
Applications of the Dulmage-Mendelsohn Decompositionand Network Flow to Graph Bisection ImprovementCleve Ashcraft � Joseph W.H. Liu yAugust 16, 1996AbstractIn this paper, we consider the use of the Dulmage-Mendelsohn decomposition andnetwork ow on bipartite graphs to improve a graph bisection partition. Given a graphpartition [S;B;W ] with a vertex separator S and two disconnected components B andW , di�erent strategies are considered based on the Dulmage-Mendelsohn decompositionto reduce the separator size jSj and/or the imbalance between B and W . For the casewhen the vertices are weighted, we relate this with the bipartite network ow problem.A further enhancement is made on partition improvement by generalizing the bipartitenetwork to solving a general network ow problem. We demonstrate the utility ofthese improvement techniques on a set of sparse test matrices, where we �nd top levelseparators and nested dissection and multisection orderings.Key words. Dulmage-Mendelsohn decomposition, network ow, graph bisection,ordering algorithms, nested dissection. multisection.AMS(MOS) subject classi�cations. 65F05, 65F50, 68R10.1 IntroductionThe ability to �nd a good separator for a graph is necessary in many application areas [16],[28]. Our motivation to consider this problem is to determine good sparse matrix orderingsfor direct factorization methods [4], [5], [19], [24].In a recent paper [2], the authors have applied the notion of blocking to obtain ane�cient graph partitioning scheme to �nd a good vertex separator. The approach hasthree basic steps. In the �rst step, we construct a domain decomposition of the graph,consisting of a subset of vertices (called a multisector) whose removal decomposes thegraph into a number of domains. Each domain is a connected subset of vertices. Thesecond step uses a variant of the Kernighan-Lin scheme [21] on the set of domains todetermine an approximation to a good separator. The last step re�nes the separator usingsome techniques from bipartite graph matching. One purpose of this paper is to give a fullexplanation of the machinery used in the separator improvement step.The fundamental tool used in this �nal step is the Dulmage-Mendelsohn decomposition[8], which is a canonical decomposition of a bipartite graph based on the notion of matching.This decomposition has been used extensively to extract a vertex separator from an edgeseparator [15], [20], [23], [26]. The vertices that are incident to an edge in the edge separator�Boeing Information and Support Services, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington USA98124. This research was supported in part by the ARPA Contract DABT63-95-C-0122.yDepartment of Computer Science, York University, North York, Ontario, Canada M3J 1P3. Thisresearch was supported in part by the Natural Sciences and Engineering Research Council of Canada undergrant A5509 and in part by the ARPA Contract DABT63-95-C-0122.1



2form a wide vertex separator. A vertex separator is a cover for the edge separator if all edgesare incident to a vertex of the separator. Using the Dulmage-Mendelsohn decomposition,one can �nd one or more vertex covering separators of minimum size that are subsets ofthis wide vertex separator.This decomposition has been used to improve a vertex separator in earlier papers[24], [25]. Let the vertices in the graph be partitioned as a vertex separator S and twocomponents B and W . We consider the edge separator that contains edges linking verticesin S to B (or S to W ). This de�nes a wide vertex set containing vertices in S and allvertices in B (or W ) adjacent to S. We use the Dulmage-Mendelsohn decomposition to�nd a covering separator of minimum size from this set of vertices1.The same technique can be applied to the new separator and its new adjacent sets, sothe overall improvement process is iterative in nature. At each step, a wide vertex separatoris taken from the current separator and one of the two components, and a covering vertexseparator subset of minimum size is obtained. It is accepted as the new vertex separatoronly if the quality of its induced partition is better.In this paper, we consider related approaches, initially developed in [2], to improvea vertex separator. Although the Dulmage-Mendelsohn decomposition is de�ned only forunit-weight graphs, we are able to extend it to a special class of weighted graphs, thusgreatly reducing the execution time in many cases. In the extension, we reformulate itinto a much-studied combinatorial problem involving the ow of commodities through aninterconnected network: a maximum network ow problem [9], [11], [12], [18], [27]. Thesolution to our separator improvement step is thus transformed to solving a maximum owproblem on a bipartite network. We also relate the improved separator in the new partitionwith the min-cut set in the well-known max-ow min-cut theorem on network ows.We have explored an additional advantage in the transformation of the bipartite graphmatching problem to bipartite network ow problem. By adding and deleting edges fromthe bipartite network we are able to construct a new network that may yield a smallerseparator. The new network is not bipartite and the new separator need not be a coveringseparator. By adding vertices and edges we generate larger networks that can yield stillsmaller separators.An outline of this paper is as follows. In Section 2, we give a formal description of thepartition improvement problem and introduce the various notations used throughout thepaper. Section 3 starts with a discussion on reducing the size of a separator using bipartitegraph matching. This provides the motivation to the Dulmage-Mendelsohn decompositionfor bipartite graphs. This section is mainly of exposition in nature; the results can be foundin [24] and [25]. Section 4 considers the use of the Dulmage-Mendelsohn decomposition toimprove the balance of a partition.In Section 5, we introduce the notion of a compressed graph induced by a grouping ofvertices that share the same adjacent sets. Compressed graphs can be considered as a specialkind of weighted graphs. The Dulmage-Mendelsohn decomposition is then generalized tohandle compressed bipartite graphs.In Section 6, we relate this decomposition on a compressed bipartite graph to a max-ow solution to a bipartite network problem. We point out the equivalence between thegeneralized matching and a max-ow, and between the improved separator and a min-cut. A new enhancement is also described by transforming the bipartite network to a1It is a little-appreciated fact that a covering separator of minimum size may not be a separator ofminimal size | i.e., a separator of minimal size may not be incident on all the edges of the edge separator.



3general network based on the underlying graph structure. We show that a max-ow min-cut solution to this new general network is at least as good as and is often better thanthat of the bipartite network. We also generalize the network ow approach to even widerseparators formed from the separator and many \layers" of adjacent sets from one or bothcomponents in the partition.Section 7 contains experimental results on separator/partition improvements. Wecompare the improvement in partitions based on solving a max-ow problem on a bipartitenetwork, the induced two-layer network and a centered three-layer wide network. Sparsematrix ordering statistics are also given when these techniques are used in a nesteddissection and a multisection ordering code [3]. The multisection statistics are at least asgood and often are better than those from the multiple minimum degree ordering approach.Section 8 contains our concluding remarks.2 De�nitions and NotationsLet G = (V;E) be a given undirected graph. The adjacent set of a vertex v is given by:Adj(v) = fu 6= v j (u; v) 2 Eg:Without loss of generality, we assume the graph is connected. A walk is a sequence ofvertices v0; v1; : : : ; vm such that (vi; vi+1) 2 E. A path is a walk without any repeatedvertices.A vertex subset S is a vertex separator if the subgraph induced by the vertices in Vbut not in S has more than one connected component. An edge separator is a set of edgeswhose removal disconnects the graph. A separator is minimal if no subset of it forms aseparator.A bisector is a separator whose removal gives at least two connected components.We shall use the notation [S;B;W ] to represent a 2-set partition, where the removalof the bisector S will give two disconnected portions B and W ; that is, Adj(B) � Sand Adj(W ) � S. We measure the imbalance of a partition as the dimensionless ratiomaxfjBj; jW jg=minfjBj; jW jg. We shall often assume that B is the bigger portion so thatjBj � jW j and the imbalance is jBj=jW j. Our objective is to determine a well-balancedpartition with a small separator size jSj.In this paper, we consider methods to improve a given partition. Therefore, we need tocompare the quality of the original and the modi�ed partitions. Following [2], we use thisevaluation function [S;B;W ] = jSj�1 + �maxfjBj; jW jgminfjBj; jW jg � ;where � is some constant greater than 0. The separator size jSj is the primary metric whilethe imbalance is used as a \penalty" multiplicative factor. A large value of the constant �places a large emphasis on the balance. We have used the penalty cost function [S;B;W ]with � = 1 in all the experiments in Section 7.Throughout the paper we will be concerned with a subset of vertices, those verticesjust \outside" the subset, and those \inside" the subset. To make these concepts clearwe introduce the following notation. Let Y be a vertex subset of V . The interior of Y isde�ned to be Int(Y ) = fy 2 Y j Adj(y) � Y g;and contains all nodes in Y that are adjacent to no nodes outside of Y . The boundary of



