York University
Department of Computer Science

Technical Report CS-96-03

Developing a UAN Browser in ClockWorks: a case study of
incremental development using the Clock methodology

Eric Telford
June 19, 1996

Abstract

The User Action Notation (UAN) is a notation for siiing how a user performs tasks using a given
interactive software system. An accurate and complaid specification provides a clear description of
what tasks the user needs to perform to accompligiohis, and how the user will interact with the eyst

to accomplish those tasks. This provides the softaleveloper with a clear direction for implementing th
system’s behaviour, and a reference against whicbuteess of the system design and implementation can
be measured.

However, it is the exception, rather than the rulat ghthorough and accurate specification of the tdeks
user needs to perform is completed before implementatiok begins. The reality of interactive software
development is that specification and implementati@nrst chronologically distinct stages. Ratherythe
are interleaved, as the developer moves back anld fativeen them, incrementally refining both the
system implementation and the system design. Ul specification of the system evolves along with
the implementation and design, the specificationicoas to serve a vital role, ensuring that the emglvi
system continues to meet the needs of the user.

Unfortunately, due to the structure of the notationisithard to edit or even read a complex UAN
specification using standard text-processing toolsaBse UAN specifications are hard to maintain, they
tend to be abandoned during the incremental systestopenent process, or simply left to the end of the
process and used as a documentation tool.

This report documents my experience developing a UAN singntool using the ClockWorks development
environment. ClockWorks is designed to support theemental method of development discussed above,
which | refer to as the “lazy programmer” methodeThport contains a critique of how well ClockWorks
supports this method, and shows how the use of UAN lmnncorporated in the specification/
implementation cycle.

TABLE OF CONTENTS

3 N =T 11T T] T 2
2 THE USERACTION NOTATION ...etuiiieiieeeeee e e e e e et eeeae e e e e e e e e e anaeennnas 2
2.1 0verview of the UAN ... 2
2.2 Problems with the UAN ... e e 4
2.3 Providing UAN tOO] SUPPOIT ...veveieiii e e e e e 5
2.3.1 Browsing a specification in a completed Browser.............ccoooeeveviieeenneennn. 6
2.3.2 Browsing a specification in a word-processor environment...................... 7
3 INCREMENTAL DEVELOPMENT, CLOCKWORKS, AND UAN........cccoiiiiiiiiiieeieeciee, 7
3.1 The Lazy ProgrammMeriiieuieeeiieeeii e et e et st s e et aeaeanaeeees 7
3.1.1 Clock, ClockWorks and the Lazy Programmer...........cccoovvviiiveineeiinneeennnn. 8
3.1.2 UAN and the Lazy Programmer.........cccceuuiieiiiiieeiiieeeie et cmmcnmmn. 10
3.2 Mapping specification to implementation: UAN and Clock.......................... 11
4 DEVELOPING ACLOCK APPLICATION: A CASE STUDY....uctvuiiiineeeieeineeenneenneeraneennns 12
R 1 g TSR S q 01T =] g o = U 12
I 1= 1 =7 > 1[0 o 13
I R 1 o T I T = 1] P 13
4.1.1.2 SUMIMATY. .. euieeeiee ettt s e e e e e e e e eaaeenaeeneees 16
4.1.2 Second Heration..........cc.oiiiiiii i ee e e e 16
N R 1 o o I < = 1] P 16
4.1.2.2 SUMIMAIY. ...ttt e e et s s e e e e ea e e e e e eennaes 20
L G T I 1 (0 I 1= = 11 o] [N 20
4.1.3.1 The DTS ...uuiieii e s e et e e e e eaaes 20
4.1.3.2 SUMIMATY. ..ttt et e e e e e e e e e e e e eaaeenaees 22
4.2 The UAN Browser: current implementation and future work 23
5 CLOCKWORKS. PROS AND CONS FOR THEAZY PROGRAMMER........ccuueeiieiaennnnn. 24
5.1 The Speed vs. Structure Debatecccviviiiiiiiiiiiieei s s o0 24
5.2 THE VISUAIS ... e et e e e 26
5.3 MISCEIANEAccvnieeee e 27
00 N I = [28.
A = =1 T] = S 28.

APPENDIXA: A UAN SPECIFICATION FOR THE IMPLEMENTEDUAN BROWSING

1 Introduction

This report documents my experience developing a UseorAblotation (UAN) [1] browsing tool using
the ClockWorks [2] development environment. The guafalhe project is to provide a documented case
study of ClockWorks in action, with a view to anahg how fully ClockWorks achieves its aim of
supporting the incremental application development skgteribed in this report. The choice to develop a
tool for the UAN in the case study is motivated by bielief that UAN specifications can and should play a
vital role in the incremental application developmeracess, but that currently, due to the difficulty of
maintaining UAN specifications with existing tools, their potential remains unrealized.

Section Two deals with the UAN, providing an ovewief the notation and the problems it poses, and then
advancing arguments for the value of sophisticated UAN tools.

Section Three deals with incremental developmenyiging a description of the incremental development
style (referred to as the “lazy programmer” styleplso describes the Clock methodology [3] [4] [5] (on
which ClockWorks is based) and describes how Cloakténded to support incremental development. The
role that UAN can play in the incremental procesaddressed, and the current work exploring the close
relationship between the UAN and Clock is mentioned.

Section Four details my actual development experiengegdtive project, highlighting the way in which |

followed the “lazy programmer” method. Three magrations in the implementation/specification cycle

are documented, and the role of UAN in the procedsssribed. This section also contains a descripfion

the state of the developed browser software at the end of the project along with suggestions for future work.

Section Five contains an analysis of how well Clacki ClockWorks do in fact support the incremental
process, discussing the conflict between the desiredéwelopment speed and control of application
structure, and the value of the visual ClockWorks tool.

Section Six concludes the case study.

2 The User Action Notation
2.1 Overview of the UAN

The User Action Notation (UAN), developed by HartsBigchi and Hix, is a notation for specifying how
a user performs tasks using a given interactive softveystem. An accurate and complete UAN
specification provides a clear description of whakgabe user needs to perform to accomplish his goals,
and how the user will interact with the system to accomplish those tasks.

A UAN specification consists of a set of tables, e@tie describing a task that a user may perform while
using the system. For example, in a disk-file managempplication, there might be tables describing
tasks such as “Move File”, “Select Files”, “Deletée§’, and so on. The tables have the format shown i
figure 1. The table’s title is on top, with from oneftmr columns underneath. (Empty columns may or
may not be shown.) The columns are titled “USER AQYIO “INTERFACE FEEDBACK”,
“INTERFACE STATE” and “CONNECTION TO COMPUTATION”Information on the same row
across the columns of the table is considered to ‘lmMpgtethe same time, so a user action could

immediately cause a change in interface feedbadle, sina computation call. Each column deals with a
different aspect of the specification.

TASK: Delete File

USER ACTIONS INTERFACE INTERFACE STATE | CONNECTION TO
FEEDBACK COMPUTATION

~ [file_icon] Mv file_icon-!: file_icon!, selected = file
O file_icon’!: file_icon-!

~[x,y]* outline(file_icon) >~

~[trash_icon] outline(file_icon) >~,
trash_icon!

MA erase(file_icon), selected = null mark file for deletion
trash_icon!!

Figure 1: A UAN Task Table for deleting a Macintosh file. Taken from [1]

The USER ACTION column contains a list of actionstttine user performs to complete the task described
by the table. Each of these actions is either amigtauser action (such as a mouse click), or a more
complex subtask (such as “Delete File”, which, for exampbelld be a subtask of the task “Clean up
desktop”) that has its own table. In the latter cseaction is performed by performing the actionthé
subtask’s table (analogous to a subroutine call). Inrépiert, atomic actions are referred to as “terminal’
tasks, and subtasks representing links to other tables as “non-terminal” tasks.

The actions and subtasks in the USER ACTION column imaysequential, interleaved, optional,
concurrent, repeated, and so forth. The UAN provideshaset of additional symbols that allow the UAN
user to specify the relationship between subtasks. umefigj, for example, the notation ~[x,y]* indicates
that the user can move (~) the mouse pointer to aegrsdocation ([x,y]) zero or more times (* indicate
Kleene closure); i.e. while holding down the mousedn,tthe user can drag the file icon outline around the
screen indefinitely. If no special symbols are presansequential ordering of tasks from the top to the
bottom of the column is assumed. A full descriptionhgf UAN symbol set is beyond the scope of this
report. Interested readers are directed to [1].

The INTERFACE FEEDBACK column contains descriptiohdiaw the system responds to user actions.
For example, to indicate that a file icon should bénllggted (UAN uses the symbol ‘I' to indicate a
‘highlight’ state) when clicked on with the mouske tUAN user writes ‘file_icon!” in the INTERFACE
FEEDBACK column beside the USER ACTION entry ‘Mv' ettdAN symbol for depressing the mouse
button.

The INTERFACE STATE column is used to track changestate-related information. For example, it
might be desirable to track the name of the curresthected file in the variablselected If a user
operation with the mouse causes a new file icon toidigighted, selecteds assigned the new file name
(selected = file) in the INTERFACE STATE column directly to the right of the Mv action.

