacent
sets in the original graph GG. It should be clear from the definition of H that for any subset
Z of S, Adjy(Z) = Adj(Z) N B.

Fia. 2. Bipartite Graph Ezample from a Separator Partition.

Partition (B, W, S) Bipartite graph with a maximum matching

In Figure 2, we illustrate the induced bipartite graph H for a 6-by-6 grid problem with



the 9-point operator; that is, each interior node is connected to its eight neighbors. For
the given separator of size 9, we obtain its associated bipartite graph H. In the figure, a
matching between S and B is also given; and the edges in the matching are indicated by
thick lines. This matching is of size 7 and it is maximum.

In the separator improvement scheme, we want to find a subset Z of § satisfying
|Z] > |Adj(Z) N B|. The next theorem by Hall [14] relates the non-ezistence of such a
subset with bipartite graph matching.

THEOREM 3.1 (HALL [14]). The bipartite graph H has a complete matching of S into
B if and only if for every subset Z of S, |Z| < |Adju(Z)| = |Adj(Z) N B].

The result in Theorem 3.1 can be used to provide a necessary and sufficient condition for
the existence of a size-improving subset Z of S. The condition is that the bipartite graph
H does not have a complete matching from S into B. This implies that for a maximum
matching, there will be some exposed nodes in S, that is nodes without a mate in the
matching. In the example of Figure 2, there are two exposed nodes 13 and 25 in S so that
the maximum matching is not complete. We know, by the result of Theorem 3.1 that we
can find some size-improving subset Z of S.

To discuss the way to find such subsets, we need the notion of an alternating path.
For a given matching M, consider a path (zg,z1,...,2x) where no vertex is repeated. It is
called alternating with respect to M if the alternate edges belong to the matching M. For
example, in Figure 2, the path (25,20, 19, 14, 7) is alternating; the edges (20, 19) and (14,7)
belong to the matching. In [24], alternating paths are used in the following result to find a
subset Z satisfying |Z| > |Adj(Z) N B|.

THEOREM 3.2 (L1u [24]). Let = € S be an ezposed node in a mazimum matching
of H. Define S, = {s € S | s is reachable from 1z wvia alternating paths}. Then

The set S; can be determined by performing a special kind of breadth-first search
starting from the exposed node x. The search is restricted to nodes reachable via alternating
paths. Then S, is given by the nodes of S appearing in this breadth-first search tree rooted
at z. Since we only consider alternating paths in the traversal, we shall refer to this tree as
an alternating breadth-first search tree. This set S, can be used as Z to reduce the separator
size by one.

For the example in Figure 2, there are two exposed separator nodes: 13 and 25.
Immediately below we find the two alternating breadth-first search trees that start from
13 and 25 respectively. It is clear that Si3 = {7,13,19} and Adjm(S13) = {14,20}. On the
other hand, So5 = {7,19,25} and Adjy(Sos) = {14,20}. Figure 3 shows the improvement
of the separator by making the move Z = Sy3 (see the top two grids) and the move Z = Syj
(see the middle two grids).
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An alternating breadth-first search tree is a special case of an alternating breadth-first
level structure. Let Xy be some initial set of exposed nodes in S; X forms the first level.
Define the next level X1 = Adjpy(Xyp), namely those vertices in Border(B) adjacent to
vertices in Xy. The next level X5 contains all nodes in S that are mates with nodes in X;.
In general, the level sets have the following form.

X9 = U mate(z) C S

z€X2i_1
21
Xoiy1 = Adjg | |J X; | € Border(B)
j=0

The move set is Z = XoU Xy U... while its boundary set is Adjy(Z) = X1 UX3U.... For
example, the alternating breadth-first level structure for Xy = {13,25} is found below.

13| |25
| |

20
I I
7|19

The move set is Sfi305y = {7,13,19,25} while its boundary is Adju(Sq1325)) = {14,20}.
Figure 3 shows the improvement of the separator by making the move Z = Syy3 95} (see the
bottom two grids). Note that the resulting separator is smaller than the separator induced
by the two move sets S13 and Sos.

The first improvement to [24] is to use all exposed nodes in S to find a subset Z C S
that maximizes the decrease in separator size. It is based on the following extension [25] of
the result in Theorem 3.2 for separator-size reduction of greater than one.

THEOREM 3.3 (POTHEN AND FAN [25]). Define

St ={s €S| s is reachable from some exposed node in S via alternating paths }.
Then
o |Si| = [Adju(Sr)| >0,

o |S1| —[Adjy (S1)| = marzcs{|Z| — |Adju(Z)|},

e St is the smallest subset of S with this mazimum value | S| — |Adj(Sr)].
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The subset Sy can be constructed by performing an alternating breadth-first search starting
with X, which contains all exposed nodes of S.

Theorem 3.2 and Theorem 3.3 provide the end points of a range of separator subsets
with the size-improving property. Indeed, consider any subset X of exposed nodes in S.
It is easy to verify that the corresponding subset

Z = J{S: | z € Xo}

satisfies the condition |Z| — |Adjr(Z)| > 0. This gives a number of choices in selecting
a separator-improving subset. Although the subset S; provides the maximum reduction
in separator size, one might opt for a smaller reduction for a better balance in the two
components.

3.3 The Dulmage-Mendelsohn Decomposition

In [25], Pothen and Fan relate the subset S; used in separator size reduction with the
Dulmage-Mendelsohn decomposition of bipartite graphs [8]. The decomposition is also
useful in our context in finding a balance-improving separator subset. Let H (S, B) be
the induced bipartite graph from a given partition [S, B, W]. Assume that a maximum
matching M is given on H.

The Dulmage-Mendelsohn decomposition of S is the decomposition of S into three
disjoint subsets: S = S;U Sr U Sx where

S; = {s €S| sisreachable from some exposed node in S via alternating paths},

Sx = {s €S| sisreachable from some exposed node in B via alternating paths},

Srp = S\(S[USX)

Note we use the notation S7 to represent nodes reachable from internal exposed nodes,
and Sx from external exposed nodes of S. Sp stands for the remaining nodes. We shall
also use the notation (Sy, Sx, Sg) to represent the Dulmage-Mendelshohn decomposition of
S. We now quote some results on this decomposition relevant to the partition improvement
scheme.

THEOREM 3.4 (DULMAGE AND MENDELSOHN [8]). The Dulmage-Mendelsohn decom-
position (Sy,Sx,Sg) of S is independent of the mazimum matching used to define the
alternating paths.

THEOREM 3.5 (POTHEN AND FAN [25]). The set S; U Sg satisfies the following:
e [SrUSk| = [Adjr(SrU Sg)| = |S1| — |Adju (S1),

e S7USR is the largest subset of S with the mazimum value maz zcs{|Z| — |Adjr (Z)|},

Theorem 3.3 states that S, if used, is the smallest subset of S with the maximum
reduction |S7| — |Adjm(Sr)| in separator size. On the other hand, Theorem 3.5 identifies
St U Sg as the largest subset with such maximum reduction in separator size. Moving S
or S7U SRk will achieve the same amount of size reduction, but the balance for the resulting
partition will be better for one or the other of the two moves.

By symmetry, there is a similar Dulmage-Mendelsohn decomposition (B, Bx, Bg) of
B, the other part of the bipartite graph, where

Br = {be B | bis reachable from some exposed node in B via alternating paths},
Bx = {be€ B | bisreachable from some exposed node in S via alternating paths},
Br = B \ (B[ U Bx).
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THEOREM 3.6 (DULMAGE AND MENDELSOHN [8]). Sx = Adjg(Br) and Bx =
Adjy (Sy).