4Y or its adjacent set is the set of nodes not in Y that are adjacent to Y ,Adj(Y ) = fv 2 V n Y j (y; v) 2 E for some y 2 Y g = 0@[y2Y Adj(y)1A n Y:The border of Y is a subset of Y , namely the boundary of the interior of Y ,Border(Y ) = Adj(Int(Y )) = Y n Int(Y )or those nodes in Y that are not in the interior of Y .3 Partition Improvement and the Dulmage-Mendelsohn Decomposition3.1 A Partition Improvement Algorithm by MovesLet [S;B;W ] be a 2-set partition of a given graph G. Consider a subset Z of S. LetZ 7! W be the move of Z to W that moves the subset Z from S to W , thereby creatingthe following new partition:BZ 7!W = B n Adj(Z); WZ 7!W =W [ Z; and SZ 7!W = (S n Z) [ (Adj(Z) \B):We use the notation [S;B;W ]Z 7!W to refer to the new partition.We consider a partition improvement scheme that uses moves by �nding subsets Z thatwill help in reducing the evaluation function [S;B;W ]. A high-level description of theimprovement algorithm is described in Figure 1. The scheme makes a �rst attempt toreduce the evaluation function of the partition by moving a subset from S to the smallerportion W . If no such move can be found, it tries to improve the partition by moving aseparator subset to the larger portion B. It continues until no reduction can be obtained.Partition-Improve [S;B;W ]Improved = truewhile Improved doif jBj < jW j then interchange B and W // make B the larger portionif a subset Z of S is found with ([S;B;W ]Z 7!W ) < [S;B;W ] then[S;B;W ] = [S;B;W ]Z 7!Welseif a subset Z of S is found with ([S;B;W ]Z 7!B) < [S;B;W ] then[S;B;W ] = [S;B;W ]Z 7!BelseImproved = falseend ifend ifend while Fig. 1. Partition Improvement Scheme.3.2 Improving the Separator Size by Graph MatchingRecall that the evaluation function [S;B;W ] on a partition is given by the penalty functionbased on the separator size and the imbalance ratio. In practice, the weight � is chosen to



5be close to one so that the separator size has a strong inuence on the partition evaluation.Therefore, one way to look for an improvement to the partition is to reduce the separatorsize. Consider the move Z 7!W . The new separator size is given by:jSZ 7!W j = jSj � jZj+ jAdj(Z) \Bj:Therefore, if we can �nd a subset Z of S such that jZj > jAdj(Z)\Bj, the move of Z to Wwill result in a reduction of the separator size by an amount of jZj � jAdj(Z) \ Bj. (Notethat this does not always guarantee a reduction in the evaluation function value.)In [24], the technique of bipartite graph matching is used to �nd such a subset Z ofS with jZj > jAdj(Z) \ Bj. We shall �rst describe the necessary terminologies in graphmatching and state the results relevant to this approach.A bipartite graph is an undirected graph whose node set can be divided into two disjointsets X and Y such that every edge has one endpoint in X and the other in Y . A matchingof a bipartite graph H is a subset M of edges such that no two edges in this subset have anode in common. A node that is incident to some edge inM is said to be covered; otherwise,it is exposed. If (x; y) belongs to the matching M , then x = mate(y) and y = mate(x). Thenumber of edges inM is called the size of the matching. A maximum matching is one withthe largest possible size. A complete matching is a matching of size minfjXj; jY jg.We now consider the results in graph matching relevant to our context of improvinga 2-set partition [S;B;W ]. Assume that B is the larger portion. Consider the bipartitegraph H = (S;Border(B); EH) where EH contains the set of edges between vertices in Sand those in Border(B) of the original graph G. Recall that Border(B) = B \Adj(S). Forsimplicity, we often refer to this bipartite graph by H(S;B), and the two de�ning sets asS and B. However, it is implicit that only the subset Border(B) of B is used in H. Fora node x in this bipartite graph H, we shall use AdjH(x) to represent the set of adjacentnodes of x in the bipartite graph H. We extend the notation to AdjH(U) for the adjacentset of a subset U of nodes. Note that we use Adj(x) and Adj(U) to represent the adjacentsets in the original graph G. It should be clear from the de�nition of H that for any subsetZ of S, AdjH(Z) = Adj(Z) \B.Fig. 2. Bipartite Graph Example from a Separator Partition.
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In Figure 2, we illustrate the induced bipartite graph H for a 6-by-6 grid problem with



6the 9-point operator; that is, each interior node is connected to its eight neighbors. Forthe given separator of size 9, we obtain its associated bipartite graph H. In the �gure, amatching between S and B is also given; and the edges in the matching are indicated bythick lines. This matching is of size 7 and it is maximum.In the separator improvement scheme, we want to �nd a subset Z of S satisfyingjZj > jAdj(Z) \ Bj. The next theorem by Hall [14] relates the non-existence of such asubset with bipartite graph matching.Theorem 3.1 (Hall [14]). The bipartite graph H has a complete matching of S intoB if and only if for every subset Z of S, jZj � jAdjH(Z)j = jAdj(Z) \Bj.The result in Theorem 3.1 can be used to provide a necessary and su�cient condition forthe existence of a size-improving subset Z of S. The condition is that the bipartite graphH does not have a complete matching from S into B. This implies that for a maximummatching, there will be some exposed nodes in S, that is nodes without a mate in thematching. In the example of Figure 2, there are two exposed nodes 13 and 25 in S so thatthe maximum matching is not complete. We know, by the result of Theorem 3.1 that wecan �nd some size-improving subset Z of S.To discuss the way to �nd such subsets, we need the notion of an alternating path.For a given matching M , consider a path hx0; x1; :::; xki where no vertex is repeated. It iscalled alternating with respect to M if the alternate edges belong to the matching M . Forexample, in Figure 2, the path h25; 20; 19; 14; 7i is alternating; the edges (20; 19) and (14; 7)belong to the matching. In [24], alternating paths are used in the following result to �nd asubset Z satisfying jZj > jAdj(Z) \Bj.Theorem 3.2 (Liu [24]). Let x 2 S be an exposed node in a maximum matchingof H. De�ne Sx = fs 2 S j s is reachable from x via alternating pathsg. ThenjSxj � jAdjH(Sx)j = 1.The set Sx can be determined by performing a special kind of breadth-�rst searchstarting from the exposed node x. The search is restricted to nodes reachable via alternatingpaths. Then Sx is given by the nodes of S appearing in this breadth-�rst search tree rootedat x. Since we only consider alternating paths in the traversal, we shall refer to this tree asan alternating breadth-�rst search tree. This set Sx can be used as Z to reduce the separatorsize by one.For the example in Figure 2, there are two exposed separator nodes: 13 and 25.Immediately below we �nd the two alternating breadth-�rst search trees that start from13 and 25 respectively. It is clear that S13 = f7; 13; 19g and AdjH(S13) = f14; 20g. On theother hand, S25 = f7; 19; 25g and AdjH(S25) = f14; 20g. Figure 3 shows the improvementof the separator by making the move Z = S13 (see the top two grids) and the move Z = S25(see the middle two grids).
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An alternating breadth-�rst search tree is a special case of an alternating breadth-�rstlevel structure. Let X0 be some initial set of exposed nodes in S; X0 forms the �rst level.De�ne the next level X1 = AdjH(X0), namely those vertices in Border(B) adjacent tovertices in X0. The next level X2 contains all nodes in S that are mates with nodes in X1.In general, the level sets have the following form.X2i = [x2X2i�1mate(x) � SX2i+1 = AdjH 0@ 2i[j=0Xj1A � Border(B)The move set is Z = X0 [X2 [ : : : while its boundary set is AdjH(Z) = X1 [X3 [ : : :. Forexample, the alternating breadth-�rst level structure for X0 = f13; 25g is found below.
7 1914 2013 25��������@@

