
York University
Department of Computer Science

Technical Report CS-96-03

Developing a UAN Browser in ClockWorks: a case study of
incremental development using the Clock methodology

Eric Telford
June 19, 1996

Abstract

The User Action Notation (UAN) is a notation for specifying how a user performs tasks using a given
interactive software system. An accurate and complete UAN specification provides a clear description of
what tasks the user needs to perform to accomplish his goals, and how the user will interact with the system
to accomplish those tasks. This provides the software developer with a clear direction for implementing the
system’s behaviour, and a reference against which the success of the system design and implementation can
be measured.
However, it is the exception, rather than the rule, that a thorough and accurate specification of the tasks the
user needs to perform is completed before implementation work begins. The reality of interactive software
development is that specification and implementation are not chronologically distinct stages. Rather, they
are interleaved, as the developer moves back and forth between them, incrementally refining both the
system implementation and the system design. If the UAN specification of the system evolves along with
the implementation and design, the specification continues to serve a vital role, ensuring that the evolving
system continues to meet the needs of the user.
Unfortunately, due to the structure of the notation, it is hard to edit or even read a complex UAN
specification using standard text-processing tools. Because UAN specifications are hard to maintain, they
tend to be abandoned during the incremental system development process, or simply left to the end of the
process and used as a documentation tool.
This report documents my experience developing a UAN browsing tool using the ClockWorks development
environment. ClockWorks is designed to support the incremental method of development discussed above,
which I refer to as the “lazy programmer” method. The report contains a critique of how well ClockWorks
supports this method, and shows how the use of UAN can be incorporated in the specification/
implementation cycle.

TABLE OF CONTENTS

1 INTRODUCTION... 2
2 THE USER ACTION NOTATION .. 2

2.1 Overview of the UAN ... 2
2.2 Problems with the UAN ... 4
2.3 Providing UAN tool support .. 5

2.3.1 Browsing a specification in a completed Browser..................................... 6
2.3.2 Browsing a specification in a word-processor environment...................... 7

3 INCREMENTAL DEVELOPMENT, CLOCKWORKS, AND UAN.................................... 7
3.1 The Lazy Programmer ... 7

3.1.1 Clock, ClockWorks and the Lazy Programmer... 8
3.1.2 UAN and the Lazy Programmer... 10

3.2 Mapping specification to implementation: UAN and Clock.......................... 11
4 DEVELOPING A CLOCK APPLICATION: A CASE STUDY... 12

4.1 The experience... 12
4.1.1 First iteration.. 13

4.1.1.1 The Details .. 13
4.1.1.2 Summary... 16

4.1.2 Second Iteration... 16
4.1.2.1 The Details .. 16
4.1.2.2 Summary.. 20

4.1.3 Third Iteration.. 20
4.1.3.1 The Details .. 20
4.1.3.2 Summary... 22

4.2 The UAN Browser: current implementation and future work 23
5 CLOCKWORKS: PROS AND CONS FOR THE LAZY PROGRAMMER............................ 24

5.1 The Speed vs. Structure Debate ... 24
5.2 The Visuals .. 26
5.3 Miscellanea ... 27

6 CONCLUSION..28
7 REFERENCES..28
APPENDIX A: A UAN SPECIFICATION FOR THE IMPLEMENTED UAN BROWSING

TOOL... 30

2

1 Introduction

This report documents my experience developing a User Action Notation (UAN) [1] browsing tool using
the ClockWorks [2] development environment. The goal of the project is to provide a documented case
study of ClockWorks in action, with a view to analyzing how fully ClockWorks achieves its aim of
supporting the incremental application development style described in this report. The choice to develop a
tool for the UAN in the case study is motivated by the belief that UAN specifications can and should play a
vital role in the incremental application development process, but that currently, due to the difficulty of
maintaining UAN specifications with existing tools, their potential remains unrealized.

Section Two deals with the UAN, providing an overview of the notation and the problems it poses, and then
advancing arguments for the value of sophisticated UAN tools.

Section Three deals with incremental development, providing a description of the incremental development
style (referred to as the “lazy programmer” style). It also describes the Clock methodology [3] [4] [5] (on
which ClockWorks is based) and describes how Clock is intended to support incremental development. The
role that UAN can play in the incremental process is addressed, and the current work exploring the close
relationship between the UAN and Clock is mentioned.