The set Sx is given by the adjacent set of B, the set of reachable nodes in B from
internal exposed nodes via alternating paths. By can be determined in the same way as Sy,
by forming the alternating breadth-first search forest from the set of exposed nodes in B.

For the example in Figure 2, the sets of exposed nodes in S and B are {13,25} and
{16, 33} respectively. This gives:

S; = {7,13,19, 25} B, = {4,10,16,21,27, 33}
Sx = {3,9,26,32} Bx = {14,20}
Sr = {8} Br = {15}

In Figure 4, we illustrate the Dulmage-Mendelsohn decomposition of the bipartite graph
H of Figure 2. The six sets are arranged in such a fashion to illustrate their adjacency
relationships.

Fic. 4. Dulmage-Mendelsohn Decomposition

By @ @ 27) (33 Adj(B;) = Sx
3 26

Sy 9 32 Br C Adj(Sx)

Bg @ Adj(Bgr) € Sx U Sk

Sk 8 Adj(Sg) C Bx U Bg
Bx 14) (20 Sy C Adj(Bx)
Sy 13 7 19 |25 Adj(Sr) = Bx

It is instructive to interpret the decompositions (S7,Sx,Sg) and (B, Bx, Br) in
connection with our partition improvement objective. For the given separator S, we
can extend it to include its adjacent set in the B portion to obtain a wide separator
S U Border(B). The Dulmage-Mendelsohn decomposition provides a machinery whereby
a separator can be obtained from this wide separator, such that it is of minimum cover
among all separator subsets of SU Border(B). Indeed, it is clear that the following are two
such separator subsets:

Sx USrU By, Sx UBrU By.

Either one of them can be used to achieve a maximum reduction in separator size in the
new partition.
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4 Using the Dulmage-Mendelsohn Decomposition to Improve Balance
4.1 Using the Set Sy

In the discussion in the last section, we are looking for a separator-improving subset Z of
S satisfying |Z| > |Adj(Z) N B|. If no such subset can be found, no reduction in separator
size by graph matching is possible. In terms of the Dulmage-Mendelsohn decomposition,
this is equivalent to the condition that the current separator S is already of minimum size
among covering separator subsets of SU Border(B). The algorithm as presented in [24] will
terminate if there is no reduction in separator size via graph matching.

However, based on our evaluation function (B, W, S), it may still be possible to improve
the partition by reducing the imbalance ratio max{|B|, |W|}/ min{|B|, |W|}. We can search
for a subset Z of S with |Adjg (Z)| = |Z|. A move of such a subset to the smaller portion W
will replace Z by Adji(Z) in S so that there will be no change in separator size. However,
there may be a reduction in the imbalance.

When Sy is empty (implying that size reduction is not possible by this approach), the
subset Sk can be used to reduce the imbalance. We now establish an interesting property
of this subset in the next theorem. We first need the following lemma.

LEMMA 4.1. Let S; = 0. Consider a subset Z of S. If ZNSx # 0, then |Z| < |Adju(Z)|.

Proof. S; = () implies that there is a complete matching from S into B. By Theorem 3.1,
Z| < |Adju(Z)| for every subset Z of S.

Let Z be a subset of S with ZNSx # (). Assume for contradiction that |Z| = |Adjn (Z)].
This means Adjy(Z) is exactly the set of matched vertices of Z for a given maximum
matching. Let s be a vertex in Z N Sx. Then there exists an exposed vertex b, € B and
an alternating path from b, to s:

(be, 81,01, ., 84, b, 8441 = 5)

where each pair {s;,b;} belongs to the maximum matching. Let m be the smallest index
such that s, € Z. If m = 1, this is a contradiction since b, € Adjy(s1) C Adjy(Z) and
be does not have a mate in Z. For the case m > 1, this is again a contradiction since
bm—1 € Adjy(sm) C Adjy(Z) and the mate sp,—1 of by,—1 is not in Z by the choice of m.
Therefore, we have |Z| < |Adjy(Z)|. K

THEOREM 4.1. Let S; = (). The separator subset Sg is the largest subset of S such that

its size is the same as the size of its adjacent set.
Proof. By Theorem 3.5, we have

|ST U Sg| — |Adju (Sr U SR)| = |S1| — |Adju (S1)],

so that if S; = 0, \Skr| — |Adju (Sr)| = 0.
Consider any subset Z of S with the property |Z| = |Adjy(Z)|. By the result of
Theorem 4.1, Z N Sx = (), which implies Z C Sg. B

By this result, the subset Sg is the key to find a balance-improving separator subset.
We first note from [25] that in general we have |Sgr| = |Bg|. Furthermore, we have

Ade(S[ U SR) = Bx U Bg,

so that when S; = (), we have By = () and Adjy(Sr) = Bgr. Therefore, when the separator
subset Sy is empty, the move of Sp to W will give a new separator

SSRHW = (S U BR) \ SR7
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FiG. 5. Improving the balance.

so that ‘SSRHW| = ‘(SU BR) \ SR‘ = ‘S‘,

Consider the example in Figure 5. There is a complete matching from the set S to B so
that in the induced bipartite graph, S; = (). This implies the separator-improving technique
in the last section is not applicable. Note that the Dulmage-Mendelsohn decomposition is
given by:

S =10 B; = {5,11,17,30, 31,32}
Sx = {4,10,24,25} By =
Sk =1{9,15,19,20,21} Bpr = {16,22, 26,27, 28}

For this example, moving the subset Sp from S to W will have the net effect of replacing
it by Br in S. In this way, the new separator will be {4, 10, 16, 22, 24, 25,26, 27,28}, which
is the same size as before.

Now consider a separator subset Z with the property |Z| = |Adjn(Z)|. Moving it to
the portion W will preserve the separator size. The next result gives a simple necessary
and sufficient condition for the move to improve the evaluation function v[S, B, W].

THEOREM 4.2. Let [S, B, W] be a given partition with |B| > |W| and S; = 0. Consider
a subset Z with |Z| = |Adjg(Z)|. The move of the subset Z to W will reduce the evaluation
function if and only if |Z| < |B| — |W|.

Proof. Let

(S, B, W] .y = [Szsw, Bzosw, Wz w]

be the new partition after the move of the subset Z from S to W. It is clear that
1Sz0sw | = |S], [Bzow| = [B] = |Z], and [Wzw| = [W| + |Z].
“Case 17: |Bz,_>w| 2 ‘Wz,_,w‘

1 (140 2L 151 (1 4+ 0l 2=

VS, B,W] —9[S,B,W], .y = a|W| W+ |Z]|
ol S| 121 (1B]+ W) _
(WI(IW] +12])

“Case 27: |Bzw| < [Wzow|.
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Bl (Wi+14
VS, B,W| =[S, B,W], ., = |5 <1 +QW> — |5 <1 +am>
_ ofSIZ1 (B[ + W) (B = W] - |Z])
(WI(IB[ = [Z])
Assume |Z| < |B| — |W/|. The evaluation function will be reduced in case 1. Moreover,

in case 2, we have |B| — |W| —|Z| > 0 so that y[S, B, W] —«[S,B,W], ., > 0.
On the other hand, assume that «[S, B, W] — v[S,B,W],_ .y, > 0. In case 1, we have
\B| — |Z| > |W| + |Z]|, which implies that

|B| — [W[>2]z] > |Z].