The move set is Sf13;25g = f7; 13; 19; 25g while its boundary is AdjH(Sf13;25g) = f14; 20g.Figure 3 shows the improvement of the separator by making the move Z = Sf13;25g (see thebottom two grids). Note that the resulting separator is smaller than the separator inducedby the two move sets S13 and S25.The �rst improvement to [24] is to use all exposed nodes in S to �nd a subset Z � Sthat maximizes the decrease in separator size. It is based on the following extension [25] ofthe result in Theorem 3.2 for separator-size reduction of greater than one.Theorem 3.3 (Pothen and Fan [25]). De�neSI = fs 2 S j s is reachable from some exposed node in S via alternating paths g.Then� jSI j � jAdjH (SI)j > 0,� jSI j � jAdjH (SI)j = maxZ�SfjZj � jAdjH (Z)jg,� SI is the smallest subset of S with this maximum value jSI j � jAdj(SI)j.
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Fig. 3. Alternating Breadth-�rst Level Structures and their Improved Partitions.
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9The subset SI can be constructed by performing an alternating breadth-�rst search startingwith X0, which contains all exposed nodes of S.Theorem 3.2 and Theorem 3.3 provide the end points of a range of separator subsetswith the size-improving property. Indeed, consider any subset X0 of exposed nodes in S.It is easy to verify that the corresponding subsetZ =[fSx j x 2 X0gsatis�es the condition jZj � jAdjH (Z)j > 0. This gives a number of choices in selectinga separator-improving subset. Although the subset SI provides the maximum reductionin separator size, one might opt for a smaller reduction for a better balance in the twocomponents.3.3 The Dulmage-Mendelsohn DecompositionIn [25], Pothen and Fan relate the subset SI used in separator size reduction with theDulmage-Mendelsohn decomposition of bipartite graphs [8]. The decomposition is alsouseful in our context in �nding a balance-improving separator subset. Let H(S;B) bethe induced bipartite graph from a given partition [S;B;W ]. Assume that a maximummatching M is given on H.The Dulmage-Mendelsohn decomposition of S is the decomposition of S into threedisjoint subsets: S = SI [ SR [ SX whereSI = fs 2 S j s is reachable from some exposed node in S via alternating pathsg;SX = fs 2 S j s is reachable from some exposed node in B via alternating pathsg;SR = S n (SI [ SX):Note we use the notation SI to represent nodes reachable from internal exposed nodes,and SX from external exposed nodes of S. SR stands for the remaining nodes. We shallalso use the notation hSI ; SX ; SRi to represent the Dulmage-Mendelshohn decomposition ofS. We now quote some results on this decomposition relevant to the partition improvementscheme.Theorem 3.4 (Dulmage and Mendelsohn [8]). The Dulmage-Mendelsohn decom-position hSI ; SX ; SRi of S is independent of the maximum matching used to de�ne thealternating paths.Theorem 3.5 (Pothen and Fan [25]). The set SI [ SR satis�es the following:� jSI [ SRj � jAdjH(SI [ SR)j = jSI j � jAdjH(SI)j,� SI [SR is the largest subset of S with the maximum value maxZ�SfjZj� jAdjH (Z)jg,Theorem 3.3 states that SI , if used, is the smallest subset of S with the maximumreduction jSI j � jAdjH (SI)j in separator size. On the other hand, Theorem 3.5 identi�esSI [ SR as the largest subset with such maximum reduction in separator size. Moving SIor SI [SR will achieve the same amount of size reduction, but the balance for the resultingpartition will be better for one or the other of the two moves.By symmetry, there is a similar Dulmage-Mendelsohn decomposition hBI ; BX ; BRi ofB, the other part of the bipartite graph, whereBI = fb 2 B j b is reachable from some exposed node in B via alternating pathsg;BX = fb 2 B j b is reachable from some exposed node in S via alternating pathsg;BR = B n (BI [BX):



10 Theorem 3.6 (Dulmage and Mendelsohn [8]). SX = AdjH(BI) and BX =AdjH(SI).The set SX is given by the adjacent set of BI , the set of reachable nodes in B frominternal exposed nodes via alternating paths. BI can be determined in the same way as SI ,by forming the alternating breadth-�rst search forest from the set of exposed nodes in B.For the example in Figure 2, the sets of exposed nodes in S and B are f13; 25g andf16; 33g respectively. This gives:SI = f7; 13; 19; 25g BI = f4; 10; 16; 21; 27; 33gSX = f3; 9; 26; 32g BX = f14; 20gSR = f8g BR = f15gIn Figure 4, we illustrate the Dulmage-Mendelsohn decomposition of the bipartite graphH of Figure 2. The six sets are arranged in such a fashion to illustrate their adjacencyrelationships. Fig. 4. Dulmage-Mendelsohn Decomposition
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It is instructive to interpret the decompositions hSI ; SX ; SRi and hBI ; BX ; BRi inconnection with our partition improvement objective. For the given separator S, wecan extend it to include its adjacent set in the B portion to obtain a wide separatorS [ Border(B). The Dulmage-Mendelsohn decomposition provides a machinery wherebya separator can be obtained from this wide separator, such that it is of minimum coveramong all separator subsets of S [Border(B). Indeed, it is clear that the following are twosuch separator subsets: SX [ SR [BX ; SX [BR [BX :Either one of them can be used to achieve a maximum reduction in separator size in thenew partition.



114 Using the Dulmage-Mendelsohn Decomposition to Improve Balance4.1 Using the Set SRIn the discussion in the last section, we are looking for a separator-improving subset Z ofS satisfying jZj > jAdj(Z) \Bj. If no such subset can be found, no reduction in separatorsize by graph matching is possible. In terms of the Dulmage-Mendelsohn decomposition,this is equivalent to the condition that the current separator S is already of minimum sizeamong covering separator subsets of S[Border(B). The algorithm as presented in [24] willterminate if there is no reduction in separator size via graph matching.However, based on our evaluation function (B;W;S), it may still be possible to improvethe partition by reducing the imbalance ratio maxfjBj; jW jg=minfjBj; jW jg. We can searchfor a subset Z of S with jAdjH (Z)j = jZj. A move of such a subset to the smaller portionWwill replace Z by AdjH(Z) in S so that there will be no change in separator size. However,there may be a reduction in the imbalance.When SI is empty (implying that size reduction is not possible by this approach), thesubset SR can be used to reduce the imbalance. We now establish an interesting propertyof this subset in the next theorem. We �rst need the following lemma.Lemma 4.1. Let SI = ;. Consider a subset Z of S. If Z\SX 6= ;, then jZj < jAdjH(Z)j.Proof. SI = ; implies that there is a complete matching from S into B. By Theorem 3.1,jZj � jAdjH(Z)j for every subset Z of S.Let Z be a subset of S with Z\SX 6= ;. Assume for contradiction that jZj = jAdjH (Z)j.This means AdjH (Z) is exactly the set of matched vertices of Z for a given maximummatching. Let s be a vertex in Z \ SX . Then there exists an exposed vertex be 2 B andan alternating path from be to s:(be; s1; b1; : : : ; st; bt; st+1 = s)where each pair fsi; big belongs to the maximum matching. Let m be the smallest indexsuch that sm 2 Z. If m = 1, this is a contradiction since be 2 AdjH(s1) � AdjH(Z) andbe does not have a mate in Z. For the case m > 1, this is again a contradiction sincebm�1 2 AdjH(sm) � AdjH(Z) and the mate sm�1 of bm�1 is not in Z by the choice of m.Therefore, we have jZj < jAdjH(Z)j.Theorem 4.1. Let SI = ;. The separator subset SR is the largest subset of S such thatits size is the same as the size of its adjacent set.Proof. By Theorem 3.5, we havejSI [ SRj � jAdjH(SI [ SR)j = jSI j � jAdjH(SI)j;so that if SI = ;, jSRj � jAdjH(SR)j = 0.Consider any subset Z of S with the property jZj = jAdjH(Z)j. By the result ofTheorem 4.1, Z \ SX = ;, which implies Z � SR.By this result, the subset SR is the key to �nd a balance-improving separator subset.We �rst note from [25] that in general we have jSRj = jBRj. Furthermore, we haveAdjH (SI [ SR) = BX [BR;so that when SI = ;, we have BX = ; and AdjH(SR) = BR. Therefore, when the separatorsubset SI is empty, the move of SR to W will give a new separatorSSR 7!W = (S [BR) n SR;
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Fig. 5. Improving the balance.so that jSSR 7!W j = j(S [BR) n SRj = jSj,Consider the example in Figure 5. There is a complete matching from the set S to B sothat in the induced bipartite graph, SI = ;. This implies the separator-improving techniquein the last section is not applicable. Note that the Dulmage-Mendelsohn decomposition isgiven by: SI = ; BI = f5; 11; 17; 30; 31; 32gSX = f4; 10; 24; 25g BX = ;SR = f9; 15; 19; 20; 21g BR = f16; 22; 26; 27; 28gFor this example, moving the subset SR from S to W will have the net e�ect of replacingit by BR in S. In this way, the new separator will be f4; 10; 16; 22; 24; 25; 26; 27; 28g, whichis the same size as before.Now consider a separator subset Z with the property jZj = jAdjH(Z)j. Moving it tothe portion W will preserve the separator size. The next result gives a simple necessaryand su�cient condition for the move to improve the evaluation function [S;B;W ].Theorem 4.2. Let [S;B;W ] be a given partition with jBj � jW j and SI = ;. Considera subset Z with jZj = jAdjH (Z)j. The move of the subset Z to W will reduce the evaluationfunction if and only if jZj < jBj � jW j.Proof. Let [S;B;W ]Z 7!W = [SZ 7!W ; BZ 7!W ;WZ 7!W ]be the new partition after the move of the subset Z from S to W . It is clear thatjSZ 7!W j = jSj, jBZ 7!W j = jBj � jZj, and jWZ 7!W j = jW j+ jZj.\Case 1": jBZ 7!W j � jWZ 7!W j.[S;B;W ]� [S;B;W ]Z 7!W = jSj�1 + � jBjjW j�� jSj�1 + � jBj � jZjjW j+ jZj�= �jSj jZj (jBj+ jW j)jW j(jW j+ jZj) > 0\Case 2": jBZ 7!W j < jWZ 7!W j.