Section Four details my actual development experience during the project, highlighting the way in which I
followed the “lazy programmer” method. Three main iterations in the implementation/specification cycle
are documented, and the role of UAN in the process is described. This section also contains a description of
the state of the developed browser software at the end of the project along with suggestions for future work.

Section Five contains an analysis of how well Clock and ClockWorks do in fact support the incremental
process, discussing the conflict between the desire for development speed and control of application
structure, and the value of the visual ClockWorks tool.

Section Six concludes the case study.

2 The User Action Notation

2.1 Overview of the UAN

The User Action Notation (UAN), developed by Hartson, Siochi and Hix, is a notation for specifying how
a user performs tasks using a given interactive software system. An accurate and complete UAN
specification provides a clear description of what tasks the user needs to perform to accomplish his goals,
and how the user will interact with the system to accomplish those tasks.

A UAN specification consists of a set of tables, each table describing a task that a user may perform while
using the system. For example, in a disk-file management application, there might be tables describing
tasks such as “Move File”, “Select Files”, “Delete Files”, and so on. The tables have the format shown in
figure 1. The table’s title is on top, with from one to four columns underneath. (Empty columns may or
may not be shown.) The columns are titled “USER ACTION”, “INTERFACE FEEDBACK”,
“INTERFACE STATE” and “CONNECTION TO COMPUTATION”. Information on the same row
across the columns of the table is considered to ‘happen’ at the same time, so a user action could

3

immediately cause a change in interface feedback, state, or a computation call. Each column deals with a
different aspect of the specification.

TASK: Delete File
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
~ [file_icon] Mv file_icon-!: file_icon!,

∀ file_icon’!: file_icon-!
selected = file

~[x,y]* outline(file_icon) >~
~[trash_icon] outline(file_icon) >~,

trash_icon!
M^ erase(file_icon),

trash_icon!!
selected = null mark file for deletion

Figure 1: A UAN Task Table for deleting a Macintosh file. Taken from [1]

The USER ACTION column contains a list of actions that the user performs to complete the task described
by the table. Each of these actions is either an ‘atomic’ user action (such as a mouse click), or a more
complex subtask (such as “Delete File”, which, for example, could be a subtask of the task “Clean up
desktop”) that has its own table. In the latter case, the action is performed by performing the actions in the
subtask’s table (analogous to a subroutine call). In this report, atomic actions are referred to as “terminal”
tasks, and subtasks representing links to other tables as “non-terminal” tasks.

The actions and subtasks in the USER ACTION column may be sequential, interleaved, optional,
concurrent, repeated, and so forth. The UAN provides a rich set of additional symbols that allow the UAN
user to specify the relationship between subtasks. In figure 1, for example, the notation ~[x,y]* indicates
that the user can move (~) the mouse pointer to any screen location ([x,y]) zero or more times (* indicates
Kleene closure); i.e. while holding down the mouse button, the user can drag the file icon outline around the
screen indefinitely. If no special symbols are present, a sequential ordering of tasks from the top to the
bottom of the column is assumed. A full description of the UAN symbol set is beyond the scope of this
report. Interested readers are directed to [1].

The INTERFACE FEEDBACK column contains descriptions of how the system responds to user actions.
For example, to indicate that a file icon should be highlighted (UAN uses the symbol ‘!’ to indicate a
‘highlight’ state) when clicked on with the mouse, the UAN user writes ‘file_icon!’ in the INTERFACE
FEEDBACK column beside the USER ACTION entry ‘Mv’, the UAN symbol for depressing the mouse
button.

The INTERFACE STATE column is used to track changes in state-related information. For example, it
might be desirable to track the name of the currently selected file in the variable selected. If a user
operation with the mouse causes a new file icon to be highlighted, selected is assigned the new file name
(selected = file) in the INTERFACE STATE column directly to the right of the Mv action.

Finally, the CONNECTION TO COMPUTATION column is used to specify calls to non-interface
components of the application. For example, placing a file icon in the trash and releasing the mouse button
triggers the system to mark the file for deletion.