Finally, the CONNECTION TO COMPUTATION column is useéd specify calls to non-interface
components of the application. For example, placingedadin in the trash and releasing the mouse button
triggers the system to mark the file for deletion.

The tables in a UAN specification are related to anether in the form of a directed graph. The graph
contains the main task (i.e. the overall goal ef$fistem user) as the sole ‘source’ node in the deagh
‘Put on shoes’: see figure 2), some set of middle s\¢ti@se that lead to other tables as well as possibly
containing terminal tasks, e.g. ‘Put on left shoaf)d another set of ‘sink’ nodes (those tables ¢basist
solely of terminal tasks, e.g. "Tie laces’). Thagr is directed if the edges are viewed as repragetite
relationship “is accomplished by”; if ‘Put on shoesarcomplished by ‘Put on left shoe’, the relationship
is represented with an arrow from the former task to the latter.

| Put on shot |
Put on left shc | | Put on right shc

o~ 7

| Put on shc |

N

Putshoeonf0| | Tie lace |

Figure 2: A UAN Directed Graph

The task hierarchy can be (and often is) viewed dse@ by duplicating shared subtasks. In a tree
representation, it is important to remember that ¢askis defined solely in terms of its subtask stragtur
and is not defined in terms of its position in therdwchy (referred to as the task “context”). The asbt
‘Put on shoe’ required to accomplish ‘Put on right sheddentical to the ‘Put on shoe’ required to
accomplish ‘Put on left shoe’. To avoid confusion, amcemphasize shared subtasks, a directed graph
representation of the hierarchy seems preferabldareeaepresentation. In the case of a very compléx tas
hierarchy with many shared subtasks, however, atdadegraph would become hard to read and the tree
representation would be preferable.

The UAN is a very powerful and precise notation. keotly, a complete UAN specification can be handed
to a programmer for implementation. Unfortunately,aligwing a complete UAN specification is extremely
difficult.

2.2 Problemswith the UAN

The most common complaint heard about the User Abtaation is how difficult it is to use. Most of this
difficulty comes from the attempt to force what isetially a directed graph structure into a lineamfaa
process which is forced on the UAN user who has only a word processing tool at his disposal.

Given the complex internal structure of a UAN speciitatit's not surprising that forcing it into a linea
format makes it difficult to use or even understamizesthe person writing the specification is forced t
arbitrarily sort the tables. In a complex specificatibns very hard (if not impossible) to keep all okth
related tables adjacent to one another. This resulendless searching back and forth through pages of
specification to trace the edges of the graph frak ta task; the frequent inability to view relatedks at

the same time without disordering the document; & Iiceasily identifiable information about task
contexts; and so forth. A UAN specification with tiadle structure described by Hartson et al., while a
powerful and useful notation, cannot be represented linear format without obscuring a lot of the
specification’s information.

In order to make the full amount of information caméal in a UAN specification available to the user, one
must either provide extensions to the definition ofNJAr provide more sophisticated software tools that
can extract implicit information from a specification and present it conveniently to the user.

It is apparent that in the original definition of UANhe focus was on providing a notation to descriee th
low-level atomic user actions required to perform djpetasks. It is possible to concisely define lowdiev
tasks entirely within a single table, and tables a@iontg only atomic actions are relatively indepemndgn
other tables and can reasonably be presented lindardy.complex specification, however, this type of
table makes up a diminishing percentage of the oveigarchy, and does not provide any of the vital
higher level understanding of the task hierarchycstire. Much of a large specification consists of kighl
interconnected tables, and it is in the documentatidhe relationships between task tables where niost o
the difficulties with UAN lie. If UAN is to become ulsg in larger projects, its reliance on table
interconnections must be addressed, and possibly inededdnto the notation. One suggested extension to
the notation would be the inclusion of context inforioratwith each table, perhaps by adding table rows
identifying the various ancestors of the table in the task hierarchy.

The disadvantage of extending the notation is irsg@acomplexity. Careful work would be required to
balance the task of making implicit specification mfiation explicit with the task of maintaining a
readable notation format.

The second option, providing more sophisticated taplpsrt for the notation as it currently exists, is
investigated in the following section.

2.3 Providing UAN tool support

As mentioned, the current definition of UAN doesateespecifications that contain useful information for
the system developer. The problem is that much ofinf@imation is in a form difficult for the UAN user
to obtain using a standard text processor. Therefoeeidea of developing more intelligent software to
help the user manage specification information is appealing.

The first step in developing software to support theofi$$AN is to decide exactly what tasks are faced by
a UAN specification user: that is, develop a UAN speadion! | limit the following discussion to the tes
faced by someone attempting to understand and use stin@xistatic specification; the tasks faced by
someone editing a UAN specification is a much larger superset of these.

Browsing a UAN Specification can be described as a repetition of three primary tasks:

1. Viewing the details (i.e. table) of a specific talskthis task, one knows the name of the task, rasd
to find and display the table associated with thsk {& am, of course, assuming a non-terminal task)
so that one can view the actions/subtasks requirestdomplish it, and identify features of the task
specification such as critical (i.e. mandatory) subtasks, repetitive subtasks, etc.

2. Viewing the context of a specific tadhis refers to identifying where in the task hiehy a specific
task may be found, and its relationship with othekgase. identifying its ancestors and descendants.
Note that one may wish to concurrently view the ewntof many different tasks, or even many
different contexts of the same task.

3. Viewing a section of the Task Hierarchihis refers to identifying properties of the taskrarchy
itself, such as identifying complex tasks (those wiidny subtasks), determining the hierarchy depth
(perhaps the specification is too complex or not compiexigh), identifying tasks that show up often
in the hierarchy (these tasks need special attensioce they will be performed often), as well as
giving a quick overview of the hierarchy structure.eOmay wish to see all or just part of the
hierarchy, ideally with a variety of levels of detail.

The following UAN table describes these tasks. See dgipeA for the complete UAN specification of the
browser tool developed during the course of the project.

TASK: Browse UAN Specification
USER ACTIONS INTERFACE INTERFACE STATE CONNECTION TO
FEEDBACK COMPUTATION

({ View Table of Specific
Task }

g

{ View Context(s) of
Specific Task(s) in Task
Hierarchy }

g

{ View Section of Task
Hierarchy }

)+

Figure 3: Top Level Specification of a UAN Browser

In figure 3, the < * symbol indicates task interleaving: each of the¢hmain tasks may be interrupted at
any point by one of the others, and returned to substygu€he braces indicate that each of the three
tasks is optional: a successful ‘browse’ session mayiay not include the task. The parentheses and ‘+’
symbol indicate that browsing is repetitive: any droakthe tasks may be performed any number of times.
One uses ‘+’ rather than ** closure to highlight tfaet that a browse will involve at least one ofsthe
tasks being performed at least once.

2.3.1 Browsing a specification in a completed Browser

In theory, all of these tasks can be directly suppdnied fully functional graph-structured browser (the
initial development target for this project). Theltoould provide a graphical view of the task hierarchy
which would allow users to view and query the taskan@hy directly. For example, the user could ask that
all instances of a specific named task be highligrgedhat all tasks modifying the interface staaeiable
‘foobar’ be highlighted. Tasks in the hierarchy cobkl expanded to show their table details, and tasks
could be traced via the table text or the graph reprasamt Multiple tables could be viewed concurrently,
allowing the user to compare task contexts and tasictates, perhaps identifying common subtask

sequences. Finally, the tool could provide a set &lbgs permitting the user to identify implicit or non-
visual properties of the specification, such as theageemumber of steps per task, or even generate
information, like a sample sequence of tasks to beopeed in a testing session. The amount of
information in a UAN specification is large; an appiap tool that retains the “three-dimensional”
aspects of the information will make the UAN user’s job much easier.

2.3.2 Browsing a specification in a word-processor environment

In fact, of the three main subtasks indicated abontly, the first, “View table of specific task” can be
reasonably performed. Given the name of a task, #ieaas search the document for the table with that
title, or use an index. However, without additiond&bimation, the context(s) of tasks is hard to dei@em
often requiring multiple searches of the document,esmz “ancestor” data is included with each table.
Tracing back several ancestors is such a complex t@gmitsk that the user often forgets part way
through which ancestor he or she wanted to find,vénd The last task, viewing a section of the hieng,

is impossible without a pencil and sketch pad.

While all of the information required to complete #ezond two tasks is present in the specificatias, irt
an essentially unusable form, and therefore severely hinders the UAN user.

3 Incremental Development, ClockWorks, and UAN
3.1 The Lazy Programmer

In classic system design theory, the system devenpprocess goes through one or more distinct and
well-defined stages of specification, followed by iamplementation stage. It is expected that a large
percentage of the system (both the tasks that thensysill support and how it will support them) is well
defined and understood before implementation beginthdrinteractive software domain, however, it has
become increasingly recognized that it is the exceptimther than the rule, that a complete and accurate
system specification is completed before implementation work begins.