Furthermore, in case 2, a reduction in the evaluation function implies that |B|—|W|—|Z| > 0
or |Z| < |B|—|W|. &

By Theorem 4.1 and Theorem 4.2, to improve the balance of a given partition, we
should be looking for a subset Z of S such that |Z| = |Adjy(Z)| < |B| — |W/|. Of course,
if |Sg| < |B| —|W/|, this set Sk is a good choice. Otherwise, we need to find proper subsets
of SR.

4.2 Finding Balance-Improving Subsets of Sy

Finding a subset Z with |Z| = |Adjy(Z)] is related to the problem of reordering a sparse
square matrix to block lower triangular form. In [25], Pothen and Fan provide an algorithm
to compute the block triangular form of a sparse matrix. In their “fine decomposition” step,
the square submatrix associated with the vertices in Sr and Bp are further reordered into
block lower triangular form. (Pothen and Fan actually compute a block upper triangular
form; but the algorithm can be adapted for block lower triangular form.) Their approach
involves the following substeps:

e Form a directed graph based on the bipartite subgraph of Sp and Bgr. The directed
graph consists of nodes from Sgr. For two nodes x and y in Sg, there is a directed
edge from z to y in this new directed graph if and only if there is an edge from z to
the mate of y in Bp.

e Determine the strongly connected components of this directed graph. (The quotient
graph using the strongly connected components forms a directed acyclic graph or in
short, a dag).

e Order the strongly connected components of this directed graph by a reverse
topological ordering (i.e. an ordering of the nodes in the directed graph so that all
the directed edges are pointing backwards to the left).

The reverse topological ordering of the strongly connected components of this directed
graph will induce an ordering of the vertices in Sg and Bp so that the bipartite graph with
this new reordering has a block lower triangular form. It should be clear from the block
lower triangular structure that any subset Z of nodes of Sr corresponding to the leading
blocks in the triangular form has this desirable property |Z| = |Adjy (Z)].

It is instructive to apply this scheme to the example of Figure 5. The new directed
graph formed will consist of nodes from Si = {9, 15,19, 20, 21}. Figure 6 shows the directed
graph; in each vertex of this directed graph, we label it with both the node in Si and its
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FiG. 6. Induced Directed Graph.

5]&)
RIE
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mate in B. There is no cycle in this directed graph, so that each node forms a strongly
connected component. Furthermore, the following is a reverse topological ordering;:

Bl

9,15,19,20,21
and the corresponding matrix is lower triangular:

16 22 26 27 28

9 °

15 o o

19 °

20 o o
21 e o o o o

We can then deduce from this reverse topological ordering that all of the following subsets
have the property |Z| = |Adju (Z)|:

{9},{9,15},{9,15,19}, {9, 15,19, 20}, {9, 15,19, 20, 21}.

It is interesting to note that there are different reverse topological orderings of this directed
graph. They will provide additional such subsets. For example, {19,20,9,15,21} is a
different reverse topological ordering, and the subsets {19}, {19,20}, {19,20,9} also have
the size-preserving property.

5 Partition Improvement on Compressed Graphs
5.1 Compressed Graphs

The Dulmage-Mendelsohn decomposition is the basic tool used in the last two sections to
improve a given 2-set partition. In this section, we explore efficient ways of computing this
decomposition for some practical classes of matrix problems. It is common for graphs from
applications to have sets of vertices with identical adjacency structures, e.g., in a finite
element graph, a given geometric location may have multiple displacements and rotations.
Such vertex pairs are sometimes referred to as indistinguishable in the sparse matrix research
community. More formally, two vertices z and y are said to be indistinguishable if

Adj(x) U {z} = Adj(y) U {y}-

The notion of compressed graph is introduced in [1], [6], where each vertex of the
compressed graph corresponds to (possibly) several indistinguishable vertices in the original
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graph. A compressed graph can be viewed as a quotient graph of the original unit-weight
graph consisting of weighted compressed vertices. The motivation in [1] is for efficient
implementations of some sparse matrix ordering algorithms. The number of vertices in a
compressed graph can be several times smaller than that of the original unit-weight graph.
Since most graph algorithms have a strong O(|V]) or O(|E|) component to their complexity,
it would be quite beneficial to work with a compressed graph instead of the original graph.

Following [1], we use boldface G = (V, E) to represent a compressed graph. A boldface
v is used to denote a compressed vertex in V with an indistinguishable set of original
vertices. For a given compressed graph, it is helpful to define its associated compression to
be a mapping k : V. — V, where £(v) is the compressed vertex in V containing the vertex
v. This means k(v) is a subset of vertices in V' (containing v), that are indistinguishable
from v in G. However we do not require x(v) to include all possible indistinguishable
vertices of v. An edge (u,v) is in the compressed edge set E if (ux v)NE # (). The theory
and algorithm to be developed apply to any level of compression (partial or complete).
Note that this is a loss-less representation; that is, given E and x, we can always recover
the original edge set E.

We also extend the usage of x to subsets: for a subset Y C V|, k(YY) = {k(y) | y €
Y} C V. For a compressed vertex v € V, define its weight wi(v) to be the number of
indistinguishable vertices contained in v. This notion can be extended to the weight of a
subset of compressed vertices: for a subset Y of V,

wi(Y) =Y _{wi(y) | y € Y}.

We now consider the partition improvement techniques of the last two sections in the
context of compressed graphs.

5.2 Definitions for Bipartite Compressed Graphs

Let G be a given compressed graph with compression x and a two-set partition [S, B, W];
that is, Adj(B) C S and Adj(W) C S. We first make a connection of this compressed
partition with a partition on the original graph G.

THEOREM 5.1. There is a unique two-set partition [S, B,W] on G such that x(S) = S,

k(B) =B, and k(W) = W.
Proof. It is clear that the subsets defined by:

S={veV|kw)eS}, B={veV |k eB}, W={veV|k)e W}

satisfy the conditions x(S) = S, k(B) = B, and k(W) = W. To prove that they form
a 2-set partition on G, it suffices to show that Adj(B) C S (by symmetry, we have
Adj(W) C S). This is the case since otherwise, it would have implied that W and B
are adjacent contradicting the fact that S separates them. The uniqueness follows from the
fact that [S, B, W] is a partition on G. l

The simple connection in Theorem 5.1 allows the partition improvement techniques
described in Sections 3 and 4 using the Dulmage-Mendelsohn decomposition to be applied
to the induced partition [S, B, W] of the unit-weight graph. We now show that the
decomposition of the original graph can be readily obtained from a similar decomposition
of the compressed graph. We first extend the various notions used in the formulation of
the Dulmage-Mendelsohn decomposition from unit-weight graphs to compressed graphs.
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5.2.1 Compressed matching and maximum matching As before, let [S, B, W] be a
given partition on the compressed graph G. This will in turn define a bipartite compressed
graph H(S, Border(B)). We extend the notion of matching to bipartite compressed graphs.
In the unit-weight case, a matching can be viewed as an assignment of an integer value
f(s,b) to each edge (s,b) in the bipartite graph such that

e for every edge (s,b), f(s,b) > 0;

e for every vertex § € S, 1> {f(5,b) | b€ B};

e for every vertex b€ B, 1 > Y {f(s,b) | s € S}.

It follows then the assigned values can either be 0 (unmatched) or 1 (matched). Further-
more, a maximum matching is one that will maximize the sum Y {f(s,b) | s € S, b € B},
which is the number of edges in the matching.