4

The tables in a UAN specification are related to one another in the form of a directed graph. The graph
contains the main task (i.e. the overall goal of the system user) as the sole ‘source’ node in the graph (e.g.
‘Put on shoes’: see figure 2), some set of middle nodes (those that lead to other tables as well as possibly
containing terminal tasks, e.g. ‘Put on left shoe’), and another set of ‘sink’ nodes (those tables that consist
solely of terminal tasks, e.g. `Tie laces’). The graph is directed if the edges are viewed as representing the
relationship “is accomplished by”; if ‘Put on shoes’ is accomplished by ‘Put on left shoe’, the relationship
is represented with an arrow from the former task to the latter.

Figure 2: A UAN Directed Graph

The task hierarchy can be (and often is) viewed as a tree by duplicating shared subtasks. In a tree
representation, it is important to remember that each task is defined solely in terms of its subtask structure,
and is not defined in terms of its position in the hierarchy (referred to as the task “context”). The subtask
‘Put on shoe’ required to accomplish ‘Put on right shoe’ is identical to the ‘Put on shoe’ required to
accomplish ‘Put on left shoe’. To avoid confusion, and to emphasize shared subtasks, a directed graph
representation of the hierarchy seems preferable to a tree representation. In the case of a very complex task
hierarchy with many shared subtasks, however, a directed graph would become hard to read and the tree
representation would be preferable.

The UAN is a very powerful and precise notation. In theory, a complete UAN specification can be handed
to a programmer for implementation. Unfortunately, developing a complete UAN specification is extremely
difficult.

2.2 Problems with the UAN

The most common complaint heard about the User Action Notation is how difficult it is to use. Most of this
difficulty comes from the attempt to force what is essentially a directed graph structure into a linear form, a
process which is forced on the UAN user who has only a word processing tool at his disposal.

Given the complex internal structure of a UAN specification, it’s not surprising that forcing it into a linear
format makes it difficult to use or even understand, since the person writing the specification is forced to
arbitrarily sort the tables. In a complex specification, it is very hard (if not impossible) to keep all of the
related tables adjacent to one another. This results in: endless searching back and forth through pages of
specification to trace the edges of the graph from task to task; the frequent inability to view related tasks at

Put on left shoe

Put on shoes

Put on right shoe

Put shoe on foot

Put on shoe

Tie laces

5

the same time without disordering the document; a lack of easily identifiable information about task
contexts; and so forth. A UAN specification with the table structure described by Hartson et al., while a
powerful and useful notation, cannot be represented in a linear format without obscuring a lot of the
specification’s information.

In order to make the full amount of information contained in a UAN specification available to the user, one
must either provide extensions to the definition of UAN, or provide more sophisticated software tools that
can extract implicit information from a specification and present it conveniently to the user.

It is apparent that in the original definition of UAN, the focus was on providing a notation to describe the
low-level atomic user actions required to perform specific tasks. It is possible to concisely define low-level
tasks entirely within a single table, and tables containing only atomic actions are relatively independent of
other tables and can reasonably be presented linearly. In a complex specification, however, this type of
table makes up a diminishing percentage of the overall hierarchy, and does not provide any of the vital
higher level understanding of the task hierarchy structure. Much of a large specification consists of highly
interconnected tables, and it is in the documentation of the relationships between task tables where most of
the difficulties with UAN lie. If UAN is to become useful in larger projects, its reliance on table
interconnections must be addressed, and possibly incorporated into the notation. One suggested extension to
the notation would be the inclusion of context information with each table, perhaps by adding table rows
identifying the various ancestors of the table in the task hierarchy.

The disadvantage of extending the notation is increased complexity. Careful work would be required to
balance the task of making implicit specification information explicit with the task of maintaining a
readable notation format.

The second option, providing more sophisticated tool support for the notation as it currently exists, is
investigated in the following section.

2.3 Providing UAN tool support

As mentioned, the current definition of UAN does create specifications that contain useful information for
the system developer. The problem is that much of that information is in a form difficult for the UAN user
to obtain using a standard text processor. Therefore, the idea of developing more intelligent software to
help the user manage specification information is appealing.

The first step in developing software to support the use of UAN is to decide exactly what tasks are faced by
a UAN specification user: that is, develop a UAN specification! I limit the following discussion to the tasks
faced by someone attempting to understand and use an existing, static specification; the tasks faced by
someone editing a UAN specification is a much larger superset of these.