In fact, even viewing specification and implementatas chronologically distinct stages doesn't réflec
reality. Many interactive software developers begmplementation with a vague and incomplete system
specification, entering a cycle of ‘getting it wrangespecifying part of the system, and reimplementing
Only gradually, correcting as they go, do they dgwvelhat is actually needed and useful. | refer todhis
the “lazy programmer” style.

The lazy programmer style works as follows:

e Sit down with the system users several times athdatabut the system: what do they want, what do
they need? Clarify some terms, get a “general’ sefishe system. A picture develops in your mind,
both of the externals (layouts) and the internal stinest that will form the system. Make plenty of
sketches on paper. If you're lucky, you are working igreup, and can debate your perceptions of
what is required with the other group members.

e Unable to think of any other useful (but dull) preparatagyrk to do, decide to use your chosen
interactive system builder as a specification aid,see if you can implement what you understand so

far, and use the experience to increase your undensganflithe system. Sit down at a computer
somewhere and program as much of the system as yountibgou encounter the glaring omissions
and inconsistencies in the current specification.

* Repeatnot necessarily in ordeyntil satisfied:

1. Sit down somewhere else and try to sort out thensistencies and flaws in part or all of your
last specification. Depending on the quality of theetigpment environment, some of the
problems with the specification may not be inherent, daused by the specification not
meeting the development tool's requirements. Come tip avspecification that might run and
solves at least one of the problems you've identifleake things one step at a time. Return to
the computer.

2. Implement changes to the system structure: eadtesé thanges will destroy a percentage of
the previous work and probably “break” the system. If yoa cautious and lucky, each
change can be made separately, and the system meddaledetween each change. The more
likely scenario is that a single structural chandeside-effect the entire architecture and force
you to re-write a large portion of the internals befesystem function is restored. This step
includes potentially gruesome debugging due to the numbeshanges made, and the
possibility of extensive side-effects caused by the changes.

3. For a break from heavy thinking at any point wiplegramming, decide on changes to the
“look and feel” of the system, i.e. changes to colours, fonts, object layouts, etc.

4. Implement the changes to look and feel: with mwodeteractive tools, these changes will
probably not “break” the system, and each change inifspgion is probably rapidly
implemented. Debugging these changes is usually straightforward.

5. Extend existing (or add new) system components, ingigng new system functionality. This
includes both new functionality permitted by changesartadthe system internals in step 2,
and functionality previously implementable, but not impleted due to awareness of the
internal structure’s flaws. The debugging for this stepisually straightforward, since new
functionality can be tested in small pieces as it is added to an already working system.

6. Realize, either on your own or through user feedb#iwkt the current specification as
implemented (perhaps due to contortions to get it to “run”) cannot perform some vital task.

3.1.1 Clock, ClockWorks and the Lazy Programmer

Clock is a component-based architecture language ddrioen Haskell [6]. It is designed to facilitate the
rapid prototyping of graphical user interfaces by progduuilt-in graphical primitives and high level
graphical abstractions that permit the programmer to dsypauch of the pain of low-level graphical
programming. It is therefore also designed to suppertazy programmer style of iterative refinement by
making changes to applications quick and easy to perform.

Clock provides a simple but powerful graphical primitivébecha DisplayView. A DisplayView represents
some visual element of the Clock application, for exarmapgbox or a line of text. Simple DisplayViews can

be extended indefinitely, providing enormous flexibilior example, a DisplayView containing a line of
text can be included within the constructor for a BogpliyView, providing a boxed text element. Fonts,
colours, line styles, screen positions, etc. can bell specified by simply composing the desired
DisplayViews. Multiple DisplayViews can be grouped togetimo a single higher-level DisplayView,
either with explicit positions or with positions relaito one another (e.g. above or beside). For example,
DisplayView representing a list of files might be cosgd of a set of boxed-text DisplayViews (one per
file) arranged above one another.

This structuring of DisplayViews within DisplayViewsalds naturally to a tree-like application hierarchy.
The entire application is represented as an abstraptadView that contains, in some relationship to each
other, the set of major visual components (also Dysfiavs) which in turn are composed of lower-level
DisplayViews, and so on down to the smallest vistexhents of the application, such as buttons and text
boxes. The tree structure of a Clock application candreisdigure 4, which shows a sample of the UAN
Browser application.

Requests and updates R Abstract Data Type
handled by ADT (a.k.a. Request Handler)
LLaskName,
taskList E ﬁ @3
Ltaskid,
Tasks
LLaskDescription,
addTask, TaskLibrary
L & B
MySelection
B & &
TaskInfo
Requests and root
updates made E]) ==
by compone = MWK
tasklist wvorkspace
[t = [t =
TaskLibraryView UANTableData
1, [& B cndButtons taskTable
setMyl Id @ E
tasklistEntry |Q¥Id,
= taskName, *
L] B rrent b1
sele-::tl.ihTﬂ]
monsefutton, | TasklistEntryView |[Sethyl

Figure 4: A Sample Clock Architecture.

Figure 4 is a screen capture taken from ClockWorksckBWorks is a development environment tool that
permits the programmer to directly manipulate Clochigectures. As can be seen from figure 4, the tree

structure is divided into blocks, or components. Compisnare used to provide a means of dividing the
elements of an application into logically relatedugp® or classes: in figure 4, for example, information
about UAN tables is grouped in the taskTable componemt,cammand button information in the
cmdButtons component. Both of these are subordinatiketovorkspace component, which provides the
window in which they are displayed and manipulated.

Each component contains a singleew function which defines its DisplayView. Of course,eth
component’s view statement may contain DisplayViewsub-components, permitting the DisplayView
hierarchy that defines the application to be built.

Each component in a Clock architecture can also beciassd with some number of “Abstract Data
Types”, such as the ‘Id’ and ‘Taskinfo’ ADTs shownfigure 4. These provide state information (i.e.
variables) for the application which can be used to geoWeedback to the DisplayViews, changing the
visual appearance of the application appropriately as the user changes the state.

Programmer-defined messages are pagpdtie architecture hierarchy only, in the form of updaand
requests. Updates are messages used to alter the syate, while requests are messages used to query
some aspect of the current state. (In figure 4, ‘Tasdas an example of a request; ‘setMyld’ is an
update.) When a component makes a request or updat@esisage is passed up the hierarchy until a
component or abstract data type is encountered thdlelsathe message. User input is handled by trapping
updates such as MouseButton events in low-level commreamil passing any necessary messages up the
tree to accomplish the state changes specified éougbr’s action. To provide feedback to the user heat t
system state has changed, the visual display of eék@lpplication is recalculated automatically when an
update changes some part of the system state asdosititea visual element, such as an (X,Y) window
position coordinate variable.

Clock and ClockWorks are designed to make the beteali specification of the system a high-level task.
The programmer specifies only what the system shayldmd how the parts of the system should interact
with one another. He does not have to concern Himigh how to implement the behaviour. The result is a
very fast specification method, which supports the Laygrammer approach by making changes rapid
and mistakes easy to recover from. The visual reptasen of the architecture in ClockWorks provides
complexity management, direct manipulation of elemantsmemory prompting, further speeding the task
of reworking and refining an application’s architecture.

3.1.2 UAN and the Lazy Programmer

If at any point in the development iterations a lpeygrammer could press a button and have an up-to-date
UAN specification magically appear, no doubt UAN wouldablet more popular than it is. Unfortunately,

a UAN specification can't be generated from a sysseecification, since the latter describes what the
various elements of a system do and how they arertlyrelated to one another, while UAN specifies
why the various elements of a system are required, anditey need to be combined to accomplish the
system’s tasks. This different point of view is WORAN specifications, if they could only be kept up to
date, would be so helpful to the lazy programmer.

It is often assumed that developers know what they veaimplement, but have to try many times to figure

out how to do it. This is not true for the lazy prograer. As outlined above, the developer’s
understanding oivhatthe system needs to be able to do is as vague stiatttes his understanding of how

10

to implement what he is sure of. As with the ‘howie twhat’ of a system is clarified slowly, through
iterations of development. It is more costly, howete make mistakes about what a system should do than
how it should do it. If a developer is unclear on s@ae of the user’s required tasks, he may spend a larg
amount of time implementing unnecessary functionaliy the other hand, even if the programmer
implements some needed function in the worst possilife thie system has still gained in usefulness. The
use of UAN to specify the major tasks and subtasks nestjwan help the programmer to clarify what
needs to be done, and avoid expensive misunderstandings.

Even at the “how” level, an up-to-date UAN specifioatican provide a programmer with valuable
contextual information. The normal programming procagseorking directly on the system’s behaviour
often doesn't take into account the total contexttich the behaviour is being specified. The programmer
may implement a brilliant solution for one task, otdyrealize later that his solution doesn't work kt a
well for a different, but related task that he hadéntified. The programmer can then either rewttie
code to handle both tasks, or create a new elemdrtridle the newly identified task. In the firsseatime

is wasted; in the second, the system implementation becomes more complex.