13[S;B;W ]� [S;B;W ]Z 7!W = jSj�1 + � jBjjW j�� jSj�1 + � jW j+ jZjjBj � jZj �= �jSj jZj (jBj+ jW j)(jBj � jW j � jZj)jW j(jBj � jZj)Assume jZj < jBj � jW j. The evaluation function will be reduced in case 1. Moreover,in case 2, we have jBj � jW j � jZj > 0 so that [S;B;W ]� [S;B;W ]Z 7!W > 0.On the other hand, assume that [S;B;W ] � [S;B;W ]Z 7!W > 0. In case 1, we havejBj � jZj > jW j+ jZj, which implies thatjBj � jW j > 2jZj > jZj:Furthermore, in case 2, a reduction in the evaluation function implies that jBj�jW j�jZj > 0or jZj < jBj � jW j.By Theorem 4.1 and Theorem 4.2, to improve the balance of a given partition, weshould be looking for a subset Z of SR such that jZj = jAdjH(Z)j < jBj � jW j. Of course,if jSRj < jBj � jW j, this set SR is a good choice. Otherwise, we need to �nd proper subsetsof SR.4.2 Finding Balance-Improving Subsets of SRFinding a subset Z with jZj = jAdjH(Z)j is related to the problem of reordering a sparsesquare matrix to block lower triangular form. In [25], Pothen and Fan provide an algorithmto compute the block triangular form of a sparse matrix. In their \�ne decomposition" step,the square submatrix associated with the vertices in SR and BR are further reordered intoblock lower triangular form. (Pothen and Fan actually compute a block upper triangularform; but the algorithm can be adapted for block lower triangular form.) Their approachinvolves the following substeps:� Form a directed graph based on the bipartite subgraph of SR and BR. The directedgraph consists of nodes from SR. For two nodes x and y in SR, there is a directededge from x to y in this new directed graph if and only if there is an edge from x tothe mate of y in BR.� Determine the strongly connected components of this directed graph. (The quotientgraph using the strongly connected components forms a directed acyclic graph or inshort, a dag).� Order the strongly connected components of this directed graph by a reversetopological ordering (i.e. an ordering of the nodes in the directed graph so that allthe directed edges are pointing backwards to the left).The reverse topological ordering of the strongly connected components of this directedgraph will induce an ordering of the vertices in SR and BR so that the bipartite graph withthis new reordering has a block lower triangular form. It should be clear from the blocklower triangular structure that any subset Z of nodes of SR corresponding to the leadingblocks in the triangular form has this desirable property jZj = jAdjH(Z)j.It is instructive to apply this scheme to the example of Figure 5. The new directedgraph formed will consist of nodes from SR = f9; 15; 19; 20; 21g. Figure 6 shows the directedgraph; in each vertex of this directed graph, we label it with both the node in SR and its



14 Fig. 6. Induced Directed Graph.
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mate in B. There is no cycle in this directed graph, so that each node forms a stronglyconnected component. Furthermore, the following is a reverse topological ordering:9; 15; 19; 20; 21and the corresponding matrix is lower triangular:16 22 26 27 28915192021
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1CCCCCAWe can then deduce from this reverse topological ordering that all of the following subsetshave the property jZj = jAdjH(Z)j:f9g; f9; 15g; f9; 15; 19g; f9; 15; 19; 20g; f9; 15; 19; 20; 21g:It is interesting to note that there are di�erent reverse topological orderings of this directedgraph. They will provide additional such subsets. For example, f19; 20; 9; 15; 21g is adi�erent reverse topological ordering, and the subsets f19g; f19; 20g; f19; 20; 9g also havethe size-preserving property.5 Partition Improvement on Compressed Graphs5.1 Compressed GraphsThe Dulmage-Mendelsohn decomposition is the basic tool used in the last two sections toimprove a given 2-set partition. In this section, we explore e�cient ways of computing thisdecomposition for some practical classes of matrix problems. It is common for graphs fromapplications to have sets of vertices with identical adjacency structures, e.g., in a �niteelement graph, a given geometric location may have multiple displacements and rotations.Such vertex pairs are sometimes referred to as indistinguishable in the sparse matrix researchcommunity. More formally, two vertices x and y are said to be indistinguishable ifAdj(x) [ fxg = Adj(y) [ fyg:The notion of compressed graph is introduced in [1], [6], where each vertex of thecompressed graph corresponds to (possibly) several indistinguishable vertices in the original



15graph. A compressed graph can be viewed as a quotient graph of the original unit-weightgraph consisting of weighted compressed vertices. The motivation in [1] is for e�cientimplementations of some sparse matrix ordering algorithms. The number of vertices in acompressed graph can be several times smaller than that of the original unit-weight graph.Since most graph algorithms have a strong O(jV j) or O(jEj) component to their complexity,it would be quite bene�cial to work with a compressed graph instead of the original graph.Following [1], we use boldface G = (V;E) to represent a compressed graph. A boldfacev is used to denote a compressed vertex in V with an indistinguishable set of originalvertices. For a given compressed graph, it is helpful to de�ne its associated compression tobe a mapping � : V �! V, where �(v) is the compressed vertex in V containing the vertexv. This means �(v) is a subset of vertices in V (containing v), that are indistinguishablefrom v in G. However we do not require �(v) to include all possible indistinguishablevertices of v. An edge (u;v) is in the compressed edge set E if (u�v)\E 6= ;. The theoryand algorithm to be developed apply to any level of compression (partial or complete).Note that this is a loss-less representation; that is, given E and �, we can always recoverthe original edge set E.We also extend the usage of � to subsets: for a subset Y � V , �(Y ) = f�(y) j y 2Y g � V. For a compressed vertex v 2 V, de�ne its weight wt(v) to be the number ofindistinguishable vertices contained in v. This notion can be extended to the weight of asubset of compressed vertices: for a subset Y of V,wt(Y) =Xfwt(y) j y 2 Yg:We now consider the partition improvement techniques of the last two sections in thecontext of compressed graphs.5.2 De�nitions for Bipartite Compressed GraphsLet G be a given compressed graph with compression � and a two-set partition [S;B;W];that is, Adj(B) � S and Adj(W) � S. We �rst make a connection of this compressedpartition with a partition on the original graph G.Theorem 5.1. There is a unique two-set partition [S;B;W ] on G such that �(S) = S,�(B) = B, and �(W ) =W.Proof. It is clear that the subsets de�ned by:S = fv 2 V j �(v) 2 Sg; B = fv 2 V j �(v) 2 Bg; W = fv 2 V j �(v) 2Wgsatisfy the conditions �(S) = S, �(B) = B, and �(W ) = W. To prove that they forma 2-set partition on G, it su�ces to show that Adj(B) � S (by symmetry, we haveAdj(W ) � S). This is the case since otherwise, it would have implied that W and Bare adjacent contradicting the fact that S separates them. The uniqueness follows from thefact that [S;B;W] is a partition on G.The simple connection in Theorem 5.1 allows the partition improvement techniquesdescribed in Sections 3 and 4 using the Dulmage-Mendelsohn decomposition to be appliedto the induced partition [S;B;W ] of the unit-weight graph. We now show that thedecomposition of the original graph can be readily obtained from a similar decompositionof the compressed graph. We �rst extend the various notions used in the formulation ofthe Dulmage-Mendelsohn decomposition from unit-weight graphs to compressed graphs.



165.2.1 Compressed matching and maximummatching As before, let [S;B;W] be agiven partition on the compressed graph G. This will in turn de�ne a bipartite compressedgraph H(S;Border(B)). We extend the notion of matching to bipartite compressed graphs.In the unit-weight case, a matching can be viewed as an assignment of an integer valuef(s; b) to each edge (s; b) in the bipartite graph such that� for every edge (s; b), f(s; b) � 0;� for every vertex ~s 2 S, 1 �Pff(~s; b) j b 2 Bg;� for every vertex ~b 2 B, 1 �Pff(s;~b) j s 2 Sg.It follows then the assigned values can either be 0 (unmatched) or 1 (matched). Further-more, a maximum matching is one that will maximize the sum Pff(s; b) j s 2 S; b 2 Bg,which is the number of edges in the matching.With this interpretation, we generalize a compressed matching of a bipartite compressedgraph to be an assignment of integer values f(s;b) to the edges such that they satisfy thefollowing three conditions.� for every edge (s;b), f(s;b) � 0;� for every compressed vertex ~s 2 S, wt(~s) �Pff(~s;b) j b 2 Bg;� for every compressed vertex ~b 2 B, wt(~b) �Pff(s; ~b) j s 2 Sg;Note that we have used the weight of each vertex instead of unit weight in the above boundson the edge value sums. Similarly, a maximum compressed matching is one that maximizesthe total edge value: Xff(s;b) j s 2 S; b 2 Bg:Compressed exposed nodes and alternating pathsIn the unit-weight bipartite graph, an exposed node se is one such that none of its incidentedges belong to the matching. In terms of the value f(s; b), this is equivalent to thecondition that for the node se,1 >Xff(se; b) j b 2 Bg = 0:In a compressed bipartite graph, we de�ne an exposed node se 2 S to be a node such thatwt(se) >Xff(se;b) j b 2 Bg:The exposure of s is de�ned to be wt(s)�Pff(s;b) j b 2 Bg. Therefore, the exposure of anexposed node is positive. Exposed nodes and exposure are similarly de�ned for compressedvertices in B.For a given compressed matchingM of the compressed bipartite graph, consider a path:s0 �! b1 �! s1 �! b2 �! s2 �! : : :bm �! sm �! : : :It is an compressed alternating path with respect to M if the alternate edges(b1; s1); (b2; s2); : : : (bm; sm); : : :all have positive edge values from the matching M. In such a case, we use the following torepresent an alternating path:s0 �! b1 =) s1 �! b2 =) s2 �! : : :bm =) sm �! : : :where a double-lined arrow is used to indicated an edge with positive edge value. Analternating path that starts with a compressed node from B is similarly de�ned.