With this interpretation, we generalize a compressed matching of a bipartite compressed
graph to be an assignment of integer values f(s,b) to the edges such that they satisfy the
following three conditions.

e for every edge (s,b), f(s,b) > 0;

e for every compressed vertex § € S, wit(s) > > {f(8,b) | b€ B};

e for every compressed vertex b € B, wi(b) > Y {f(s,b) | s € S};
Note that we have used the weight of each vertex instead of unit weight in the above bounds
on the edge value sums. Similarly, a maximum compressed matching is one that maximizes
the total edge value:

> {f(s,b)|s€S, beB}

Compressed exposed nodes and alternating paths

In the unit-weight bipartite graph, an exposed node s, is one such that none of its incident
edges belong to the matching. In terms of the value f(s,b), this is equivalent to the
condition that for the node s,

1> {f(se.b) | b€ B} =0.
In a compressed bipartite graph, we define an exposed node s, € S to be a node such that
wi(se) > > _{f(se,b) | b € B}.

The exposure of s is defined to be wt(s) —>_{f(s,b) | b € B}. Therefore, the exposure of an
exposed node is positive. Exposed nodes and exposure are similarly defined for compressed
vertices in B.

For a given compressed matching M of the compressed bipartite graph, consider a path:

s) —b;—s—by—sy—...by, —SH — ...
It is an compressed alternating path with respect to M if the alternate edges
(bl, Sl), (bQ, SQ), . (bm, Sm)7 e

all have positive edge values from the matching M. In such a case, we use the following to
represent an alternating path:

so —by—=s1 —by—=8s8 —...b,, =8, — ...

where a double-lined arrow is used to indicated an edge with positive edge value. An
alternating path that starts with a compressed node from B is similarly defined.
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5.3 Decomposition in Bipartite Compressed Graphs

Recall that our objective is to improve a partition using the Dulmage-Mendelsohn decom-
position; and we want to take advantage of compression in finding such decomposition. As
before, let [S, B, W] be a given partition on the compressed graph G and H(S, Border(B))
be the corresponding bipartite compressed graph. Furthermore, let M be a maximum
compressed matching on H. Consider the decomposition S; USk USx of S where

S; = {s €8S |sisreachable from some exposed node in S via alternating paths},
Sx = {s € S| sisreachable from some exposed node in B via alternating paths},

Note that we have used the boldface exposed and alternating in the above decomposition
to emphasize the use of the extended definitions of compressed exposed nodes and
compressed alternating paths for compressed bipartite graphs. The decomposition By U
Br UBy of B can be similarly defined.

We now make the connection of this decomposition with the Dulmage-Mendelsohn
decomposition in the unit-weight graph. Consider the unique partition [S, B, W] of the
unit-weight graph G satisfying (S) = S, #(B) = B, and k(W) = W in Theorem 5.1.
This partition will in turn determine a unit-weight bipartite graph H(S, B). We now
relate the decomposition S; U Sp U Sx with the Dulmage-Mendelsohn decomposition of S
in this H(S, B). Note that the Dulmage-Mendelsohn decomposition (S7,Sx,Sg) of S is
independent of any maximum matching used in H. But in order to make the connection
between the two decompositions, we need to define an induced matching of H from H.

Let M be a compressed matching on H(S, Border(B)). An induced matching M on the
unit-weight bipartite graph H (S, B) can be defined as follows. For each compressed vertex
s, we have the size condition:

wt(s) > {f(s,b) | be B}

Therefore for each incident edge (s, b), we can always assign f(s,b) number of distinct S-
vertices from s to this compressed edge. Similar allotments of B-vertices from compressed
vertices of B to compressed incident edges can be assigned.

Now for each compressed edge (s,b) with value f(s,b) in the matching M, there will
be f(s,b) number of S-vertices from s and the same number of B-vertices from b assigned
to this edge. Since each S-vertex in s is adjacent to each B-vertex in b, we can get f(s,b)
different edges consisting of pairs of adjacent assigned vertices from s and b. We place
them in the set M.

After doing this for every compressed edge, we see that the set of edges in M, by
construction, does not have common vertices. This means that the set M forms a matching.
Furthermore, this set M satisfies the following property.

LEMMA 5.1. Giwven M is a maximum matching on the compressed bipartite graph H,
M is a mazimum matching on H.

Proof. Assume for contradiction that M is not maximum. We can therefore find an
alternating path connecting two exposed vertices, say 3 € S and b € B (such paths are
usually referred to as an augmenting path):

S5—b =35 —...0b =35 —b.
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Through compression, this corresponds to a path or walkin the compressed graph:
k(3) — k(b)) = K(31) — ... k() = k(5;) — K(b).

Since 5 € #(3) and b € x(b) are both exposed in M, we can increase the total matching in
M by at least one by alternately increasing and decreasing the f values along this path.
This contradicts the fact that M is a maximum matching on H. W

By this lemma, M is a maximum matching on H so that the Dulmage-Mendelsohn
decomposition (S;,Sx,Sg) of S can be determined using M.

THEOREM 5.2. ﬁ(g[) = S[, ﬁ(g}z) = SR, H(gx) = Sx.

Proof. We only prove x(S;) = S; and leave the remaining two for the readers. We first
show x(S7) € S;. Consider a compressed vertex x(5) € x(S7), with 3 € S;. This means
that there exists an alternating path:

sg—bj—=s1— ... —b—=5=75
from some exposed node sq € S. This induces a compressed alternating path or walk in H:
k(so) — k(b)) = K(s1) — ... — k(b)) = K(st) = K(3)

and k(sg) is exposed in S. Therefore x(3) € S;.
We now show S; C k(S7). Consider a compressed node s € S;. There exists an
alternating path in H:

s) — by =8 — ... — b = s; =5,

from an exposed sg. Choose a 3y € sg, that is exposed in M. For 0 < i < t, choose
a matched edge (b;,3;) in M where x(b;) = b; and k(5;) = s;; one is guaranteed since
f(b;,s;) > 0. This forms an alternating path in M from an exposed node 3; to 3;; therefore
3; € S;. The result follows since x(5;) = s. Il

The next two theorems follow directly from the results in Theorem 5.2, The first theorem
states that the weight of S; is less than that of By so that the partition [S, B, W] can be
improved by replacing the subset S; with its adjacent set B x. The second theorem relates
the weights of the two subsets S and Bp.

THEOREM 5.3. If Sy is non-empty, then wt(Sy) < wt(Bx).
THEOREM 5.4. wi(Sg) = wi(Bg).

6 Partition Improvement by Maximum Network Flow

6.1 Bipartite Compressed Graph Matching by Maximum Network Flow
Finding an assignment of edge values to a bipartite compressed graph that corresponds
to a maximum matching can be reformulated into a much-studied combinatorial problem
involving flow through a network [9], [11], [12], [18], [27]. A network is a weighted directed
graph with two special nodes: one with no incoming edges (the source), one with no outgoing
edges (the sink). There are a set of capacity constraints given to the edges and vertices.
Most discussions of the network flow problem in the literature assume the use of edge
capacities. The generalization to include both edge and vertex capacity is well known, (for
example, [22, pages 120-121]). For our purposes, we only need to consider networks with
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finite vertex capacities, i.e., each vertex y is given a non-negative integer value capacity(y),
called the capacity of the vertex. All edges have infinite capacity.