These uses of UAN are predicated on accommodatinda#igess of the lazy programmer: if a UAN
specification of the system is to evolve along wtite implementation and design, it must be as easy to
update as the system specification. Ideally, tools a@vbel available to allow the user to check his system
specification against the task specification, bringing UAN directly into the implementation process.
Unfortunately, as discussed above, it is hard to @diéven read a complex UAN specification using
standard text-processing tools. Because of this, Updtications tend to be abandoned during the
incremental development process, or simply left tcetiek of the process and used as a documentation tool.
This leaves the lazy programmer with no easy wagostimenting what tasks the growing system is able
to, or has yet to, support, as his understanding &f teguirements grows through the iterations of
development.

3.2 Mapping specification to implementation: UAN and Clock

It is apparent that Clock and UAN have the potentiabtist as complementary tools within the lazy
programmer paradigm. Clock (and ClockWorks) provideneans to rapidly create and modify the
behavioural specification (i.e. implementation) of ategn, while UAN, with proper tool support, provides
a means to rapidly create and modify task-orienpediications. With both sets of tools available, &y
programmer would be able to more easily perform theckviiick and forth between implementation and
specification that occurs so frequently during development iterations.

In fact, in [4] Graham et al. explore the possibilityesploiting direct similarities between the task-oreeh
UAN specification and the high-level system-centsggbcification used by Clock. In the paper, he
demonstrates a method of translation from a UANat€lock specification, mechanically linking task
specification to behavioural specification.

If this translation method proves complete, it me#mst UAN can be used as a direct link in the
specification-to-implementation process. An obvious préition of this use, of course, is the provision of
more sophisticated UAN tool support. Once the toolst,eiibecomes possible to envision tool-assisted
conversion from UAN specification to an implementatdgstem-centred specification, and the
corresponding jump in the realization of UAN'’s potential.

11

4 Developing a Clock application: a case study

This section of the report focuses on the actual experief developing the UAN browser application in

the ClockWorks environment. This section therefopasists of anecdotal information, observations, and
suggestions. The information presented is informais twvas not a controlled experiment, and the
observations and suggestions do not constitute antiwbjezomparison of the environment with any

specific control group. Rather, it is hoped that thirimation will provide as complete a subjective

evaluation as possible.

At the end of the experience, | can identify two fundatal reactions to ClockWorks. The first is my
opinion that the potential of the ClockWorks envireminfor combining rapidity of development with
maintenance of coherent internal system structuu@esiualed by any other interactive system tool that |
have used to date. The second is the nagging fatark attempt to enforce a specific internal structure
will lead to rejection: fundamental to the successlbbf the visual tools to date has been the complete
freedom of internal architecture that they permite Diias of industry and programmers against imposed
styles, even general architectural styles, is broad and deep.

The experience has also deepened my belief that thadnessf of UAN specifications is tied to their ability
to evolve concurrently with the system specificatibhis project started with task specification (altHoug
informal) and ended with further task specificatiocethe initial tasks had been implemented. The furthe
task specification set the direction for the next phasimplementation, and this back-and-forth would
have continued if the project had not ended. In pinggect, the UAN showed a glimpse of its potential
usefulness. If convenient tools for UAN manipulationseed within or alongside ClockWorks, the back-
and-forth between task and system behaviour speaifitcatiuld occur more frequently. It is my belief that
the more frequently the developer returns to the ifitation of the user’s tasks, the less likely depelr
time will be wasted implementing useless functionality.

4.1 The experience

True to lazy programmer form, | began the implemematiothe browser with an incomplete and unclear
idea of what the browser needed to be able to do. Was normal: not only was | learning what the
browser needed, | was also learning the entire @Wmrks environment, based on a declarative
programming paradigm that | had never used before.tilralyi it felt right to “play” with the system,
implementing some simple and basic browser function ¢inbeith. It didn't appear necessary to know
right at the start about everything the browser had to be able to do.

Some initial specification work had to be done, afirse. | had to identify a user task that the system
would support: | identified the most obvious of the tasientioned in section 2.3: “View table of specific
task”. To perform this, | realized that the user wondgtd to navigate up and down the task hierarchy,
display multiple tables concurrently, and move and hide tables.

| also had to decide on an approach to displayingnfioeemation to the user. The first approach that
suggested itself was that used by ClockWorks: a fisgday on a scrollable work surface. The obvious
drawback of this approach was the complexity of the Visleanents: specifying a system that could neatly
display arbitrary graph structures seemed a large Tdsksecond approach that | looked at was one used
by Borland’'s C++ Object Inspector utility[7]. This ugliallows the user to browse C++ objects using a

12

series of free-floating windows containing both pasgnformation about the object and active links tp an
sub-objects (classes, arrays, etc.) the object cont@iieking on an active link pops up another free-
floating window with a detailed view of the sub-objednformation and summary information on the
parent object. This second approach seemed to provide #he required navigational function if |
included a list of the ancestors of a table in thedaiv displaying it (referred to as the table ‘stack’)
Further, the free-floating windows of the second apginoseemed easier to specify. This approach was
chosen.

All of this work was done in my head and through tosgetches on paper. | didn't make any use of UAN
at this point, because:

e it was a nuisance to write UAN specifications usingaesnor vi, the only available editors on the
computers running ClockWorks

* | already felt | had a clear understanding of howidhed to accomplish the ‘view table’ task, so the
UAN would just be documentation

» not knowing ClockWorks’ capabilities, | didn’t ward $pend the considerable time required to specify
the task in detail until | was sure that | could implement it as | desired.

Once the initial approach was decided, developmerth@fbrowser during the project spanned three
iterations of the lazy programmer cycle. The majooit my time was spent specifying and respecifying the
system behaviour in order to end up with a system that would acceptably support the view table task.

Once the ‘view table’ task had reached an (arbijraiétermined) acceptable state and the dust haddsettle
| became interested in looking at wiedéethe system should do. At this point | developed anédrUAN
specification for the browser, which quickly showed me the next steps to be taken.

The following three sections detail each majoraitien of the lazy programmer cycle that | followedidg
the project.

4.1.1 First iteration
4.1.1.1 The Details

Once the visual paradigm was established (the ‘stmiioach discussed above), the initial specification
of the major system components was rapid. It was abwibat a ‘desktop’ containing the tables would be
required. The contents of each table would be someilghosmpty) set of stack items, the table’s title, the
UAN column headings, and rows of terminal and nomiteal subtasks. To simplify matters, the
association of each terminal task with ‘interfacgedback’, ‘interface state’, and ‘connection to
computation’ data was left for later. (It was not rdded until the very end of development: fortunately,
was trivial.) Figure 5 shows the browser’s ClockWorks architecture diagram during the first iteration.

Most of the difficulties | experienced in this itetiwere caused by unfamiliarity with ClockWorks. | had
some problems executing the architecture (segmentatiations), and a long period where nothing would
come up on the display except a small empty X windowpvield by a massive degradation in X
performance until the process controlling the wind@a been killed. This problem was always traceable
in the end to a syntactic or type error on my pamdalg an error in a DisplayView grouping (e.g. having a
value that evaluated to a DisplayView list rather than a DisplayView as a member of an ‘above’ list).

13

By the end of this iteration, | reached the poinexehl could display multiple tables by clicking on any
non-terminal subtask (named ActionViews during thst fiteration) of a displayed table to display the
table with the same name as the subtask. | was ingendiimplement table motion (dragging a table
around the desktop), and table layering (bringing aetébkhe front by selecting it, to allow overlapping
tables), when | realized that my internal structuré &adeficiency that would potentially cause errors in
ClockWorks. The problem lay in the Taskinfo ADT cocteel to the DeskTop component (see figure 6:
details of lengthy updates are elided). TaskInfo istes of a list of dictionary entries representitigoh
the non-terminal tasks in the system. Each entngisted of the non-terminal’s task identifier (ergf) as

a key followed by the list of subtasks (again identified by strings) needed to define the task.

root
Visual S HE B
specification of UAiNenvironmment
the “desktop”: '
i.e. application 0 & =
window TableInfo
B] & =z TR ... Lists of tables,
Taskinfo and task infor-
workspace mation shared
Al = by many table
UANTableData
Visual table
specification B & 2
(what do tables t::ﬁ:ﬁ
look like? T 2 €
] =
TaskTableView
EREEE Visual
d ?3; = specification of
theSubTasks |- the individual
] = table rows
ActionBoxView

Figure 5: The UAN Browser during the first iteration.

14

%%%%6%% %% %% % %% %% % %% %% %% % %% %% % %% %% %
Tasklnfo: First Iteration

%%%%6%% %% %% % %% %% % %% %% %% % %% %% % %% %% %
%% Contains info pertaining to the list of tasks and their relationships.

%% We keep track of ActionLists.
type TaskData = [Taskld].

type State = [(Taskld, TaskData)].
allTaskNamesReq xs = map fst xs.

taskActionsReq xs n = ...

initially = [("Main Task",["Sub Task 1","Action 1","]),
("Sub Task 1",["Action 1","Action","Action 3"])].

Figure 6: The definition of Tasklinfo in the first Iteration

The problem became apparent when | realized that | dvdoe table to repeat subtask identifiers. In the
UAN, it is possible to have a terminal task (e.g. Mrepeated within a single table. However, Clock does
not allow two subviews of a view to have the sam@iization string. This restriction would be violdt#

two sub-tasks of a TaskTableView had the same izitiaéin string. The Taskinfo ADT had to be
restructured.