Browsing a UAN Specification can be described as a repetition of three primary tasks:

1. Viewing the details (i.e. table) of a specific task. In this task, one knows the name of the task, and has
to find and display the table associated with that task (I am, of course, assuming a non-terminal task)
so that one can view the actions/subtasks required to accomplish it, and identify features of the task
specification such as critical (i.e. mandatory) subtasks, repetitive subtasks, etc.

6

2. Viewing the context of a specific task. This refers to identifying where in the task hierarchy a specific
task may be found, and its relationship with other tasks, i.e. identifying its ancestors and descendants.
Note that one may wish to concurrently view the context of many different tasks, or even many
different contexts of the same task.

3. Viewing a section of the Task Hierarchy: This refers to identifying properties of the task hierarchy

itself, such as identifying complex tasks (those with many subtasks), determining the hierarchy depth
(perhaps the specification is too complex or not complex enough), identifying tasks that show up often
in the hierarchy (these tasks need special attention, since they will be performed often), as well as
giving a quick overview of the hierarchy structure. One may wish to see all or just part of the
hierarchy, ideally with a variety of levels of detail.

The following UAN table describes these tasks. See Appendix A for the complete UAN specification of the
browser tool developed during the course of the project.

TASK: Browse UAN Specification
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
({ View Table of Specific
Task }
⇔
{ View Context(s) of
Specific Task(s) in Task
Hierarchy }
⇔
{ View Section of Task
Hierarchy }
)+

Figure 3: Top Level Specification of a UAN Browser

In figure 3, the ‘⇔‘ symbol indicates task interleaving: each of the three main tasks may be interrupted at
any point by one of the others, and returned to subsequently. The braces indicate that each of the three
tasks is optional: a successful ‘browse’ session may or may not include the task. The parentheses and ‘+’
symbol indicate that browsing is repetitive: any or all of the tasks may be performed any number of times.
One uses ‘+’ rather than ‘*’ closure to highlight the fact that a browse will involve at least one of these
tasks being performed at least once.

2.3.1 Browsing a specification in a completed Browser

In theory, all of these tasks can be directly supported by a fully functional graph-structured browser (the
initial development target for this project). The tool could provide a graphical view of the task hierarchy
which would allow users to view and query the task hierarchy directly. For example, the user could ask that
all instances of a specific named task be highlighted, or that all tasks modifying the interface state variable
‘foobar’ be highlighted. Tasks in the hierarchy could be expanded to show their table details, and tasks
could be traced via the table text or the graph representation. Multiple tables could be viewed concurrently,
allowing the user to compare task contexts and task structures, perhaps identifying common subtask

7

sequences. Finally, the tool could provide a set of dialogs permitting the user to identify implicit or non-
visual properties of the specification, such as the average number of steps per task, or even generate
information, like a sample sequence of tasks to be performed in a testing session. The amount of
information in a UAN specification is large; an appropriate tool that retains the “three-dimensional”
aspects of the information will make the UAN user’s job much easier.

2.3.2 Browsing a specification in a word-processor environment

In fact, of the three main subtasks indicated above, only the first, “View table of specific task” can be
reasonably performed. Given the name of a task, the user can search the document for the table with that
title, or use an index. However, without additional information, the context(s) of tasks is hard to determine,
often requiring multiple searches of the document, since no “ancestor” data is included with each table.
Tracing back several ancestors is such a complex cognitive task that the user often forgets part way
through which ancestor he or she wanted to find, and why. The last task, viewing a section of the hierarchy,
is impossible without a pencil and sketch pad.

While all of the information required to complete the second two tasks is present in the specification, it is in
an essentially unusable form, and therefore severely hinders the UAN user.

3 Incremental Development, ClockWorks, and UAN

3.1 The Lazy Programmer

In classic system design theory, the system development process goes through one or more distinct and
well-defined stages of specification, followed by an implementation stage. It is expected that a large
percentage of the system (both the tasks that the system will support and how it will support them) is well
defined and understood before implementation begins. In the interactive software domain, however, it has
become increasingly recognized that it is the exception, rather than the rule, that a complete and accurate
system specification is completed before implementation work begins.

In fact, even viewing specification and implementation as chronologically distinct stages doesn’t reflect
reality. Many interactive software developers begin implementation with a vague and incomplete system
specification, entering a cycle of ‘getting it wrong’, respecifying part of the system, and reimplementing.
Only gradually, correcting as they go, do they develop what is actually needed and useful. I refer to this as
the “lazy programmer” style.