A flow is a function that assigns a non-negative integer value flow(y, z) to each directed
edge (y,z). The flow satisfies two conditions:

e the amount of in-flow equals the amount of out-flow at each vertex except the source
and sink;

e the in-flow must be within capacity of each vertex.

Let inflow(y) denote the amount of in-flow into the vertex y, that is,

inflow(y) = > {flow(v,y) |veV}

and let outflow(y) be the amount of out-flow from the vertex y,

outflow(y) = Z{ﬂow(y, v) |veV}

For every vertex aside from the source and sink, the flow function satisfies

inflow(y) = outflow(y) < capacity(y).

We shall also refer to inflow(y) (or equivalently outflow(y)) as the flow across the vertex
y. A vertex y is said to be saturated or at capacity if inflow(y) = capacity(y); otherwise, it
is said to be below capacity or to have excess capacity. By convention the source and sink
have infinite capacity.

The value of the flow is the amount of out-flow from the source node, outflow(source)?,
or equivalently, the amount of in-flow into the sink node, inflow(sink). The network flow
problem is to find a flow with the maximum value for a given network. It should be
emphasized that we consider only integer capacity and flow values.

We now describe a network flow problem that when solved will give a solution
to the maximum matching problem for bipartite compressed graphs. As before, let
H(S, Border(B)) be our bipartite compressed graph with weight function wt(x). A bipartite
network is constructed as follows.

e In addition to the source and sink, the nodes in the network are the vertices in S
and Border(B).

e For each vertex s € S, add the directed edge (source,s) to the network.

e For each vertex b € Border(B), add the directed edge (b,sink) to the network.

e For each edge (s,b), s € S, b € Border(B), in the graph H(S, Border(B)), add a
directed edge (s,b) to the network, where flow is assumed to go from s to b along
this edge.

e All edges have infinite capacity. For each vertex y in H(S, Border(B)), we set
capacity(y) = wt(y).

*We use boldface for source and sink to emphasize that we are working on the weighted compressed
graph.
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source

source

source

Fic. 7. Top: Ny, the original bipartite network used to find the Dulmage-Mendelsohn
decomposition; Middle: N,,, the intermediate network found by adding edges that do not increase
the maz flow; Bottom: Ny, the final three-layer network found by deleting edges from the middle

layer vertices to the sink.
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In the top network of Figure 7 we illustrate the bipartite network obtained for the
separator example of Figure 2. Arrows are used on edges to indicate the direction of flow
(except for those involving the source and the sink). Edges with positive (zero) flow are
thick (thin) lines. Note that there is a directed edge from the source to every vertex in S
(the set of “square” vertices) and one from every vertex in Border(B) (the set of “circle”
vertices) to the sink.

We shall use the notation A, (b for bipartite) to represent this bipartite network. To
establish the equivalence between a max-flow solution on this bipartite network with a
maximum matching on the bipartite compressed graph, we use the equivalence of flow
augmenting paths in the former with augmenting paths in the latter. An augmenting path
in the bipartite compressed graph is an alternating path whose first and last vertices are
exposed in S.

It is simple to generalize such augmenting paths for bipartite network flows. Indeed, a
flow augmenting path for a bipartite network is a sequence of edges from the source to the
sink with alternate forward and backward edges:

source —» Vi —> Vg <— Vg3 —> V4 <— ...V — sink.

Furthermore, each backward edge (v2j+1,v2j) has positive flow and the vertices v; and
vy are below capacity. It is easy to relate this with an augmenting path in the original
bipartite compressed graph. Since v; and vy are below capacity, they are exposed in the
graph matching. Any backward edge with positive flow means the two incident vertices are
matched.

Since we will be considering flows on a general network, we must further generalize the
notion of a flow augmenting path. When edges have finite capacity, a flow augmenting
path is a path from the source to the sink such that forward edges are below capacity
and backward edges have positive flow. In our networks the edges have infinite capacity
and the vertices have finite capacity, so a flow augmenting path is a sequence of vertices
(source = vq, vy, -, Vg, Vpy1 = sink) with these four properties.

e Two consecutive vertices v; and v;;; are connected by an edge in the network a

forward edge is of the form (v;,v;y1), a backward edge is of the form (v;11,v;).

e Any two consecutive forward edges (v;_1,v;) and (v;, v;11) implies vertex v; is below
capacity.

e Any backward edge (v;t1,v;) has nonzero flow, i.e., flow(vit1,v;) > 0.

e A vertex may appear in the path once or twice, via a forward edge, a backward edge,
or both?.
The overall flow value can be increased by increasing flow along the forward edges and
decreasing flow along the backward edges.

6.2 Min-cut in Network Flow

The dual to the network max-flow is a min-cut. In our context of networks with finite vertex
capacities and infinite edge capacities, a cut is a set of vertices whose removal separates the

3Technically speaking, if a vertex is visited twice we have a flow augmenting walk. Had we taken the more
conventional route of handling vertex capacities by expanding a vertex v into a pair of vertices connected
by an edge (v, v™) whose capacity is the weight of the vertex, then v~ would be visited by a forward edge,
vT would be visited by a forward or a backward edge, and there would be no repeated vertices along the
path.
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source from the sink, i.e., a separator of the graph from which the network was derived.
A min-cut is a cut such that its size

Z{capacity(v) | v belongs to the cut}

is minimum among all cuts. The well-known max-flow min-cut theorem states that the size
of a min-cut is the same as the value of a max-flow.

It is interesting to relate min-cuts with the Dulmage-Mendelsohn decomposition. For
a bipartite compressed graph, once we find a maximum matching we can determine
the Dulmage-Mendelsohn decomposition and thus construct one or more minimum cover
separators, such as Sy USp UBx and Sx UBRr UBx. A covering separator of minimum
size is equivalent to a min-cut of a bipartite network constructed from S and Border(B).

There are two specific min-cuts of the network that are of interest. The tool we use is a
flow alternating path. A flow alternating path differs from a flow augmenting path in that
it need not start from the source nor end at the sink. Therefore, any contiguous sequence
of edges from a flow augmenting path is a flow alternating path. We can now define the
following subset:

Rsource = {v € V | v is reachable from source via a flow alternating path}.

Intuitively, the subset Rgource provides the “bottle-neck” that limits the total flow to its
present value. Indeed, the border of Rggurce 18 a min-cut of the network. A similar subset
can be defined with respect to the sink:

Rgink = {v € V | the sink is reachable from v via a flow alternating path}.

The border of Rgjnk is a min-cut of the network. For the network at the top of Figure 7,
the two reach sets and their borders are given below.

Rsource = {3,7,8,9,13,14,19, 20, 25, 26, 32}
Border(Rsource) = {3,8,9,14,20,26,32}
Rgnk = {3,4,9,10,14,15,16,20, 21, 26,27, 32, 33}
Border(Rgink) = {3,9,14,15,20,26,32}

In the context of the Dulmage-Mendelsohn decomposition, Rgource = St UBx USpUSx,
BOTd@’r’(Rsource) =BxUSRUSx, Rgjnk = BrUSx UBRrUBy, and BO’r’dBT(RSink) =
SyUBrUBy.