The fact that supporting multiple table contexts requinedl & single table could be associated with many
stacks (i.e., many different paths followed throughbestors in the graph) also became clearer, ana led t
another problem. The existing Tablelnfo ADT, also aissed with the DeskTop component, was very
similar to the Taskinfo ADT: a list of directory teles, with each entry consisting of a task idesti{the
string of the task described by the table) as a ke&yadist of task identifiers to denote the “staitkins as
shown in figure 7. The problem, of course (clear in $igidt!) was that this scheme necessitated defining
an entry in the list for eaatontextin which a table appeared: potentially a lot of wdflrther, if there
were two or more contexts for any table in the spedifon, repeating the table’s task identifier keyhie

list caused the duplicate sub-view problem to arise. Ohyioasserious re-think of the Taskinfo and
Tablelnfo internals was required.

%9%%%6%%%% %% % %% %% % %% %% %% %0 %% %% % %% %% %% % %% Y%
Tablelnfo: First Iteration

%%%96%% %% %% % %% %% % %% %% %% %0 %% %% % %% %% %% % %% %
%% Contains info pertaining to each task box on the desktop.

%% State is list of pairs: table name and task stack leading to table.
type State = [(Taskld, [Taskld])].

allTableNamesReq xs = map fst (debug xs).
tableTaskStackReq xs n = lookup n xs.
showTableUpdt xs (tableid, taskid) = ...
bringTableToFrontUpdt d tableid =
let p = lookupPos tableid d in
d#(1,p-1) ++ d#(p+1,length d) ++ [d@p]

end let.

initially = [("Main Task", [])].

Figure 7: The definition of Tablelnfo in the first Iteration

15

4.1.1.2 Summary

* Most of the difficulties | experienced in this itedti were caused by my unfamiliarity with
ClockWorks.

» Despite this learning curve, | was able to rapidly $pébe large-scale components of the application,
based on a general idea of how | wanted the application to look.

* By the end of this iteration, the application allowee to navigate multiple UAN tables by clicking on
non-terminal subtasks, which would display the associated table.

* This iteration was halted when | realized that eherere serious deficiencies in the internal data
structures | had designed to keep track of task and table information.

The first iteration lasted from January well intobReary: the entire month of January was spent in
administration, learning and practising with thelaetive programming style, and getting ClockWorts t
execute anything | wrote at all. Almost all of the abenentioned work was performed in the first and
second week of February.

4.1.2 Second | teration

4.1.2.1 The Details

During the rethinking at the start of this iterati@nbecame apparent that it would be sensible to have a
“task library”, with each task in the system idaatf by a unique number. This would simplify passing
task information around (rather than concatenatinggs, e.g. in the case of terminal tasks with mult
column text), and would also allow the user to accesask directly through a listing of the library
contents. Similarly, it seemed appropriate to desgtetles with a unique number as well, to avoid the
multiple-context subview problem. | changed the Taskld Baldleld types from strings to numbers, and
introduced the Rowld type, also a number. Figure 8 stimevshanges made to the browser architecture in
the second iteration.

To solve the duplicate subtask problem, | decided togeh#ire TaskInfo state to a list of ordered pairs of
the form ((Tableld, Rowld), Taskld), as shown irufig 9. The initial pair in the tuple would be guaranteed
unique in the system, and since the row number wouldubeagteed unique in any given table, state
information could be passed to the ActionBoxView subviaws unique number calculated by multiplying
the Rowld by some large constant, and adding thkl@.ashe Taskld part of the combined number could
then be extracted within the ActionBoxView.

16

B & =
faskd throry “Task Library” componen
Emeﬁctiﬁ: added : a keyed list defini

Toot all tasks in the svste

L]] =

taskListEntry
]] =

TaskListEntryView

taskTable

[kl =2
“Hide” and i TaskTableView
“Expand”

buttons addec theSubTasks theTitleBar stackBox

] 7] = Ll = HE =

ActionBoxView WindowTitleBarView StackBoxView

editField

Editing classe A =
adde MyClickEditFieldview Task “stack” rows

and title bars add

entryField to table
A =

EntryFieldView

Figure 8: The UAN Browser during the second iteration.

17

%%%%6%%%% %% % %% %% % %% %% %% %0 %% %% % %% %% %% % %% %
TasklInfo: Second Iteration

%%%9%6%% %% %% %% % %% % %% %% %% %0 %% %% % %% %% %% % %% %
%% Tracks the task performed by each (table,row) pair in the system.

type State = [((Tableld,Rowld),Taskld)].

replaceTaskUpdt xs table row task =
enterDict (table,row) task xs.

findTaskReq xs table row = ...
tableRowsReq xs table = findRows xs table.

findRows [] table = [J.
findRows (x:xs) table = ...

%% given a Taskld, see if there is a table designated for the task (is it non-term?)
findTableReq xs task = findTab xs task.

findTab [] task = 0.
findTab (x:xs) task = ...

initially = [((1 titleRow), 1), (1 titleRow+1),2),((2,titleRow),2),
((2,0),1),((2,titleRow-+1),3),((L titleRow+2),2)].

Figure 9: The definition of TaskInfo in the second iteration

Making this change altered the whole nature of if@mation flow between tasks and tables. Almospfall
the information about both tasks and tables was noviagkinfo, and Tablelnfo was reduced to a list of
Tableld/Boolean pairs, controlling whether or not the table was visible on the desktop (figure 10).

As is apparent from the code, Taskinfo was entirelyritten, requiring a large number of changes to the
updates and requests in the architecture. Howevegstsurprisingly quick: the redefinition of Taskinfo
and Tablelnfo, and the introduction of the Task Lipraook only two short days (approximately ten hours
total) to put in place before the system was again ingrki he rest of this iteration was spent adding
functionality to the system.

%9%%%6%%%% %% %% % %% % %% %% %% % %% %% % %% %% %% % %% Y%
Tablelnfo: Second Iteration

%9%%9%6%% %% %% % %% %% % %% %% %% %0 %% %% % %% %% %% % %% %
%% Contains info about each task box on the desktop, e.g. visibility

type State = [(Tableld, Boolean)].

allTableldsReq xs = map fst xs.

tableVisibleReq xs tableid = lookup tableid xs.

showTableUpdt xs tableid =...

hideTableUpdt xs tableid = ...

bringTableToFrontUpdt d tableid = ...

isFrontTableReq d tableid = ...

addTableUpdt xs tableid = xs ++ [(tableid,True)].

initiallv = [(1.True).(2.True)l

Figure 10: The definition of Tablelnfo in the second iteration

18

Table movement was implemented in this iteration ughothe addition of the WindowTitleBarView
component (see figure 8). By this time, | had got“tiang” of ClockWorks, and table movement was put
in place after one morning’s work copying and algraode from a Critical Path Planner ClockWorks
application developed by Graham [4]. Very little debuggivas required. This was first time | became
really impressed with how fast functionality could lmeled to ClockWorks. The same task in a C++/X
environment would have taken far more work.

This iteration also saw the introduction of sevécalnned” classes provided by the ClockWorks team. |
introduced a “Hide” and an “Expand” button (the MyButtaew component) to control the visibility of
tables, and a “Replace” button to allow a selected wlditask to be replaced by a selected task from the
library list. The operation of the buttons, as defimedhe imported component, did not match what |
desired in feedback characteristics, so | was fotoecbpy the code, rename the class, and change the
visual function. Again, however, it was a matter lobat an hour’s work to alter the function of the button
to my satisfaction.

What took longer was the incorporation of ButtonClicijpdates into the ActionBoxView and
TaskTableView components. While trying to figure outvhand when ButtonClick updates were to be
accepted, it quickly became apparent that the systenelydthd a complex set of selection states: to hide
a table, the table had to be selected; to replacekadasubtask and a library item had to be selected; to
expand a table, a subtask or a stack item had to beesgeldgain, | found that the canned “Selection”
component didn’t provide the functionality | neededth@igh | initially tried to use the predefined
component and have a separate selection request hfmndibles, table rows, and task library list ros,
ran into a problem. The system contained an updateamponent near the base of the architecture tree
that needed the status of all three selections dyingessing, but was unable to direct the selection
requests to the appropriate ancestors in the hieraEygntually | decided to create a single “super”
selection request handler (MySelection in figure Bhtaining information on all three selection areas]
containingnine requests and updates, instead of the original tBiaee this “super handler” was used by
SO many components in the system, it had to be pkicted top of the hierarchy. This was the point where
| began to wish for rapid ways to add and remove requests and updates from the system.

Finally, this iteration also saw the introduction @fditing. The introduction of the canned
MyClickEditFieldView component was the most successfuledefined component introduction
encountered. | modified the ActionBoxView class i@tdhorribly complex (in terms of the number of
requests and updates) form, but the changes only tobkfpame day, since the scope of the changes was
mostly local, and all of the hard interface workswalready performed by the MyClickEditFieldView
component. Once again, the speed of adding functipnaks impressive; but the complexity of the
ActionBoxView class became extremely high; for thehaecture to be made ‘clean’ again would have
meant creating a whole set of classes to divide up the functionality squashed into ActionBoxView.