The lazy programmer style works as follows:

• Sit down with the system users several times and talk about the system: what do they want, what do
they need? Clarify some terms, get a “general” sense of the system. A picture develops in your mind,
both of the externals (layouts) and the internal structures that will form the system. Make plenty of
sketches on paper. If you’re lucky, you are working in a group, and can debate your perceptions of
what is required with the other group members.

• Unable to think of any other useful (but dull) preparatory work to do, decide to use your chosen

interactive system builder as a specification aid, i.e. see if you can implement what you understand so

8

far, and use the experience to increase your understanding of the system. Sit down at a computer
somewhere and program as much of the system as you can until you encounter the glaring omissions
and inconsistencies in the current specification.

• Repeat, not necessarily in order, until satisfied:

1. Sit down somewhere else and try to sort out the inconsistencies and flaws in part or all of your
last specification. Depending on the quality of the development environment, some of the
problems with the specification may not be inherent, but caused by the specification not
meeting the development tool’s requirements. Come up with a specification that might run and
solves at least one of the problems you’ve identified. Take things one step at a time. Return to
the computer.

2. Implement changes to the system structure: each of these changes will destroy a percentage of

the previous work and probably “break” the system. If you are cautious and lucky, each
change can be made separately, and the system made workable between each change. The more
likely scenario is that a single structural change will side-effect the entire architecture and force
you to re-write a large portion of the internals before system function is restored. This step
includes potentially gruesome debugging due to the number of changes made, and the
possibility of extensive side-effects caused by the changes.

3. For a break from heavy thinking at any point while programming, decide on changes to the

“look and feel” of the system, i.e. changes to colours, fonts, object layouts, etc.

4. Implement the changes to look and feel: with modern interactive tools, these changes will

probably not “break” the system, and each change in specification is probably rapidly
implemented. Debugging these changes is usually straightforward.

5. Extend existing (or add new) system components, implementing new system functionality. This

includes both new functionality permitted by changes made to the system internals in step 2,
and functionality previously implementable, but not implemented due to awareness of the
internal structure’s flaws. The debugging for this step is usually straightforward, since new
functionality can be tested in small pieces as it is added to an already working system.

6. Realize, either on your own or through user feedback, that the current specification as

implemented (perhaps due to contortions to get it to “run”) cannot perform some vital task.

3.1.1 Clock, ClockWorks and the Lazy Programmer

Clock is a component-based architecture language derived from Haskell [6]. It is designed to facilitate the
rapid prototyping of graphical user interfaces by providing built-in graphical primitives and high level
graphical abstractions that permit the programmer to bypass much of the pain of low-level graphical
programming. It is therefore also designed to support the lazy programmer style of iterative refinement by
making changes to applications quick and easy to perform.

Clock provides a simple but powerful graphical primitive called a DisplayView. A DisplayView represents
some visual element of the Clock application, for example a box or a line of text. Simple DisplayViews can

9

be extended indefinitely, providing enormous flexibility. For example, a DisplayView containing a line of
text can be included within the constructor for a Box DisplayView, providing a boxed text element. Fonts,
colours, line styles, screen positions, etc. can all be specified by simply composing the desired
DisplayViews. Multiple DisplayViews can be grouped together into a single higher-level DisplayView,
either with explicit positions or with positions relative to one another (e.g. above or beside). For example, a
DisplayView representing a list of files might be composed of a set of boxed-text DisplayViews (one per
file) arranged above one another.

This structuring of DisplayViews within DisplayViews leads naturally to a tree-like application hierarchy.
The entire application is represented as an abstract DisplayView that contains, in some relationship to each
other, the set of major visual components (also DisplayViews) which in turn are composed of lower-level
DisplayViews, and so on down to the smallest visual elements of the application, such as buttons and text
boxes. The tree structure of a Clock application can be seen in figure 4, which shows a sample of the UAN
Browser application.

Figure 4: A Sample Clock Architecture.

Figure 4 is a screen capture taken from ClockWorks. ClockWorks is a development environment tool that
permits the programmer to directly manipulate Clock architectures. As can be seen from figure 4, the tree

Requests and updates
handled by ADT

Abstract Data Type
(a.k.a. Request Handler)

Requests and
updates made
by component

10

structure is divided into blocks, or components. Components are used to provide a means of dividing the
elements of an application into logically related groups or classes: in figure 4, for example, information
about UAN tables is grouped in the taskTable component, and command button information in the
cmdButtons component. Both of these are subordinate to the workspace component, which provides the
window in which they are displayed and manipulated.