6.3 Enhancement Techniques by Network Flow

In this subsection, we consider new partition improvement techniques based on network
flows. We first consider a motivating example. Consider again the grid at the bottom
of Figure 3. Using the Dulmage-Mendelsohn decomposition, we can determine the move
set Sy = {7,13,19,25} that decreases the separator size the most. The size of the new
separator {3.9,14,15,20,26,32} is seven. On the other hand, consider the two grids in
Figure 8. The left hand grid shows a wide separator S U Border(B) that contains eighteen
nodes. The right hand grid shows a separator subset of size six, smaller than the “best”
separator that was found using the Dulmage-Mendelsohn decomposition.

There is no contradiction here, yet there is a subtle point that needs to be understood.
Theorem 3.3 states that Sy is the smallest subset of S that if absorbed by W will result in
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Fi1a. 8. A 2-layer wide separator and its minimal weight separator subset

2-layer wide separator minimal weight separator

the largest decrease of separator size. The “move” that generated the partition in the right
hand grid of Figure 8 had W absorb the separator vertices {7, 8,13,19,25, 26,32}, but W
also absorbed the black vertices {14,20}, so it is a more general move than that covered by
Theorem 3.3. Indeed, {7,8, 13,14, 19, 20, 25,26, 32} is the smallest subset of SU Border(B),
which when moved to W will result in the largest decrease in separator size.

We first offer an intuitive explanation to the enhancement. Our goal is to improve an
initial partition [S, B, W] of a given compressed graph. The separator S is first used to
construct a compressed bipartite graph based on S and its adjacent set Border(B) in B. In
Section 6.1, we construct a bipartite network N} based on this compressed bipartite graph.
A max-flow min-cut solution to this bipartite network N can then be used to obtain an
improved new partition for the original compressed graph.

We shall modify our bipartite network so that the max-flow value (and hence min-cut
size) of the new network is no larger and possibly smaller. More importantly, the min-cut
of this new network also corresponds to a separator of the underlying compressed graph.
There is potential to obtain a smaller separator than the one from the original bipartite
network.

We now describe how to construct the new network. Let S U Border(B) be the wide
separator induced from S. We have a new partition [S U Border(B), Int(B), W]. The wide
separator has two portions S and Border(B). Consider a further subdivision of the subset
Border(B) into

Y = {b € Border(B) | Adj(b) N Int(B) = (} and Z = Border(B)\Y.

Y contains those vertices in Border(B) that are not adjacent to Int(B), while Z has those
vertices that are adjacent to Int(B).
By using these subsets we can form the new network.

e In addition to the source and sink, the nodes in the network are the vertices in S and
Border(B) = Y UZ.

e For each vertex s € S, add the directed edge (source,s) to the network.



24

e For each vertex z € Z, add the directed edge (z,sink) to the network.

e For s € Sand b € Y UZ = Border(B) where (s,b) is an edge in the original
compressed graph, add the directed edge (s, b) to the network.

e Fory € Y and b € YUZ = Border(B), if (y,b) is an edge in the original compressed
graph, add the directed edge (y,b) to the network.

e All edges have infinite capacity. For each vertex s in SU Border(B) we set capacity(s)
= wi(s).

We shall refer to this new network by N, (w for wide). Let us first apply the
construction on the partition example of Figure 2. We note that the wide separator is
subdivided into these three sets:

S ={3,7,8,9,13,19,25,26,32}, Y ={14,20} and Z = {4,10,15,16,21,27,33}.

Ny is the bottom network of Figure 7. The readers should compare this network with Nj,
the original bipartite network Ny, at the top of Figure 7.

We are now ready to establish the important result that this new network N, has
a max-flow (or min-cut) solution no larger than the one from the bipartite network N
using the same wide separator S U Border(B). To prove this result we will construct an
intermediate network N, by adding the following directed edges into the bipartite network

Np.

e Fory € Y and b € YUZ = Border(B), if (y, b) is an edge in the original compressed
graph, add the directed edge (y,b) to the network.

Ny, is the middle network in Figure 7 and contains the edges (14,20), (20,14), (14,21),
(14,15), (20,15) and (20,27) in addition to those found in Nj.

The following lemma will be used in the next theorem to show that the max-flow values
for Ny and N, are identical. It proves that adding an edge connecting two vertices that
are both adjacent to the sink does not change the max-flow value.

LEMMA 6.1. Let x and y be two vertices in a given network Ny, such that both x and
y are connected to the sink. Consider the new network Ny by adding a directed edge (z,y)
to Ny. The networks Ny and N1 have the same max-flow values.
Proof. Since the network N7 has one additional edge than Nj, its max-flow value is at
least as large as that of Ny. Consider a flow function f; for ] that achieves the max-flow
value for Nj. If fi(z,y) = 0, there is an equivalent flow function for the network Njy. If
fi(z,y) > 0, define the following flow function fy for Nj:

fo(z, sink) = fi(z,sink) + fi1(z,y),

foly, sink) = fi(y, sink) — fi(z,y),

fo(z,y) = 0 (there is no directed edge from z to y in Nj), and the fy values are the same
as the f; values for the other vertices. It is easy to see that fy is a flow function for Ny and
its low value as the same as the max-flow value for N;. i

THEOREM 6.1. The maz-flow values of the networks Ny and Ny, are the same.
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Proof. First note that the network N, is constructed from N} by adding a number of
directed edges to vertices that are directly linked to the sink. By applying Lemma 6.1 a
number of times, we have the result that the networks N}, and AN, have the same max-flow
values. i

After we delete from N, all edges (y,sink) for y € Y, (in our example these edges
are (14,sink) and (20,sink)), we are left with the network N,. We now show that the
max-flow value for NV, is no larger, and can be smaller, than the max-flow value for Nj.
The reach sets from the source and sink are

Reource = {3,7,8,9,13,14,15,19,20,21,25,26,27, 32, 33},
Ry = {3,4,9,10,15,16,21,27,33},

and they both have the same border, and thus give rise to the same min-cut,
{3,9,15,21,27,33}, which has six vertices compared with seven vertices for a min-cut of

Np.

THEOREM 6.2. The maz-flow value of the network N, is less than or equal to the
max-flow value of Ny.
Proof. Compare the networks N, and N,,. The network N, can be obtained from N, by
removing those directed edges (y, sink), for y € Y. Since N, is a sub-network of N,,, the
max-flow value of N,, must be smaller than or equal to that of NV,,. i

6.4 Generalization to Wider Separators
The technique introduced in the last section hinges on the choice of the wide separator
S U Border(B). It is easy to generalize this technique for “wider” separators.

Consider a given partition [g, E,VNV], where the separator set S need not be minimal
but can be quite large. Subdivide the separator set S into three subsets:

X = Border(SUB), Y = In#(S) and Z = Border(SUW).

A network can be constructed in the same manner as given in the last subsection by adding
edges from the source to vertices in X, from vertices in Z to the sink, and retaining the
underlying edges associated with Y from the original graph. A max-flow min-cut solution
to this network will determine a separator subset of S with minimum weight among all
such separator subsets.

The wide separator S U Border(B) we have used in our last subsection can be viewed
as having two layers: S and Border(B). Let us now consider a 3-layer separator, given by:

S = Border(W) U S U Border(B),

and solve a flow problem on a three-layer network Nj. N
Figure 9 contains an example to illustrate a 3-layer separator S given by the union of
the following three layers:

Border(W) = {2,8,9,15,22,29,36,43,44,45},
S = {3,10,16,17,23,30,37,38, 39, 46}.
Border(B) = {4,11,18,24,25,31, 32,33, 40, 47}.