This iteration ended with the realization that, le/ta lot of functionality had been added, the interna
structure was inefficient and extremely complex, a<atdd by the number of requests and updates in the
system, and the awkwardness of some of the codeblpahat in Taskinfo. While the duplicate subtask
info problem had been solved, | realized that, althdugbuld now represent any number of identical task
tables with different stacks, for each different teah | would have to store duplicates of the
((Tableld,Rowld),Taskld) pairs for all of the tablessb-task rows. Further, | still required the person
keying in the specification to provide a table identifiexvfery contexof every table.

19

The end of this iteration marked an interesting fpioirthe development of the application. It was thetmo
functional point in the application’s life, but it alsachthe most confused internal structure. | decided at
this point to focus on simplifying the internals, wehibroviding a slightly restricted functionality by
removing the editing and task-replacing functionality (tasks inappropriate for a browser).

4.1.2.2 Summary

 A*“Task Library” was added, to allow keyed accestagk names, and to provide a visible list of all of
the tasks specified in the system.

* | decided to identify tasks and tables by unique numbeiher than strings. Tasks were then
associated with tables using a triple: ((Tableld, RdwIcskld). The table/row pair allowed me to
uniquely identify repeated tasks in the same table, one of the problems identified in the first design.

» Table movement and table hide/expand buttons were quitidiemented using several “canned”
classes provided by the ClockWorks team. Many ofptezlefined classes did not have behaviors
matching what | wanted, so | had to rewrite parts of them. However, the rewriting was rapid.

» Editing of task names was also introduced. The pirestbledit classes worked very well, with almost
no modifications required.

* This iteration was halted when | realized thath@igh a lot of functionality had been added to the
system, it was at the cost of architectural compleditgny of my solutions to problems in the first
iteration were proving awkward.

This iteration lasted from mid-February until mid-Maydut only involved approximately a week (40
hours) of time spent at the computer. The speed witchvhivas able to make changes to the system
drastically increased as my familiarity with ClockWorks grew.

4.1.3 Third Iteration

4.1.3.1 The Details

The third iteration was the most rapid. A morningisrk at the chalkboard was dedicated to refining the
internals. Once again, with a clearer understandinghe requirements, it was possible to drastically
simplify the TableInfo and Taskinfo operations. Theble/row) task identifier method in TaskInfo was
abandoned, and | returned to the initial Taskinfaessructure, as shown in figure 11. The duplicate
subtask problem was addressed locally: when genematimgews, the table view was enhanced to generate
sequential row numbers, and the uniqgue combined rowrtastber was used as described above. The
multiple-context problem was solved by maintaining aitistablelnfo (figure 12) of only currently visible
tables, rather than trying to maintain a list of all possible tables.

20

%%%%%% %% %% %% % %%% % %% %% % %% %% %% %% %% %% %% %%
TasklInfo: Third Iteration

%%%%%% %% %% % %% %% %% %% %% %% %% %% %% %% % %% %% %%
%% Tracks the tasks required to complete each non-terminal task in the
%% system.

%%
type State = [(Taskld,[Taskld])].
initially = [(1,[2,3]),(2,[4,5,6]),(3,[11,12,13]),(4,[10]),(6,[7,8,9])].

%%

allNonTerminalsReq xs = map fst xs.
isNonTerminalTaskReq xs taskid = (find (taskid, xs)) ~= 0.
taskAtRowReq xs taskid rowid = ...

subTaskListReq xs taskid = lookup taskid xs.

%%

replaceTaskUpdt xs taskid row newtaskid = ...

Figure 11: The definition of TasklInfo in the third iteration

In the current system, a unique table id is generatesh\the table is created. | tried using a predefined
Counter ADT for this id generation, but settled indtéar a function that simply returns the maximum
number from a list of numbers plus 1. This latter approssdpk the operation totally local to the
Tablelnfo request handler, and avoids adding anotwprest handler to the architecture. Each Tablelnfo
entry consists of this unigue number and a list of tdskrepresenting the stack. The last task id in the
stack list is the task id of the table itself, and is therefore used to associate the table with the Taskinfo data.

%%%%%%%%%%% %% %% %% % % %% % % %% %% %% %% %% %% % %%
Tablelnfo: Third Iteration
%%%%%%%%%%% %% %% %% % % %% % % %% %% %% %% %% %% % %%

%% Contains info pertaining to each table instance displayed on the desktop.
%% Entries are added and removed as table instances are created (shown)
%% and destroyed (hidden). Associated with each table id is a list of task ids,
%% representing the path of tasks followed to reach this table. The last task on
%% the list is the title task of this table.

%%

type State = [(Tableld,[Taskld])].
initially = [(1,[1])].

%%

allTableldsReq xs = map fst xs.
tableTaskReq xs tableid =...
tableStackReq xs tableid = ...
stackAtRowReq xs tableid rowid =...
isFrontTableReq d tableid = ...

%%

addTableUpdt xs tasklist = ...
removeTableUpdt xs tableid = ...
bringTableToFrontUpdt d tableid = ...

Figure 12: The definition of Tablelnfo in the third iteration

21

| also decided to focus on the “browser” aspect ofajblication, and removed the editing functionality,
which was extremely dependent on the internal strustofréhe application defined in the second iteration.
Adding editing, | realized, caused an explosion inrthmber of new tasks that the system would have to
support. In the interests of clarity and simplicity, | decided to forego editing in the third iteration.

With this clearer view of the required functionalitif, was extremely easy to remove extraneous
components and clean up the architecture. As mentaineee, the user action information was associated
with interface feedback, state, and computation cpilriormation in the tables. This was done in the
SubTaskBoxView component, which replaced ActionBoxViewe Table title row was also given its own
TitleBoxView component, since it differed visually fmothe other rows of the table. The resulting
architecture is shown in figure 13.

= .
Eram%rm e Selection ADT added
&l iﬁ . =2 to control user's
E"Yseéc m@ selected tables and
TaskInfo table row
root
&l =
UANenvironment
tasklist i
£ = E’Iabgl‘nfn
TaskLibraryView workspace
£ = I
: UANTableData R Editing
taskListEntry functions
£l = u
TaskListEntryView cmdButtons e taskTable remove
£ = (] B
MyButtonView TaskTableView
Table titles added:; .
subtask information B g = || & &F B B & & <
: ! Id Depressed Id Id
expandgd to display sobTasks TheTitloBar StackBox titleBox
all defined UAN] = || B 2 £ = £ =
table columns . SubTaskBoxView WindowTitleBarView StackBoxView TitleBoxView

Figure 13: The UAN Browser during the third iteration

For the first time, significant effort was spentcdmenting and standardizing the style of the comgonen
text, and half a day was spent making alterationbadook and feel of the application (colours, textesty
and sizes, etc.).

4.1.3.2 Summary

» This iteration was the most rapid. Some final rétinm of the relationship between tasks and tables
was done, allowing me to drastically simplify the Taskinfo and Tablelnfo components.

22

* The editing functions, too complex to easily rewritggre removed. Cleaning up and removing
extraneous components was extremely quick and easy.

 The User Action information was finally associateidh Interface Feedback, Interface State, and
Connection to Computation information in a new SubTaskBoxView component.

» Significant time was finally devoted to standandigihe code style, and some time was spent tinkering
with changes to the “look and feel (colours, fonts, etc.), of the application.

Overall, the third iteration took approximately two solid days of work.

4.2 The UAN Browser: current implementation and future work

The current browser software directly supports the ‘tdigkv Table of Specific Task” identified in section
2.3. It provides a desktop upon which multiple tables caroheurrently displayed. Each table contains a
complete specification of the table’s title task adowy to the UAN standard. A specific task can be
located by tracing subtasks in the visible tables: tke seects any non-terminal task in a visible tabte a
presses the ‘Expand’ button. This makes the table cfeleeted non-terminal task visible. Alternately, the
user can select the task by name directly from tble lirary list of all of the non-terminal tasks time
system, and pressing the ‘New Root’ button. Figure 14 shows a screen shot of the current application.