Each component contains a single view function which defines its DisplayView. Of course, the
component’s view statement may contain DisplayViews of sub-components, permitting the DisplayView
hierarchy that defines the application to be built.

Each component in a Clock architecture can also be associated with some number of “Abstract Data
Types”, such as the ‘Id’ and ‘TaskInfo’ ADTs shown in figure 4. These provide state information (i.e.
variables) for the application which can be used to provide feedback to the DisplayViews, changing the
visual appearance of the application appropriately as the user changes the state.

Programmer-defined messages are passed up the architecture hierarchy only, in the form of updates and
requests. Updates are messages used to alter the system state, while requests are messages used to query
some aspect of the current state. (In figure 4, ‘TaskName’ is an example of a request; ‘setMyId’ is an
update.) When a component makes a request or update, the message is passed up the hierarchy until a
component or abstract data type is encountered that handles the message. User input is handled by trapping
updates such as MouseButton events in low-level components, and passing any necessary messages up the
tree to accomplish the state changes specified for the user’s action. To provide feedback to the user that the
system state has changed, the visual display of a Clock application is recalculated automatically when an
update changes some part of the system state associated with a visual element, such as an (X,Y) window
position coordinate variable.

Clock and ClockWorks are designed to make the behavioural specification of the system a high-level task.
The programmer specifies only what the system should do, and how the parts of the system should interact
with one another. He does not have to concern himself with how to implement the behaviour. The result is a
very fast specification method, which supports the Lazy programmer approach by making changes rapid
and mistakes easy to recover from. The visual representation of the architecture in ClockWorks provides
complexity management, direct manipulation of elements and memory prompting, further speeding the task
of reworking and refining an application’s architecture.

3.1.2 UAN and the Lazy Programmer

If at any point in the development iterations a lazy programmer could press a button and have an up-to-date
UAN specification magically appear, no doubt UAN would be a lot more popular than it is. Unfortunately,
a UAN specification can’t be generated from a system specification, since the latter describes what the
various elements of a system do and how they are currently related to one another, while UAN specifies
why the various elements of a system are required, and how they need to be combined to accomplish the
system’s tasks. This different point of view is why UAN specifications, if they could only be kept up to
date, would be so helpful to the lazy programmer.

It is often assumed that developers know what they want to implement, but have to try many times to figure
out how to do it. This is not true for the lazy programmer. As outlined above, the developer’s
understanding of what the system needs to be able to do is as vague at the start as his understanding of how

11

to implement what he is sure of. As with the ‘how’, the ‘what’ of a system is clarified slowly, through
iterations of development. It is more costly, however, to make mistakes about what a system should do than
how it should do it. If a developer is unclear on some part of the user’s required tasks, he may spend a large
amount of time implementing unnecessary functionality. On the other hand, even if the programmer
implements some needed function in the worst possible way, the system has still gained in usefulness. The
use of UAN to specify the major tasks and subtasks required can help the programmer to clarify what
needs to be done, and avoid expensive misunderstandings.

Even at the “how” level, an up-to-date UAN specification can provide a programmer with valuable
contextual information. The normal programming process of working directly on the system’s behaviour
often doesn’t take into account the total context in which the behaviour is being specified. The programmer
may implement a brilliant solution for one task, only to realize later that his solution doesn’t work at all
well for a different, but related task that he hadn’t identified. The programmer can then either rewrite the
code to handle both tasks, or create a new element to handle the newly identified task. In the first case, time
is wasted; in the second, the system implementation becomes more complex.

These uses of UAN are predicated on accommodating the laziness of the lazy programmer: if a UAN
specification of the system is to evolve along with the implementation and design, it must be as easy to
update as the system specification. Ideally, tools would be available to allow the user to check his system
specification against the task specification, bringing the UAN directly into the implementation process.
Unfortunately, as discussed above, it is hard to edit or even read a complex UAN specification using
standard text-processing tools. Because of this, UAN specifications tend to be abandoned during the
incremental development process, or simply left to the end of the process and used as a documentation tool.
This leaves the lazy programmer with no easy way of documenting what tasks the growing system is able
to, or has yet to, support, as his understanding of task requirements grows through the iterations of
development.