175.3 Decomposition in Bipartite Compressed GraphsRecall that our objective is to improve a partition using the Dulmage-Mendelsohn decom-position; and we want to take advantage of compression in �nding such decomposition. Asbefore, let [S;B;W] be a given partition on the compressed graph G and H(S;Border(B))be the corresponding bipartite compressed graph. Furthermore, let M be a maximumcompressed matching on H. Consider the decomposition SI [ SR [ SX of S whereSI = fs 2 S j s is reachable from some exposed node in S via alternating pathsg;SX = fs 2 S j s is reachable from some exposed node in B via alternating pathsg;SR = S n (SI [ SX):Note that we have used the boldface exposed and alternating in the above decompositionto emphasize the use of the extended de�nitions of compressed exposed nodes andcompressed alternating paths for compressed bipartite graphs. The decomposition BI [BR [BX of B can be similarly de�ned.We now make the connection of this decomposition with the Dulmage-Mendelsohndecomposition in the unit-weight graph. Consider the unique partition [S;B;W ] of theunit-weight graph G satisfying �(S) = S, �(B) = B, and �(W ) = W in Theorem 5.1.This partition will in turn determine a unit-weight bipartite graph H(S;B). We nowrelate the decomposition SI [ SR [ SX with the Dulmage-Mendelsohn decomposition of Sin this H(S;B). Note that the Dulmage-Mendelsohn decomposition hSI ; SX ; SRi of S isindependent of any maximum matching used in H. But in order to make the connectionbetween the two decompositions, we need to de�ne an induced matching of H from H.LetM be a compressed matching on H(S;Border(B)). An induced matchingM on theunit-weight bipartite graph H(S;B) can be de�ned as follows. For each compressed vertexs, we have the size condition: wt(s) �Xff(s;b) j b 2 Bg:Therefore for each incident edge (s;b), we can always assign f(s;b) number of distinct S-vertices from s to this compressed edge. Similar allotments of B-vertices from compressedvertices of B to compressed incident edges can be assigned.Now for each compressed edge (s;b) with value f(s;b) in the matching M, there willbe f(s;b) number of S-vertices from s and the same number of B-vertices from b assignedto this edge. Since each S-vertex in s is adjacent to each B-vertex in b, we can get f(s;b)di�erent edges consisting of pairs of adjacent assigned vertices from s and b. We placethem in the set M .After doing this for every compressed edge, we see that the set of edges in M , byconstruction, does not have common vertices. This means that the setM forms a matching.Furthermore, this set M satis�es the following property.Lemma 5.1. Given M is a maximum matching on the compressed bipartite graph H,M is a maximum matching on H.Proof. Assume for contradiction that M is not maximum. We can therefore �nd analternating path connecting two exposed vertices, say s 2 S and b 2 B (such paths areusually referred to as an augmenting path):s �! b1 =) s1 �! : : : bt =) st �! b:



18Through compression, this corresponds to a path or walkin the compressed graph:�(s) �! �(b1) =) �(s1) �! : : : �(bt) =) �(st) �! �(b):Since s 2 �(s) and b 2 �(b) are both exposed in M , we can increase the total matching inM by at least one by alternately increasing and decreasing the f values along this path.This contradicts the fact that M is a maximum matching on H.By this lemma, M is a maximum matching on H so that the Dulmage-Mendelsohndecomposition hSI ; SX ; SRi of S can be determined using M .Theorem 5.2. �(SI) = SI , �(SR) = SR, �(SX) = SX .Proof. We only prove �(SI) = SI and leave the remaining two for the readers. We �rstshow �(SI) � SI . Consider a compressed vertex �(s) 2 �(SI), with s 2 SI . This meansthat there exists an alternating path:s0 �! b1 =) s1 �! : : : �! bt =) st = sfrom some exposed node s0 2 S. This induces a compressed alternating path or walk in H:�(s0) �! �(b1) =) �(s1) �! : : : �! �(bt) =) �(st) = �(s)and �(s0) is exposed in S. Therefore �(s) 2 SI .We now show SI � �(SI). Consider a compressed node s 2 SI . There exists analternating path in H: s0 �! b1 =) s1 �! : : : �! bt =) st = s;from an exposed s0. Choose a s0 2 s0, that is exposed in M . For 0 < i < t, choosea matched edge (bi; si) in M where �(bi) = bi and �(si) = si; one is guaranteed sincef(bi; si) > 0. This forms an alternating path inM from an exposed node s0 to st; thereforest 2 SI . The result follows since �(st) = s.The next two theorems follow directly from the results in Theorem 5.2, The �rst theoremstates that the weight of SI is less than that of BX so that the partition [S;B;W] can beimproved by replacing the subset SI with its adjacent set BX . The second theorem relatesthe weights of the two subsets SR and BR.Theorem 5.3. If SI is non-empty, then wt(SI) < wt(BX).Theorem 5.4. wt(SR) = wt(BR).6 Partition Improvement by Maximum Network Flow6.1 Bipartite Compressed Graph Matching by Maximum Network FlowFinding an assignment of edge values to a bipartite compressed graph that correspondsto a maximum matching can be reformulated into a much-studied combinatorial probleminvolving ow through a network [9], [11], [12], [18], [27]. A network is a weighted directedgraph with two special nodes: one with no incoming edges (the source), one with no outgoingedges (the sink). There are a set of capacity constraints given to the edges and vertices.Most discussions of the network ow problem in the literature assume the use of edgecapacities. The generalization to include both edge and vertex capacity is well known, (forexample, [22, pages 120-121]). For our purposes, we only need to consider networks with



19�nite vertex capacities, i.e., each vertex y is given a non-negative integer value capacity(y),called the capacity of the vertex. All edges have in�nite capacity.A ow is a function that assigns a non-negative integer value ow(y; z) to each directededge (y; z). The ow satis�es two conditions:� the amount of in-ow equals the amount of out-ow at each vertex except the sourceand sink;� the in-ow must be within capacity of each vertex.Let inow(y) denote the amount of in-ow into the vertex y, that is,inow(y) =Xfow(v; y) j v 2 V gand let outow(y) be the amount of out-ow from the vertex y,outow(y) =Xfow(y; v) j v 2 V g:For every vertex aside from the source and sink, the ow function satis�esinow(y) = outow(y) � capacity(y):We shall also refer to inow(y) (or equivalently outow(y)) as the ow across the vertexy. A vertex y is said to be saturated or at capacity if inow(y) = capacity(y); otherwise, itis said to be below capacity or to have excess capacity. By convention the source and sinkhave in�nite capacity.The value of the ow is the amount of out-ow from the source node, outow(source)2,or equivalently, the amount of in-ow into the sink node, inow(sink). The network owproblem is to �nd a ow with the maximum value for a given network. It should beemphasized that we consider only integer capacity and ow values.We now describe a network ow problem that when solved will give a solutionto the maximum matching problem for bipartite compressed graphs. As before, letH(S;Border(B)) be our bipartite compressed graph with weight function wt(�). A bipartitenetwork is constructed as follows.� In addition to the source and sink, the nodes in the network are the vertices in Sand Border(B).� For each vertex s 2 S, add the directed edge (source; s) to the network.� For each vertex b 2 Border(B), add the directed edge (b; sink) to the network.� For each edge (s;b), s 2 S, b 2 Border(B), in the graph H(S;Border(B)), add adirected edge (s;b) to the network, where ow is assumed to go from s to b alongthis edge.� All edges have in�nite capacity. For each vertex y in H(S;Border(B)), we setcapacity(y) = wt(y).2We use boldface for source and sink to emphasize that we are working on the weighted compressedgraph.
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Fig. 7. Top: Nb, the original bipartite network used to �nd the Dulmage-Mendelsohndecomposition; Middle: Nm, the intermediate network found by adding edges that do not increasethe max ow; Bottom: Nw, the �nal three-layer network found by deleting edges from the middlelayer vertices to the sink.