The remaining white vertices form the partition subset VNV, while remaining black vertices
form B.
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Fic. 9. Finding a minimal separator using a 3-layer network

3-layer wide separator set wide separator and its three sets X, Y and Z

The right grid in Figure 9 shows the decomposition of the wide separator S into the
three subsets X, Y, and Z. They form the basis on which the network is formed and
max-flow min-cut problem is solved. It should be pointed out that often there are more
than one min-cut solution. In this example there are three {2,9,16,23,30,37,44},
{3,10,17,24,31, 38,45} and {4,11,18,25,32,39,46}.

When S is even wider, say five or seven layers, the space from which we find a minimal
weight separator is large. As the number of layers in S increases, the weight of a minimal
separator cannot increase. As in our example in Figure 9, there often will be more than one
choice of minimal weight separators; we want to choose one that minimizes our partition
evaluation function.

7 Experimental Results
7.1 A closer look at 2-layer smoothing

In this section, we provide some experimental evidence on improving partitions based on
the Dulmage-Mendelsohn decomposition. Table 1 contains a typical iteration history for
the algorithm in Figure 1. The sparse matrix BCSSTK37, taken from the Harwell-Boeing
collection [7], has 25503 degrees of freedom and 1115474 edges. After compression, we work
with the weighted compressed graph with 7093 vertices and 88924 edges.

The partitioning algorithm used is from the paper [2]; readers are referred to it for
more details. We first constructed a domain decomposition of the graph there were
141 domains for this test. The initial partition split the domains into two groups of near
equal weight. The interface vertices had weight 1166, and the partition has imbalance of
max{|B|,|W|}/ min{|B|, [W|} = 1.013. We then applied a block Kernighan-Lin algorithm
on the domain-segment graph to reduce the separator size to 572, but with an increase
in imbalance to 1.118. The separator at this stage tends to be “locally smooth” when it
coincides with the boundary of a domain, but the domains do not generally align themselves
to form smooth bisectors of the graph.

We then executed the algorithm in Figure 1. Note that the initial imbalance of 1.118
is rather high. At the first step we evaluate two moves that would reduce the separator
size and the size of the larger component, namely Z = Sy and Z = S; USg. The S; U Sg
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TaBLE 1
Iteration History for BCSSTKS37

reduction | partition
|S| | imbalance in |S| cost
initial two-set partition 1166 1.013 2347.2
after Block Kernighan-Lin | 572 1.118 50.9% 1211.5
1. S;USpR—» W 518 1.062 9.4% 1068.1
2. SfUSR— W 484 1.038 6.6% 986.4
3. S;USp —» W 480 1.017 0.8% 968.2
4. S — W 471 1.001 1.9% 942.5
5. S —» W 460 1.012 2.3% 925.5
6. S — W 446 1.015 3.0% 898.7
7. Sp—» W 446 1.013 0.0% 897.8
8. Sy—B 438 1.030 1.8% 889.1
9.S—B 434 1.041 0.9% 885.8
10. S;— B 420 1.051 3.2% 861.4
11. S; — B rejected 419 1.069 0.2% 867.0

move reduces the partition cost function more. This holds for three moves, as we see both
the separator weight and the imbalance decrease together. The next three moves are Sy
moves, for the balance is close to unity and the Sg sets are relatively large.

At step 5, note that the move Z = S; — W results in a reduction in separator size but
an increase in imbalance. After the move the new set By, ,w is now smaller than Wy, w
and the difference [Wy,_,w| — |Bz._,w| is greater than the previous difference |B| — |[W|.
At the next step, we maintain the convention that W is the smaller portion so that the
W in the S; — W move at step 6 is the By, _,w from step 5. Again for step 6, there is
a reduction in separator size but increase in imbalance. Step 7 is an instance where the
balance is improved with no reduction in separator size. Steps 1-7 were all moves of subsets
to the smaller component, so the separator is smoothed in one direction. There is still
reduction in the separator to be had by smoothing it against the smaller component, i.e.,
the larger component absorbs part of the separator, as we see in steps 8-11. The separator
weight decreases by 5.9% during steps 8-10 while the imbalance increases from 1.013 to
1.051. At step 11 there is still a possible reduction in separator weight, where |Z| = 106
and |Adjy(Z)| = 105. Making this move would increase the partition cost function, so the
algorithm terminates.

7.2 Comparing 2-layer and 3-layer smoothers

We have tested the various partition improvement techniques described in this paper on a
collection of test matrix problems. Table 2 contains the description of ten sparse matrix
problems from the Harwell-Boeing collection [7].

Table 3 presents statistics for finding a top level separator for the three algorithms.
The cost is |5] (1 + a%), where the penalty multiplier @ = 1. The median cost
value for twenty-five runs is found in the table for each run the matrix was randomly
permuted. The initial partition is obtained from domain decomposition followed by the
block Kernighan-Lin scheme in [2] as discussed in the last subsection.

The three algorithms tested are labeled N, N,., and N3 respectively in the table.
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TABLE 2
Statistics for Harwell-Boeing Matrices

ORIGINAL COMPRESSED MMD

MATRIX V] |E)| V] 'E| | ~Nzr/10° | ops/10° | cpU
BCSSTKJ30 | 28924 | 2014568 | 9289 | 222884 3725 T 1.72
BCSSTKJ1 | 35588 | 1145828 | 17403 | 288806 5156 2400 4.70
BCSSTKJ32 | 44609 1970092 | 14821 | 226974 5147 1048 2.84
BCSSTKJ33 8738 583166 4344 | 164284 2654 1301 1.10
BCSSTKJ3H | 30237 | 1419926 | 6611 | 65934 2780 406 0.90
BCSSTKJ6 | 23052 | 1120088 | 4351 | 37166 1767 626 0.51
BCSSTKJ37 | 25503 | 1115474 | 7093 | 88924 2829 048 1.00
BCSSTKJY | 46772 | 2042522 | 10140 | 81762 7669 2194 1.33
MN12 264002 | 13115458 | 51920 | 569226 40404 24810 12.45
PWT 217918 | 11634424 | 41531 | 483791 63992 49875 7.93

Column N}, has statistics for the partition improvement algorithm in Figure 1 using the
Dulmage-Mendelsohn decomposition, i.e., it solves the max-flow problem defined on the
bipartite network Ay. Column N, contains results for the partition improvement algorithm
in Figure 1 using the 2-layer wide network N,,. These two algorithms iterate until no
improvement can be made. Inside the loop, they make a first attempt to improve the
partition based on a two-layer separator S U Border(B) using the current separator S and
the larger portion B. If no improvement on this attempt, it will then try the two-layer
separator S U Border(W) with the smaller portion W.

TABLE 3
Top Level Separators, median cost of twenty-five runs

using N using Ny, using N3
matrix cost | |S| | balance | cost | |S| | balance | cost | |S| | balance
BCSSTK30 | 467 | 223 1.095 421 | 209 1.012 421 | 209 1.012
BcssTK31 | 707 | 353 | 1.001 679 | 339 | 1.003 680 | 332 | 1.049
BCSSTK32 | 791 | 355 1.228 717 | 322 1.226 711 | 271 1.624
BCSSTKJ33 | 847 | 421 1.012 847 | 421 1.012 847 | 421 1.012
BCSSTK35 | 344 | 162 1.121 306 | 144 | 1.128 307 | 96 2.194
BCSSTKJ36 | 715 | 357 | 1.002 644 | 325 | 1.043 662 | 331 1.000
BCSSTKJ7 | 894 | 440 | 1.031 889 | 437 | 1.033 889 | 437 | 1.033
BCSSTK3Y | 451 | 225 1.003 451 | 225 1.003 451 | 225 1.003
MN12 1736 | 861 | 1.017 | 1662 | 815 | 1.039 | 1609 | 791 1.034
PWT 1441 | 720 | 1.001 1441 | 720 1.001 1442 | 720 1.003

The algorithm associated with A3 is also iterative in nature. It is simpler since it tries
to improve the partition using the 3-layer set SU Border(B)U Border(W). It continues until
no improvement can be obtained. Our experience shows that the algorithm for N3 typically
requires half the number of steps or less when compared to the first two algorithms. But
of course, it takes more time at each step since it is solving a larger network problem. We
see that often using the network N,, gives sizable partition improvement over the network
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Np. Using the 3-layer network sometimes gives additional but small improvement.