3.2 Mapping specification to implementation: UAN and Clock

It is apparent that Clock and UAN have the potential to exist as complementary tools within the lazy
programmer paradigm. Clock (and ClockWorks) provide a means to rapidly create and modify the
behavioural specification (i.e. implementation) of a system, while UAN, with proper tool support, provides
a means to rapidly create and modify task-oriented specifications. With both sets of tools available, the lazy
programmer would be able to more easily perform the switch back and forth between implementation and
specification that occurs so frequently during development iterations.

In fact, in [4] Graham et al. explore the possibility of exploiting direct similarities between the task-oriented
UAN specification and the high-level system-centred specification used by Clock. In the paper, he
demonstrates a method of translation from a UAN to a Clock specification, mechanically linking task
specification to behavioural specification.

If this translation method proves complete, it means that UAN can be used as a direct link in the
specification-to-implementation process. An obvious precondition of this use, of course, is the provision of
more sophisticated UAN tool support. Once the tools exist, it becomes possible to envision tool-assisted
conversion from UAN specification to an implementable system-centred specification, and the
corresponding jump in the realization of UAN’s potential.

12

4 Developing a Clock application: a case study

This section of the report focuses on the actual experience of developing the UAN browser application in
the ClockWorks environment. This section therefore consists of anecdotal information, observations, and
suggestions. The information presented is informal; this was not a controlled experiment, and the
observations and suggestions do not constitute an objective comparison of the environment with any
specific control group. Rather, it is hoped that this information will provide as complete a subjective
evaluation as possible.

At the end of the experience, I can identify two fundamental reactions to ClockWorks. The first is my
opinion that the potential of the ClockWorks environment for combining rapidity of development with
maintenance of coherent internal system structure is unequaled by any other interactive system tool that I
have used to date. The second is the nagging fear that any attempt to enforce a specific internal structure
will lead to rejection: fundamental to the success of all of the visual tools to date has been the complete
freedom of internal architecture that they permit. The bias of industry and programmers against imposed
styles, even general architectural styles, is broad and deep.

The experience has also deepened my belief that the usefulness of UAN specifications is tied to their ability
to evolve concurrently with the system specification. This project started with task specification (although
informal) and ended with further task specification once the initial tasks had been implemented. The further
task specification set the direction for the next phase of implementation, and this back-and-forth would
have continued if the project had not ended. In this project, the UAN showed a glimpse of its potential
usefulness. If convenient tools for UAN manipulation existed within or alongside ClockWorks, the back-
and-forth between task and system behaviour specification could occur more frequently. It is my belief that
the more frequently the developer returns to the identification of the user’s tasks, the less likely developer
time will be wasted implementing useless functionality.

4.1 The experience

True to lazy programmer form, I began the implementation of the browser with an incomplete and unclear
idea of what the browser needed to be able to do. This was normal: not only was I learning what the
browser needed, I was also learning the entire ClockWorks environment, based on a declarative
programming paradigm that I had never used before. Intuitively, it felt right to “play” with the system,
implementing some simple and basic browser function to begin with. It didn’t appear necessary to know
right at the start about everything the browser had to be able to do.

Some initial specification work had to be done, of course. I had to identify a user task that the system
would support: I identified the most obvious of the tasks mentioned in section 2.3: “View table of specific
task”. To perform this, I realized that the user would need to navigate up and down the task hierarchy,
display multiple tables concurrently, and move and hide tables.

I also had to decide on an approach to displaying the information to the user. The first approach that
suggested itself was that used by ClockWorks: a tree display on a scrollable work surface. The obvious
drawback of this approach was the complexity of the visual elements: specifying a system that could neatly
display arbitrary graph structures seemed a large task. The second approach that I looked at was one used
by Borland’s C++ Object Inspector utility[7]. This utility allows the user to browse C++ objects using a

13

series of free-floating windows containing both passive information about the object and active links to any
sub-objects (classes, arrays, etc.) the object contains. Clicking on an active link pops up another free-
floating window with a detailed view of the sub-object’s information and summary information on the
parent object. This second approach seemed to provide all of the required navigational function if I
included a list of the ancestors of a table in the window displaying it (referred to as the table ‘stack’).
Further, the free-floating windows of the second approach seemed easier to specify. This approach was
chosen.