21In the top network of Figure 7 we illustrate the bipartite network obtained for theseparator example of Figure 2. Arrows are used on edges to indicate the direction of ow(except for those involving the source and the sink). Edges with positive (zero) ow arethick (thin) lines. Note that there is a directed edge from the source to every vertex in S(the set of \square" vertices) and one from every vertex in Border(B) (the set of \circle"vertices) to the sink.We shall use the notation Nb (b for bipartite) to represent this bipartite network. Toestablish the equivalence between a max-ow solution on this bipartite network with amaximum matching on the bipartite compressed graph, we use the equivalence of owaugmenting paths in the former with augmenting paths in the latter. An augmenting pathin the bipartite compressed graph is an alternating path whose �rst and last vertices areexposed in S.It is simple to generalize such augmenting paths for bipartite network ows. Indeed, aow augmenting path for a bipartite network is a sequence of edges from the source to thesink with alternate forward and backward edges:source �! v1 �! v2  � v3 �! v4  � : : :vk �! sink:Furthermore, each backward edge (v2j+1;v2j) has positive ow and the vertices v1 andvk are below capacity. It is easy to relate this with an augmenting path in the originalbipartite compressed graph. Since v1 and vk are below capacity, they are exposed in thegraph matching. Any backward edge with positive ow means the two incident vertices arematched.Since we will be considering ows on a general network, we must further generalize thenotion of a ow augmenting path. When edges have �nite capacity, a ow augmentingpath is a path from the source to the sink such that forward edges are below capacityand backward edges have positive ow. In our networks the edges have in�nite capacityand the vertices have �nite capacity, so a ow augmenting path is a sequence of verticeshsource = v0;v1; � � � ;vk;vk+1 = sinki with these four properties.� Two consecutive vertices vi and vi+1 are connected by an edge in the network | aforward edge is of the form (vi;vi+1), a backward edge is of the form (vi+1;vi).� Any two consecutive forward edges (vi�1;vi) and (vi;vi+1) implies vertex vi is belowcapacity.� Any backward edge (vi+1;vi) has nonzero ow, i.e., ow(vi+1;vi) > 0.� A vertex may appear in the path once or twice, via a forward edge, a backward edge,or both3.The overall ow value can be increased by increasing ow along the forward edges anddecreasing ow along the backward edges.6.2 Min-cut in Network FlowThe dual to the network max-ow is a min-cut. In our context of networks with �nite vertexcapacities and in�nite edge capacities, a cut is a set of vertices whose removal separates the3Technically speaking, if a vertex is visited twice we have a ow augmenting walk. Had we taken the moreconventional route of handling vertex capacities by expanding a vertex v into a pair of vertices connectedby an edge (v�;v+) whose capacity is the weight of the vertex, then v� would be visited by a forward edge,v+ would be visited by a forward or a backward edge, and there would be no repeated vertices along thepath.



22source from the sink, i.e., a separator of the graph from which the network was derived.A min-cut is a cut such that its sizeXfcapacity(v) j v belongs to the cutgis minimum among all cuts. The well-known max-ow min-cut theorem states that the sizeof a min-cut is the same as the value of a max-ow.It is interesting to relate min-cuts with the Dulmage-Mendelsohn decomposition. Fora bipartite compressed graph, once we �nd a maximum matching we can determinethe Dulmage-Mendelsohn decomposition and thus construct one or more minimum coverseparators, such as SX [ SR [BX and SX [BR [BX . A covering separator of minimumsize is equivalent to a min-cut of a bipartite network constructed from S and Border(B).There are two speci�c min-cuts of the network that are of interest. The tool we use is aow alternating path. A ow alternating path di�ers from a ow augmenting path in thatit need not start from the source nor end at the sink. Therefore, any contiguous sequenceof edges from a ow augmenting path is a ow alternating path. We can now de�ne thefollowing subset:Rsource = fv 2 V j v is reachable from source via a ow alternating pathg:Intuitively, the subset Rsource provides the \bottle-neck" that limits the total ow to itspresent value. Indeed, the border of Rsource is a min-cut of the network. A similar subsetcan be de�ned with respect to the sink:Rsink = fv 2 V j the sink is reachable from v via a ow alternating pathg:The border of Rsink is a min-cut of the network. For the network at the top of Figure 7,the two reach sets and their borders are given below.Rsource = f3; 7; 8; 9; 13; 14; 19; 20; 25; 26; 32gBorder(Rsource) = f3; 8; 9; 14; 20; 26; 32gRsink = f3; 4; 9; 10; 14; 15; 16; 20; 21; 26; 27; 32; 33gBorder(Rsink) = f3; 9; 14; 15; 20; 26; 32gIn the context of the Dulmage-Mendelsohn decomposition, Rsource = SI [BX [SR [SX ,Border(Rsource) = BX [ SR [ SX , Rsink = BI [ SX [ BR [BX , and Border(Rsink) =SX [BR [BX .6.3 Enhancement Techniques by Network FlowIn this subsection, we consider new partition improvement techniques based on networkows. We �rst consider a motivating example. Consider again the grid at the bottomof Figure 3. Using the Dulmage-Mendelsohn decomposition, we can determine the moveset SI = f7; 13; 19; 25g that decreases the separator size the most. The size of the newseparator f3; 9; 14; 15; 20; 26; 32g is seven. On the other hand, consider the two grids inFigure 8. The left hand grid shows a wide separator S [Border(B) that contains eighteennodes. The right hand grid shows a separator subset of size six, smaller than the \best"separator that was found using the Dulmage-Mendelsohn decomposition.There is no contradiction here, yet there is a subtle point that needs to be understood.Theorem 3.3 states that SI is the smallest subset of S that if absorbed by W will result in



23Fig. 8. A 2-layer wide separator and its minimal weight separator subset
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the largest decrease of separator size. The \move" that generated the partition in the righthand grid of Figure 8 had W absorb the separator vertices f7; 8; 13; 19; 25; 26; 32g, but Walso absorbed the black vertices f14; 20g, so it is a more general move than that covered byTheorem 3.3. Indeed, f7; 8; 13; 14; 19; 20; 25; 26; 32g is the smallest subset of S[Border(B),which when moved to W will result in the largest decrease in separator size.We �rst o�er an intuitive explanation to the enhancement. Our goal is to improve aninitial partition [S;B;W] of a given compressed graph. The separator S is �rst used toconstruct a compressed bipartite graph based on S and its adjacent set Border(B) in B. InSection 6.1, we construct a bipartite network Nb based on this compressed bipartite graph.A max-ow min-cut solution to this bipartite network Nb can then be used to obtain animproved new partition for the original compressed graph.We shall modify our bipartite network so that the max-ow value (and hence min-cutsize) of the new network is no larger and possibly smaller. More importantly, the min-cutof this new network also corresponds to a separator of the underlying compressed graph.There is potential to obtain a smaller separator than the one from the original bipartitenetwork.We now describe how to construct the new network. Let S [ Border(B) be the wideseparator induced from S. We have a new partition [S [Border(B); Int(B);W]. The wideseparator has two portions S and Border(B). Consider a further subdivision of the subsetBorder(B) intoY = fb 2 Border(B) j Adj(b) \ Int(B) = ;g and Z = Border(B) nY:Y contains those vertices in Border(B) that are not adjacent to Int(B), while Z has thosevertices that are adjacent to Int(B).By using these subsets we can form the new network.� In addition to the source and sink, the nodes in the network are the vertices in S andBorder(B) = Y [ Z.� For each vertex s 2 S, add the directed edge (source; s) to the network.