T

Lielels Wavullpke Files

[U=ce funtioeg necrmee Frodonsh Inzermge Sk ss Konnertion 1o Lo,
2l=cr Multiple | e | |
O Jote Sole v =ilos
Deiple Fullfofe Filps
UAN Tables: Dielere Sefected Fies
. D Ao, e Levw Feeobaerh e Lo Sate Cuciseetion o Cemy
these can be T fooml -
iddan Ar Arann T - A
h|dden or dragg‘ g ! S
- -reab_eon] bo-linel:rons=-,
jrach_lreml
== = 5 = = 2L % aelertes]
| fer delction
Dafere ffiriticle Fes
Desktop Sefent Mltiofe FHies
Lacrfwetong Interfaze Feocbags utcrfare Eoate Lonnceticn te Somp.
Shift blnltoale Select
=l
Loz Box Multpls Sclees
. Lhetete Multipls Files
Global task list [Sefeut dwkinls Fws
Shifr Mufriple Setect
o S o 1 ca.amm Fewduach 1l 4k Fle .o Iz L s Crama,
o
B BUttonS «|flle izonl
[khe e tcon-| fle feox, alected -
elesteel U lile
: . lile :conk fils_jcon-, electec
Dclete Mouodple Files i . rlestes] - ='r
Seleer Lultpoe Fulee glr‘
Dielene Selacted Fliee -
Shil. ¥l S ool

e, Eoue Multiple Seloct Hida
T

Figure 14: The user interface of the Browser

23

The “View Context of specific Task(s)” task is parslypported by the mechanism described above, when
used in conjunction with the stack information presgnwith each table. The stack is the set of rows
located above the table’s title, each of which indiszan ancestor task selected in order to arrivheat
current table. In essence, the stack shows the “@éthth most distant to most immediate ancestor, in
order) followed in the graph to arrive at the curreiile, and therefore shows the context of the table’s
task. It is therefore possible (although still inconeat) to identify all of the contexts of a singésk: for
example, the user can display the table for task D -dféyyntraversing task A and task B - right beside
another table for task D found by traversing tasksx @. The two tables are identical, except for the
stack information.

Each task on the stack is, of course, a non-terrérsid, and so is also selectable and expandable by the
user, allowing a two-way traversal of the task higng. If the desktop gets too cluttered with tables, t
user may hide any table by selecting it and pressigHide’ button. Note that if a table is created with
the ‘New Root’ button from the task library list, thgstem does not attempt to place the context of the
table: it is considered to form the root of an exwegortion of the task hierarchy (hence the cryptic
name). Tables can be moved around the screen by glieikid dragging on the title bar of the table
window. Tables cannot currently be iconified.

The current system provides no support for the thirdmgjbtask, “View Section of Task Hierarchy”.
One solution to this inability to extract structuraloimhation would be to provide another work surface in
addition to the desktop displaying a low-detail oi@mof the task hierarchy. The desktop could continue
to provide information on table details, while thevregpace could provide the graph-specific information
required. Alternatively, some functions could be tiedhe tasks themselves: for example, the user could
select a task from the task list and have the sydisplay a table for each context in which the tasiurs

in the system.

| believe that the current system constitutes an aakepstart towards a fully-featured tool. However,
there is obviously a lot left to be done to implemédm full usefulness of a graph-structured UAN
browser/editor.

5 ClockWorks: pros and cons for the Lazy Programmer

This section contains a series of observations almwtie ClockWorks approach aids and/or irritates the
lazy programmer.

5.1 The Speed vs. Structure Debate

Tools such as ClockWorks that enforce a specificitaatiral style tend to produce clearly-defined and
well-understood applications. This contrasts favourabti tools such as Microsoft’'s Visual Basic [8]
that favour speed over structure: these tend to proquueEations that are architecturally singular (any
two applications will have dissimilar architectureBhis type of application is hard to understand, since t
understand the application structure, anyone otherttt@aariginal programmer probably has to start from
scratch.

24

The ClockWorks tool also allows for smoother sofvavolution by forcing the system structure to keep
pace with the addition of function to the applicatiarotime. ClockWorks makes it difficult to “fudge”
functionality on a bad internal system structure. Dgweent reaches a point (in my case at the end of the
second iteration) where the messiness and ineftigief the system is totallyisually apparent, and the
amount of work required to add new functionality te thess begins to outweigh the amount of work
required to streamline the structure. The end restiigisthe application’s functionality remains based on
clearly defined and understood internals. This kifidfunctionality is easy to adapt and extend. The
evolutionary ‘smoothness’ of ClockWorks applicatiomsitcasts favourably with the Visual Basic group,
whose applications’ system structures often freezenirearly and incomplete form as it becomes too
difficult to reorganize the growing web of workaroundso a new, coherent structure. Over time, the
functionality of such applications becomes increasibglged on workarounds, and changes or extensions
become a game of side-effect Russian roulette.

However, enforcing a specific architecture has drakdaBy restricting the use of workarounds and short
cuts, ClockWorks sometimes is a frustrating tool thee lazy programmer. Having to stop and rethink
fundamentals, and possibly face the fact that a gootiopoof the system function that has been so
painstakingly developed must be scrapped, is not sorgethiazy programmer wants to do. This builds
resentment against the tool, and may, especially ait inexperienced ClockWorks user, give rise to the
belief that the tool is limited in power, since th@gnammer’s perception then becomes “there’s no easy
way to do what | want to do”.

The drawback just mentioned concerns programmer pewnepfihere is another, more serious, related
drawback. If a tool strictly enforces an architectuten the tool does in fact (not just in programmer
perception) become limited by any weaknesses of tluhitecture. The architecture designer has placed
himself in control, and has developed a set of ralEsut how systems can be structured. The usability of
the whole tool becomes tied to the completeness andrpaf that set of rules, since the programmer can'’t
develop extra-architectural solutions to problems notageable within the architecture. ClockWorks
enforces an extremely well thought-out architectures @gaarchitecture design is the only way to minaniz
this problem.

Strict enforcement of an architecture causes prograrmiaigstrophobia. The biggest attraction of the free-
form tools such as Visual Basic is the belief that@mmmer using them can always solve a problem his
own way, and that there are always several opt®olations available. With restricted architecturesethe

is a greater risk that, even if there is a waydwesa given problem, a less experienced developer may be
unable to find it.

I encountered these types of drawbacks when dealihgting Selection ADT, as described in the “Second
Iteration” section, above. Here was a requiremertt Ithielt was legitimate: | wanted to be able to make
three requests within an update handler, to obtaisdleetion status of three elements of the systerrelh
was a predefined Selection ADT that initially seertedit the bill, and a logical place in the hieraydbr
each of the three required instances of Selectiomeder, | found that since the architecture automtica
routed my request messages (very convenient 99% dfinteg, | couldn’t control the delivery of the
requests to a specific handler. Not specifying a dpegiessage recipient does prevent tight coupling
between components and facilitates changing the progtaucture, but not having the option to specify a
recipient forced me to produce either one enormous AlBW customized to the application, or three
customized variations of Selection -- a lot more kvtitan managing a specific address in the update
handler.

25

If I have a suggestion about fundamentals in ClockWatks this: | think that it would be worthwhile to
take a second look at the strongly restrictive pedicspecifically message addressing and scoping (i.e
which components can see a request/update handldr)a wiew to relaxing the architectural requirements
as much as possible without compromising ClockWorks fonedigals. This would increase the variety of
solutions available to programmers: it probably wouldedult in much additional real functionality, but
programmers like to have multiple options when solvimgblems. If some of these restrictions are
carefully relaxed, | think that additional real (and percejvéidxibility and power can be added to
ClockWorks. For example, the hiding mechanism thest been proposed for request handlers within
groups would be very useful if implemented.

Personally, | believe that the tradeoff of shortrtetevelopment speed for the ability to maintain arcle
internal system structure is worthwhile, and in fagtaid over time. | also believe that this tradeafif mot

be acceptable to the lazy programmers of the world dautsie pure research community if the tool is
viewed as rigidly enforcing a specific architecture.

5.2 TheVisuals

| found the DisplayView type to be a surprisingly powedbktraction. | didn’t run into anything that |
couldn’t figure out how to display (except a minor X paneblem with my brief foray into menu use at
the end of the project, solvable but for lack of time}till find the left-to-right order of evaluatioim
DisplayViews confusing, given that order of evaluatiothe declarative paradigm works the other way. If
this order of evaluation were reversed (I realizat tthis would make incremental updates harder or
impossible: this is just hypothetical), it would alstowalclass subtypes to redefine some or all of the view
definition of the supertype; whether this would be useful or just dangerous is not clear.

| found that my ability to reuse predefined visual congmis was relatively low. In almost every case, |
ended up making a local copy of the predefined compa@rehtnaking changes to the component function.
ADTSs were more portable than the visual classes, butteese sometimes couldn’t be made to work. Part
of the problem was due to my inexperience, and part dire tcomplexity of the class inclusion process. It
often wasn't clear just which classes of an apparestipciated set of classes would be required to provide
the desired function, especially when borrowing clads®m other projects that used grouping. Even once
the classes were included in my project, there iabljt seemed to be extraneous or missing
requests/updates or handlers: the predefined classes did too much, or not enough.

When dealing with visually-oriented components liketdma, of course, class re-use can be expected to
drop. These classes are more like widgets, and camnsolom promotes customizing widgets into specific
sets rather than placing a vast amount of generdiizedion into them and making them too cumbersome
to use. In the case of ADTs, however, re-use is a worthwhile goal.

My suggestion on the topic of reuse is simply to comtithe evolution of a component library, and to
streamline the inclusion process: make it easy for a programmer to try the predefined components.

The ClockWorks visual development environmentvemaiseful, if not essential.
* It facilitated navigating through the system. Durawgling, it provided a means of single-click access

to any code module in the system. My only navigatiG@uggestion would be to provide editor-specific
(e.g. emacs) extensions to ClockWorks. In the chemacs, it would be nice to operate within a single

26

session (it is much faster to create/destroy buffefsames than entire editing sessions), and it would
be useful to have a Clock syntax checking module similar to the C++/Lisp modules available.