TABLE 4

Nested dissection with respect to multiple minimum degree

factor entries factor ops ordering cpu

matrix Ny | Ny | Ng | Ny | Noy | Na | Ny | Ny | N3
BCSSTK30 | 1.24 | 1.11 | 1.13 | 1.88 | 1.42 | 1.46 | 4.86 | 5.16 | 6.07
BCSSTK31 | 0.89 | 0.84 | 0.84 | 0.58 | 0.52 | 0.50 | 3.21 | 3.20 | 3.48
BCSSTK32 | 1.12 | 1.09 | 1.07 | 1.48 | 1.38 | 1.33 | 4.40 | 3.96 | 4.19
BCsSSTK33 | 0.86 | 0.83 | 0.80 | 0.71 | 0.65 | 0.57 | 4.86 | 4.74 | 7.21
BCSSTK35 | 1.15 | 1.11 | 1.09 | 1.55 | 1.41 | 1.36 | 4.20 | 4.13 | 4.20
BCSSTK36 | 1.13 | 1.07 | 1.07 | 1.42 | 1.25 | 1.25 | 4.47 | 4.47 | 4.47
BCSSTK37 | 1.09 | 1.07 | 1.06 | 1.36 | 1.35 | 1.30 | 4.24 | 4.29 | 4.42
BCSSTK39 | 0.94 | 0.94 | 0.94 | 0.95 | 0.94 | 0.94 | 4.11 | 4.11 | 4.05
MN12 1.08 | 1.00 | 0.97 | 1.07 | 0.92 | 0.82 | 3.53 | 3.56 | 3.57
PWT 0.74 1 0.74 | 0.74 | 0.47 | 0.47 | 0.46 | 4.26 | 4.22 | 4.36

We have also used the three partition improvement algorithms to find separators in the
context of finding fill-reducing sparse matrix orderings. Tables 4 and 5 contains statistics
of nested dissection orderings and multisection orderings [3] using the three partition
improvement schemes. The statistics are scaled by results from the multiple minimum
degree ordering. Each result in the tables comes from the run that generated the median
factor operations in twenty-five runs.

TABLE 5

Multisection with respect to multiple minimum degree

factor entries factor ops ordering cpu

matrix Ny Ny N3 Ny Ny N3 Ny Ny N3
BcssTK30 | 1.09 | 1.01 | 1.04 | 1.30 | 1.08 | 1.15 | 4.87 | 5.16 | 6.07
BCSSTK31 | 0.90 | 0.86 | 0.85 | 0.61 | 0.58 | 0.55 | 3.19 | 3.22 | 3.49
BCssTK32 | 0.97 | 0.95 | 0.94 | 0.90 | 0.85 | 0.84 | 4.04 | 3.96 | 4.19
BcssTK33 | 0.81 | 0.79 | 0.79 | 0.61 | 0.57 | 0.57 | 4.86 | 4.74 | 7.20
BCSSTK35 | 1.03 | 1.00 | 0.99 | 1.06 | 1.01 | 0.97 | 4.20 | 4.12 | 4.19
BCSSTK36 | 0.96 | 0.94 | 0.94 | 0.85 | 0.82 | 0.82 | 4.49 | 4.48 | 4.47
BCSSTK37 | 0.95 | 0.94 | 0.93 | 0.87 | 0.85 | 0.84 | 4.24 | 4.28 | 4.41
BCssTK39 | 0.89 | 0.89 | 0.90 | 0.77 | 0.78 | 0.79 | 4.12 | 4.11 | 4.05
MN12 1.00 | 0.94 | 0.93 | 0.88 | 0.77 | 0.75 | 3.53 | 3.58 | 3.56
PWT 0.79 1 0.79 | 0.79 | 0.59 | 0.60 | 0.59 | 4.25 | 4.21 | 4.36

We have experimented with using a network with five layers, seven layers and more
to improve separators. Any improvement is usually modest while the run times for the
orderings increase dramatically as the time to solve the max-flow problems for the larger
networks takes a larger portion of the ordering time.

Wide separators have a disadvantage for the min-cuts may be spread across the wide
separator. Consider an example where we start with a partition that has good balance.
When we use a very wide separator (say seven levels) to form a network, a min-cut may
lie far to one side or the other of the “thin” separator. Though the separator induced by
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the min-cut might be smaller than the present separator, the partition that would result
may have a larger cost, and so the new partition would not be accepted. There is one
min-cut closest to the source and one closest to the sink (the two may be identical), and
neither might result in a better partition. We are not primarily interested in finding the
minimal weight separator =~ we want a partition whose cost is minimal. To this end we are
exploring ways to modify the network such that the min-cut determines a partition with
minimal cost.

8 Concluding Remarks

In this paper, we have presented a detailed exposition of the Dulmage-Mendelsohn
decomposition of bipartite graphs in the context of improving bisector-based partitions.
In the literature, this decomposition has been used to obtain a vertex separator from an
edge separator, and in iteratively improving a vertex separator. We have also used the
decomposition to improve the balance of a partition.

Another contribution of this paper is the extension of the Dulmage-Mendelsohn
decomposition to compressed graphs, a special type of weighted graphs that occur naturally
and frequently in practice. For such graphs, we have related the decomposition with the
well-known maximum flow network problem. Finding a separator of minimum cover based
on the Dulmage-Mendelsohn decomposition is the same as obtaining a min-cut of a bipartite
network problem. We have also introduced an enhancement by solving a slightly modified
network problem, the solution of which will often yield a smaller separator.

We have provided experimental results to demonstrate the viability of the approaches
to improve bisectors and partitions. These results should be viewed as additional evidence
to those included in our earlier paper [2]. We recommend this smoothing step using graph
matching or network max-flow min-cut as a standard final process on all dissection-based
ordering codes. Indeed, such smoother codes are present in the recently developed software,
such as the new CHACO code [17] by Hendrickson and Rothberg, and the IBM Watson Graph
Partitioning code WGPP [13] by Gupta.

Max-flow techniques have potential application in other contexts, particularly to
find separators of coarse graphs used in multilevel algorithms [13], [17], [20] or the
domain/segments graphs from a domain-decomposition approach [2]. While we have
concentrated on “thin” networks, where the distance from the source to the sink is small,
in principal one can attack much wider separators, perhaps containing all of a graph save
for a source and sink vertex. While this would be prohibitively expensive for a large graph,
it could be profitably used for a coarse graph or domain/segment graph. The drawback is
that a min-cut might naturally lie very close to the source or sink and thus induce a poorly
balanced partition. By increasing the weight of vertices close to the source or sink one can
force the min-cut to split the graph into two more equally-sized pieces [10].
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