24 � For each vertex z 2 Z, add the directed edge (z; sink) to the network.� For s 2 S and b 2 Y [ Z = Border(B) where (s;b) is an edge in the originalcompressed graph, add the directed edge (s;b) to the network.� For y 2 Y and b 2 Y[Z = Border(B), if (y;b) is an edge in the original compressedgraph, add the directed edge (y;b) to the network.� All edges have in�nite capacity. For each vertex s in S[Border(B) we set capacity(s)= wt(s).We shall refer to this new network by Nw (w for wide). Let us �rst apply theconstruction on the partition example of Figure 2. We note that the wide separator issubdivided into these three sets:S = f3; 7; 8; 9; 13; 19; 25; 26; 32g; Y = f14; 20g and Z = f4; 10; 15; 16; 21; 27; 33g:Nw is the bottom network of Figure 7. The readers should compare this network with Nb,the original bipartite network Nb, at the top of Figure 7.We are now ready to establish the important result that this new network Nw hasa max-ow (or min-cut) solution no larger than the one from the bipartite network Nbusing the same wide separator S [ Border(B). To prove this result we will construct anintermediate network Nm by adding the following directed edges into the bipartite networkNb.� For y 2 Y and b 2 Y[Z = Border(B), if (y;b) is an edge in the original compressedgraph, add the directed edge (y;b) to the network.Nm is the middle network in Figure 7 and contains the edges (14; 20), (20; 14), (14; 21),(14; 15), (20; 15) and (20; 27) in addition to those found in Nb.The following lemma will be used in the next theorem to show that the max-ow valuesfor Nb and Nm are identical. It proves that adding an edge connecting two vertices thatare both adjacent to the sink does not change the max-ow value.Lemma 6.1. Let x and y be two vertices in a given network N0, such that both x andy are connected to the sink. Consider the new network N1 by adding a directed edge (x; y)to N0. The networks N0 and N1 have the same max-ow values.Proof. Since the network N1 has one additional edge than N0, its max-ow value is atleast as large as that of N0. Consider a ow function f1 for N1 that achieves the max-owvalue for N1. If f1(x; y) = 0, there is an equivalent ow function for the network N0. Iff1(x; y) > 0, de�ne the following ow function f0 for N0:f0(x; sink) = f1(x; sink) + f1(x; y);f0(y; sink) = f1(y; sink)� f1(x; y);f0(x; y) = 0 (there is no directed edge from x to y in N0), and the f0 values are the sameas the f1 values for the other vertices. It is easy to see that f0 is a ow function for N0 andits ow value as the same as the max-ow value for N1.Theorem 6.1. The max-ow values of the networks Nb and Nm are the same.



25Proof. First note that the network Nm is constructed from Nb by adding a number ofdirected edges to vertices that are directly linked to the sink. By applying Lemma 6.1 anumber of times, we have the result that the networks Nb and Nm have the same max-owvalues.After we delete from Nm all edges (y; sink) for y 2 Y , (in our example these edgesare (14; sink) and (20; sink)), we are left with the network Nw. We now show that themax-ow value for Nw is no larger, and can be smaller, than the max-ow value for Nb.The reach sets from the source and sink areRsource = f3; 7; 8; 9; 13; 14; 15; 19; 20; 21; 25; 26; 27; 32; 33g;Rsink = f3; 4; 9; 10; 15; 16; 21; 27; 33g;and they both have the same border, and thus give rise to the same min-cut,f3; 9; 15; 21; 27; 33g, which has six vertices compared with seven vertices for a min-cut ofNb.Theorem 6.2. The max-ow value of the network Nw is less than or equal to themax-ow value of Nb.Proof. Compare the networks Nm and Nw. The network Nw can be obtained from Nm byremoving those directed edges (y; sink), for y 2 Y. Since Nw is a sub-network of Nm, themax-ow value of Nw must be smaller than or equal to that of Nm.6.4 Generalization to Wider SeparatorsThe technique introduced in the last section hinges on the choice of the wide separatorS [ Border(B). It is easy to generalize this technique for \wider" separators.Consider a given partition [eS; eB; fW], where the separator set eS need not be minimalbut can be quite large. Subdivide the separator set eS into three subsets:X = Border(eS [ eB); Y = Int(eS) and Z = Border(eS [ fW):A network can be constructed in the same manner as given in the last subsection by addingedges from the source to vertices in X, from vertices in Z to the sink, and retaining theunderlying edges associated with Y from the original graph. A max-ow min-cut solutionto this network will determine a separator subset of eS with minimum weight among allsuch separator subsets.The wide separator S [ Border(B) we have used in our last subsection can be viewedas having two layers: S and Border(B). Let us now consider a 3-layer separator, given by:eS = Border(W) [ S [ Border(B);and solve a ow problem on a three-layer network N3.Figure 9 contains an example to illustrate a 3-layer separator eS given by the union ofthe following three layers:Border(W) = f2; 8; 9; 15; 22; 29; 36; 43; 44; 45g;S = f3; 10; 16; 17; 23; 30; 37; 38; 39; 46g;Border(B) = f4; 11; 18; 24; 25; 31; 32; 33; 40; 47g:The remaining white vertices form the partition subset fW, while remaining black verticesform eB.



26 Fig. 9. Finding a minimal separator using a 3-layer network
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wide separator and its three sets X, Y and Z

The right grid in Figure 9 shows the decomposition of the wide separator eS into thethree subsets X, Y, and Z. They form the basis on which the network is formed andmax-ow min-cut problem is solved. It should be pointed out that often there are morethan one min-cut solution. In this example there are three | f2; 9; 16; 23; 30; 37; 44g,f3; 10; 17; 24; 31; 38; 45g and f4; 11; 18; 25; 32; 39; 46g.When eS is even wider, say �ve or seven layers, the space from which we �nd a minimalweight separator is large. As the number of layers in eS increases, the weight of a minimalseparator cannot increase. As in our example in Figure 9, there often will be more than onechoice of minimal weight separators; we want to choose one that minimizes our partitionevaluation function.7 Experimental Results7.1 A closer look at 2-layer smoothingIn this section, we provide some experimental evidence on improving partitions based onthe Dulmage-Mendelsohn decomposition. Table 1 contains a typical iteration history forthe algorithm in Figure 1. The sparse matrix bcsstk37, taken from the Harwell-Boeingcollection [7], has 25503 degrees of freedom and 1115474 edges. After compression, we workwith the weighted compressed graph with 7093 vertices and 88924 edges.The partitioning algorithm used is from the paper [2]; readers are referred to it formore details. We �rst constructed a domain decomposition of the graph | there were141 domains for this test. The initial partition split the domains into two groups of nearequal weight. The interface vertices had weight 1166, and the partition has imbalance ofmaxfjBj; jWjg=minfjBj; jWjg = 1:013. We then applied a block Kernighan-Lin algorithmon the domain-segment graph to reduce the separator size to 572, but with an increasein imbalance to 1.118. The separator at this stage tends to be \locally smooth" when itcoincides with the boundary of a domain, but the domains do not generally align themselvesto form smooth bisectors of the graph.We then executed the algorithm in Figure 1. Note that the initial imbalance of 1.118is rather high. At the �rst step we evaluate two moves that would reduce the separatorsize and the size of the larger component, namely Z = SI and Z = SI [ SR. The SI [ SR



27Table 1Iteration History for BCSSTK37reduction partitionjSj imbalance in jSj costinitial two-set partition 1166 1.013 | 2347.2after Block Kernighan-Lin 572 1.118 50.9% 1211.51. SI [ SR 7!W 518 1.062 9.4% 1068.12. SI [ SR 7!W 484 1.038 6.6% 986.43. SI [ SR 7!W 480 1.017 0.8% 968.24. SI 7!W 471 1.001 1.9% 942.55. SI 7!W 460 1.012 2.3% 925.56. SI 7!W 446 1.015 3.0% 898.77. SR 7!W 446 1.013 0.0% 897.88. SI 7! B 438 1.030 1.8% 889.19. SI 7! B 434 1.041 0.9% 885.810. SI 7! B 420 1.051 3.2% 861.411. SI 7! B rejected 419 1.069 0.2% 867.0move reduces the partition cost function more. This holds for three moves, as we see boththe separator weight and the imbalance decrease together. The next three moves are SImoves, for the balance is close to unity and the SR sets are relatively large.At step 5, note that the move Z = SI 7!W results in a reduction in separator size butan increase in imbalance. After the move the new set BZ7!W is now smaller than WZ7!Wand the di�erence jWZ7!Wj � jBZ7!Wj is greater than the previous di�erence jBj � jWj.At the next step, we maintain the convention that W is the smaller portion so that theW in the SI 7!W move at step 6 is the BZ7!W from step 5. Again for step 6, there isa reduction in separator size but increase in imbalance. Step 7 is an instance where thebalance is improved with no reduction in separator size. Steps 1-7 were all moves of subsetsto the smaller component, so the separator is smoothed in one direction. There is stillreduction in the separator to be had by smoothing it against the smaller component, i.e.,the larger component absorbs part of the separator, as we see in steps 8-11. The separatorweight decreases by 5:9% during steps 8-10 while the imbalance increases from 1.013 to1.051. At step 11 there is still a possible reduction in separator weight, where jZj = 106and jAdjH(Z)j = 105. Making this move would increase the partition cost function, so thealgorithm terminates.7.2 Comparing 2-layer and 3-layer smoothersWe have tested the various partition improvement techniques described in this paper on acollection of test matrix problems. Table 2 contains the description of ten sparse matrixproblems from the Harwell-Boeing collection [7].Table 3 presents statistics for �nding a top level separator for the three algorithms.The cost is jSj �1 + �max(jBj;jW j)min(jBj;jW j) �, where the penalty multiplier � = 1. The median costvalue for twenty-�ve runs is found in the table | for each run the matrix was randomlypermuted. The initial partition is obtained from domain decomposition followed by theblock Kernighan-Lin scheme in [2] as discussed in the last subsection.The three algorithms tested are labeled Nb, Nw, and N3 respectively in the table.