» It allowed efficient complexity management by allowitige user to display or hide the visual
representation of the components and messages.

» It served as a memory aid, both during a developrmesgian between sessions. Even after a week
away | was able to sit down and recall the last state of the project’s structure within a few minutes.

* Interestingly, it served to shame me when the siracivas in a bad state. Many symptoms of poor
Clock structure (overly complex components with enormpeguest/update lists, poorly named
components, etc.) are embarrassingly visible. Byndeoéthe second development iteration, | couldn’t
stand to look at the mess anymore--the visual eterfoaded me into cleaning up the structure. This
raises the question of just how much sloppiness in a@vent would vanish if programmers had to
display their application’s structure and code in front of a critical audience every day.

My suggestions for the visual aspects of ClockWorlsstiraightforward, and have probably already been
identified.

* Make the type information of updates/requests and A€akEdy accessible, e.g. via one or two button
clicks. This type information is hard to rememberd arfound myself constantly going through the
complex task of calling up a request or update definition just to remember the type of its parameters.

* More thought needs to be given to the definition,tamfd and removal of requests and updates. Fewer
menu selections should control this process - | wastaatly getting into the update list when | wanted
the request list, etc. Perhaps one dialog allowimmgsscto both updates and requests would be more
efficient. Direct manipulation of request and updatepical objects would be ideal: the user could
select a displayed update object, copy it around, modeldte it. etc. Also nice would be some way to
identify and manipulate sets of requests/ updatesxtmmple, it would be nice to be able to delete all
instances of a given request/update from the systeoménoperation, or to identify all components
using a specific request/update.

5.3 Miscdllanea

| found debugging to be very fast: Clockworks providésimal tool support for debugging, but what is
provided is adequate, since there are a minimal nuofbigmpesof bugs that are encountered due to the
architectural restrictions. The number of times majmnges ran the first time was encouraging. All the
debugging tools have to do is let the programmer kndwere the problem is located, which they do
admirably. This is not to say that all of the waskdione: there are still type errors that aren’t caughil
runtime, such as the X-degrading ‘above’ function probigentioned previously. | would strongly support
the inclusion of type-checking.

There are some problems in the ‘above’ and ‘above&ingfcfunctions when one of the DisplayViews in

the list evaluates to a NoView. | have replaced theveStretching code: the version that works with
NoViews is in the Globals file for the project.

27

ClockWorks is very easy to learn, if harder to reastess experience in applying “technique” is required
than in a low-level imperative language environmesinee the specification language is high-level,gher

are a restricted number of ways to accomplish eachraoroging task. This results in a rapid learning
curve: | began to feel comfortable with the conceptskiyi and was able to improve the quality of (i.e.

simplify) my implementation considerably in each itema In Clock, the best way to do things usually
involves basic concepts, unlike many imperative langsjagiere efficiency is often tied to complex

concepts and cryptic coding techniques.

6 Conclusion

ClockWorks embodies a very well thought out approactih® problems of incremental interactive

software development. The approach produces softwarestistructurally precise and therefore all the
things software should be: extendible, maintainable, rstet@dable, reusable. ClockWorks’s approach is
also risky. Many of the decisions that went iritodesign, such as the use of a declarative languabe a
the enforcement of a specific architecture, cut botyswhey form the basis of the quality of the current
product, but they reduce the audience to which the pregypsals. I, however, am among that audience--I
enjoyed working with ClockWorks very much.

With regard to the UAN, it seems apparent that theusnof value provided by UAN specifications in the
development process is tied directly to their abildyevolve concurrently with the system specification.
This ability to evolve is not inherent in the nabati UAN requires sophisticated tool support if it is to
realize its potential. The belief that UAN can be @fiely used with basic text-processing tools is wishful
thinking: too much of a specification’s information is unavailable or obscured in such a form.

The incorporation of UAN tool support into the Clock\W®environment appears to be a worthwhile goal;
supporting both task-oriented and behavioural specifitatio one environment provides the lazy
programmer with two convenient and powerful ways of looking at development problems.

7 References

[1] H. Rex Hartson, Antonio C. Siochi, Deborah Hikbhe UAN: A User-Oriented Representation for
Direct Manipulation Interface DesigndACM Transactions on Information Systems, 8(3):181-209,
July 1990.

[2] T.C.N. Graham, C.A. Morton, T. Urne€lockWorks: Visual Programming of Component-Based
Software Architectureslournal of Visual Languages and Computing, AcadengsRrJuly 1996 (to
appear).

[3] T.C.N. GrahamThe Clock LanguageReference Manual. Electronic Technical Report CREb-
01, Department of Computer Science, York University, June 1995.

[4] T.C.N. Graham et. alThe Clock Methodology: Bridging the Gap Between User Interface Design and
ImplementationDepartment of Computer Science, York University (in progress).

28

[5] T.C.N. Graham, T. Urnet.inguistic Support for the Evolutionary Design of Software Architectures
Technical Report In Proceedings of the Eighteentérmational Conference on Software Engineering.
IEEE Computer Society Press, Berlin, Germany, pp. 418-427, March 1996.

[6] P. Hudak, J. FaselA Gentle Introduction to HaskellDepartment of Computer Science, Yale
University, 1992

[7] Borland International In&orland C++ User’s GuideBorland International, 1993.

[8] Microsoft CorporationVisual Basic User's GuideMicrosoft Press, 1996.

29

Appendix A: A UAN Specification for the implemented UAN Browsing Tool

TASK: Browse UAN Specification

USER ACTIONS INTERFACE INTERFACE STATE| CONNECTION TO
FEEDBACK COMPUTATION

({ View Table of

Specific Task }

{ View Context(s) of

Specific Task(s) in

Task Hierarchy }

{ View Section of *NOT

Task Hierarchy } IMPLEMENTED**

)+

TASK: View Table of Specific Task

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

(Rearrange Desktop

{ (Select Task via
Table on Desktop

OR

Select Task via Task
Library List)

Display Table })*

TASK: View Context(s) of Specific Task(s) in Task Hierarchy

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

(Rearrange Desktop

{ (Select Task via
Table on Desktop

OR

Select Task via Task
Library List)

Display Table })*

30

TASK: Rearrange Desktop

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

(Bring Table To
Front

OR

Move Table

OR

Hide Table) *

TASK: Select Task via Table on Desktop

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

(~[table.stack item]

Mv/)

displayOnTop(table
table.stack_item-! :
table.stack_item!

[table.rows’! :
table.rows’-!
expand_button-! :
expand_button!

sel_table_task =
table.stack_item
sel_table = table
frontOfList(table) in
Tablelnfo list

OR

(~[table.non-
term_sub_task]

Mv/)

displayOnTop(table
table.non-
term_sub_task-!:
table.non-
term_sub_task!

[table.rows’! :
table.rows’-!
expand_button-! :
expand_button!

sel_table_task =
table.non-
term_sub_task
sel_table = table
frontOfList(table) in
Tablelnfo list

TASK: Select Task via Task Library List

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

~[library list.row]

MvA

library_list.row-! :
library_list.row!

O library_list.row! :
library_list.row’-!
new_root_button-! :
new_root_button!

sel_lib_task =
library_list.row

31

TASK: DisplayTable

USER ACTIONS

INTERFACE
FEEDBACK

INTERFACE STATE

CONNECTION TO
COMPUTATION

(~ [expand_button]

Mv

expand_button! :
expand_button!!
table_sel_task <>

addTable(
sel_table_task,
sel_table_stack) to

nulltask : Tablelnfo list
displayOnTop(
sel_table_task)

M™) expand_button-!!

OR

(~[new_root_button]

Mv new_root_button! : addTable(

new_root_button!!
sel_lib_task <>
nulltask :
displayOnTop(
sel_lib_task)

sel_lib_task, NULL)
to Tablelnfo list

M)

new_root_button-!!

TASK: Bring Table To Front

USER ACTIONS INTERFACE INTERFACE STATE| CONNECTION TO
FEEDBACK COMPUTATION
~[table]
Mv? table-! : table! sel_table = table,
[table’! : table’-! frontOfList(table) in
displayOnTop(table)| Tablelnfo list
hide_button-! :
hide button!
TASK: Move Table
USER ACTIONS INTERFACE INTERFACE STATE| CONNECTION TO
FEEDBACK COMPUTATION
~[table.title_bar]
Mv table-! : table! sel_table = table,

table.title_bar!!

[table™ : table’-!
displayOnTop(table)
hide_button-! :
hide_button!

frontOfList(table) in
Tablelnfo list

~[x,yI*

table > ~

tablePos(table, x,y)

M/\

table.title_bar-!!

32

TASK: Hide Table

USER ACTIONS INTERFACE INTERFACE STATE| CONNECTION TO
FEEDBACK COMPUTATION
Bring Table To Front
~[hide_button]
Mv hide_button! : remove_table(
hide_button!! sel_table) from
erase(sel_table) Tablelnfo list
sel_table = nullTable
sel_table_task =
nulltask
M~ hide_button-!!
hide_button-!

expand_button! :

expand_button-!

33