28 Table 2Statistics for Harwell-Boeing Matricesoriginal compressed mmdmatrix jV j jEj jVj jEj nzf/103 ops/106 cpubcsstk30 28924 2014568 9289 222884 3725 777 1.72bcsstk31 35588 1145828 17403 288806 5156 2400 4.70bcsstk32 44609 1970092 14821 226974 5147 1048 2.84bcsstk33 8738 583166 4344 164284 2654 1301 1.10bcsstk35 30237 1419926 6611 65934 2780 406 0.90bcsstk36 23052 1120088 4351 37166 1767 626 0.51bcsstk37 25503 1115474 7093 88924 2829 548 1.00bcsstk39 46772 2042522 10140 81762 7669 2194 1.33mn12 264002 13115458 51920 569226 40404 24810 12.45pwt 217918 11634424 41531 483791 63992 49875 7.93Column Nb has statistics for the partition improvement algorithm in Figure 1 using theDulmage-Mendelsohn decomposition, i.e., it solves the max-ow problem de�ned on thebipartite network Nb. ColumnNw contains results for the partition improvement algorithmin Figure 1 using the 2-layer wide network Nw. These two algorithms iterate until noimprovement can be made. Inside the loop, they make a �rst attempt to improve thepartition based on a two-layer separator S [ Border(B) using the current separator S andthe larger portion B. If no improvement on this attempt, it will then try the two-layerseparator S [Border(W) with the smaller portion W.Table 3Top Level Separators, median cost of twenty-�ve runsusing Nb using Nw using N3matrix cost jSj balance cost jSj balance cost jSj balancebcsstk30 467 223 1.095 421 209 1.012 421 209 1.012bcsstk31 707 353 1.001 679 339 1.003 680 332 1.049bcsstk32 791 355 1.228 717 322 1.226 711 271 1.624bcsstk33 847 421 1.012 847 421 1.012 847 421 1.012bcsstk35 344 162 1.121 306 144 1.128 307 96 2.194bcsstk36 715 357 1.002 644 325 1.043 662 331 1.000bcsstk37 894 440 1.031 889 437 1.033 889 437 1.033bcsstk39 451 225 1.003 451 225 1.003 451 225 1.003mn12 1736 861 1.017 1662 815 1.039 1609 791 1.034pwt 1441 720 1.001 1441 720 1.001 1442 720 1.003The algorithm associated with N3 is also iterative in nature. It is simpler since it triesto improve the partition using the 3-layer set S[Border(B)[Border(W). It continues untilno improvement can be obtained. Our experience shows that the algorithm for N3 typicallyrequires half the number of steps or less when compared to the �rst two algorithms. Butof course, it takes more time at each step since it is solving a larger network problem. Wesee that often using the network Nw gives sizable partition improvement over the network



29Nb. Using the 3-layer network sometimes gives additional but small improvement.Table 4Nested dissection with respect to multiple minimum degreefactor entries factor ops ordering cpumatrix Nb Nw N3 Nb Nw N3 Nb Nw N3bcsstk30 1.24 1.11 1.13 1.88 1.42 1.46 4.86 5.16 6.07bcsstk31 0.89 0.84 0.84 0.58 0.52 0.50 3.21 3.20 3.48bcsstk32 1.12 1.09 1.07 1.48 1.38 1.33 4.40 3.96 4.19bcsstk33 0.86 0.83 0.80 0.71 0.65 0.57 4.86 4.74 7.21bcsstk35 1.15 1.11 1.09 1.55 1.41 1.36 4.20 4.13 4.20bcsstk36 1.13 1.07 1.07 1.42 1.25 1.25 4.47 4.47 4.47bcsstk37 1.09 1.07 1.06 1.36 1.35 1.30 4.24 4.29 4.42bcsstk39 0.94 0.94 0.94 0.95 0.94 0.94 4.11 4.11 4.05mn12 1.08 1.00 0.97 1.07 0.92 0.82 3.53 3.56 3.57pwt 0.74 0.74 0.74 0.47 0.47 0.46 4.26 4.22 4.36We have also used the three partition improvement algorithms to �nd separators in thecontext of �nding �ll-reducing sparse matrix orderings. Tables 4 and 5 contains statisticsof nested dissection orderings and multisection orderings [3] using the three partitionimprovement schemes. The statistics are scaled by results from the multiple minimumdegree ordering. Each result in the tables comes from the run that generated the medianfactor operations in twenty-�ve runs. Table 5Multisection with respect to multiple minimum degreefactor entries factor ops ordering cpumatrix Nb Nw N3 Nb Nw N3 Nb Nw N3bcsstk30 1.09 1.01 1.04 1.30 1.08 1.15 4.87 5.16 6.07bcsstk31 0.90 0.86 0.85 0.61 0.58 0.55 3.19 3.22 3.49bcsstk32 0.97 0.95 0.94 0.90 0.85 0.84 4.04 3.96 4.19bcsstk33 0.81 0.79 0.79 0.61 0.57 0.57 4.86 4.74 7.20bcsstk35 1.03 1.00 0.99 1.06 1.01 0.97 4.20 4.12 4.19bcsstk36 0.96 0.94 0.94 0.85 0.82 0.82 4.49 4.48 4.47bcsstk37 0.95 0.94 0.93 0.87 0.85 0.84 4.24 4.28 4.41bcsstk39 0.89 0.89 0.90 0.77 0.78 0.79 4.12 4.11 4.05mn12 1.00 0.94 0.93 0.88 0.77 0.75 3.53 3.58 3.56pwt 0.79 0.79 0.79 0.59 0.60 0.59 4.25 4.21 4.36We have experimented with using a network with �ve layers, seven layers and moreto improve separators. Any improvement is usually modest while the run times for theorderings increase dramatically as the time to solve the max-ow problems for the largernetworks takes a larger portion of the ordering time.Wide separators have a disadvantage for the min-cuts may be spread across the wideseparator. Consider an example where we start with a partition that has good balance.When we use a very wide separator (say seven levels) to form a network, a min-cut maylie far to one side or the other of the \thin" separator. Though the separator induced by



30the min-cut might be smaller than the present separator, the partition that would resultmay have a larger cost, and so the new partition would not be accepted. There is onemin-cut closest to the source and one closest to the sink (the two may be identical), andneither might result in a better partition. We are not primarily interested in �nding theminimal weight separator | we want a partition whose cost is minimal. To this end we areexploring ways to modify the network such that the min-cut determines a partition withminimal cost.8 Concluding RemarksIn this paper, we have presented a detailed exposition of the Dulmage-Mendelsohndecomposition of bipartite graphs in the context of improving bisector-based partitions.In the literature, this decomposition has been used to obtain a vertex separator from anedge separator, and in iteratively improving a vertex separator. We have also used thedecomposition to improve the balance of a partition.Another contribution of this paper is the extension of the Dulmage-Mendelsohndecomposition to compressed graphs, a special type of weighted graphs that occur naturallyand frequently in practice. For such graphs, we have related the decomposition with thewell-known maximum ow network problem. Finding a separator of minimum cover basedon the Dulmage-Mendelsohn decomposition is the same as obtaining a min-cut of a bipartitenetwork problem. We have also introduced an enhancement by solving a slightly modi�ednetwork problem, the solution of which will often yield a smaller separator.We have provided experimental results to demonstrate the viability of the approachesto improve bisectors and partitions. These results should be viewed as additional evidenceto those included in our earlier paper [2]. We recommend this smoothing step using graphmatching or network max-ow min-cut as a standard �nal process on all dissection-basedordering codes. Indeed, such smoother codes are present in the recently developed software,such as the new chaco code [17] by Hendrickson and Rothberg, and the IBMWatson GraphPartitioning code wgpp [13] by Gupta.Max-ow techniques have potential application in other contexts, particularly to�nd separators of coarse graphs used in multilevel algorithms [13], [17], [20] or thedomain/segments graphs from a domain-decomposition approach [2]. While we haveconcentrated on \thin" networks, where the distance from the source to the sink is small,in principal one can attack much wider separators, perhaps containing all of a graph savefor a source and sink vertex. While this would be prohibitively expensive for a large graph,it could be pro�tably used for a coarse graph or domain/segment graph. The drawback isthat a min-cut might naturally lie very close to the source or sink and thus induce a poorlybalanced partition. By increasing the weight of vertices close to the source or sink one canforce the min-cut to split the graph into two more equally-sized pieces [10].AcknowledgementsWe would like to thank Matt Berge of Boeing Information and Support Services forseveral enlightening conversations on network ow, and Stan Eisenstat of Yale Universityfor many insightful comments on an earlier draft. We owe a great debt to John Gilbert ofXerox PARC for his notes on bipartite graphs and the Dulmage-Mendelsohn decomposition.References[1] C. Ashcraft, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput.,16 (1995), pp. 1404{1411.
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