All of this work was done in my head and through rough sketches on paper. I didn’t make any use of UAN
at this point, because:

• it was a nuisance to write UAN specifications using emacs or vi, the only available editors on the
computers running ClockWorks

• I already felt I had a clear understanding of how I wished to accomplish the ‘view table’ task, so the
UAN would just be documentation

• not knowing ClockWorks’ capabilities, I didn’t want to spend the considerable time required to specify
the task in detail until I was sure that I could implement it as I desired.

Once the initial approach was decided, development of the browser during the project spanned three
iterations of the lazy programmer cycle. The majority of my time was spent specifying and respecifying the
system behaviour in order to end up with a system that would acceptably support the view table task.

Once the ‘view table’ task had reached an (arbitrarily-determined) acceptable state and the dust had settled,
I became interested in looking at what else the system should do. At this point I developed a formal UAN
specification for the browser, which quickly showed me the next steps to be taken.

The following three sections detail each major iteration of the lazy programmer cycle that I followed during
the project.

4.1.1 First iteration

4.1.1.1 The Details

Once the visual paradigm was established (the ‘stack’ approach discussed above), the initial specification
of the major system components was rapid. It was obvious that a ‘desktop’ containing the tables would be
required. The contents of each table would be some (possibly empty) set of stack items, the table’s title, the
UAN column headings, and rows of terminal and non-terminal subtasks. To simplify matters, the
association of each terminal task with ‘interface feedback’, ‘interface state’, and ‘connection to
computation’ data was left for later. (It was not addressed until the very end of development: fortunately, it
was trivial.) Figure 5 shows the browser’s ClockWorks architecture diagram during the first iteration.

Most of the difficulties I experienced in this iteration were caused by unfamiliarity with ClockWorks. I had
some problems executing the architecture (segmentation violations), and a long period where nothing would
come up on the display except a small empty X window, followed by a massive degradation in X
performance until the process controlling the window had been killed. This problem was always traceable
in the end to a syntactic or type error on my part, usually an error in a DisplayView grouping (e.g. having a
value that evaluated to a DisplayView list rather than a DisplayView as a member of an ‘above’ list).

14

By the end of this iteration, I reached the point where I could display multiple tables by clicking on any
non-terminal subtask (named ActionViews during the first iteration) of a displayed table to display the
table with the same name as the subtask. I was intending to implement table motion (dragging a table
around the desktop), and table layering (bringing a table to the front by selecting it, to allow overlapping
tables), when I realized that my internal structure had a deficiency that would potentially cause errors in
ClockWorks. The problem lay in the TaskInfo ADT connected to the DeskTop component (see figure 6:
details of lengthy updates are elided). TaskInfo consisted of a list of dictionary entries representing all of
the non-terminal tasks in the system. Each entry consisted of the non-terminal’s task identifier (a string) as
a key followed by the list of subtasks (again identified by strings) needed to define the task.

Figure 5: The UAN Browser during the first iteration.

Visual table
specification

(what do tables
look like?)

Lists of tables,
and task infor-
mation shared
by many tables

Visual
specification of
the individual

table rows

Visual
specification of
the “desktop”:
i.e. application

window

15

Figure 6: The definition of TaskInfo in the first Iteration

The problem became apparent when I realized that I had to be able to repeat subtask identifiers. In the
UAN, it is possible to have a terminal task (e.g. M^v) repeated within a single table. However, Clock does
not allow two subviews of a view to have the same initialization string. This restriction would be violated if
two sub-tasks of a TaskTableView had the same initialization string. The TaskInfo ADT had to be
restructured.

The fact that supporting multiple table contexts required that a single table could be associated with many
stacks (i.e., many different paths followed through ancestors in the graph) also became clearer, and led to
another problem. The existing TableInfo ADT, also associated with the DeskTop component, was very
similar to the TaskInfo ADT: a list of directory entries, with each entry consisting of a task identifier (the
string of the task described by the table) as a key, and a list of task identifiers to denote the “stack” items as
shown in figure 7. The problem, of course (clear in hindsight!) was that this scheme necessitated defining
an entry in the list for each context in which a table appeared: potentially a lot of work. Further, if there
were two or more contexts for any table in the specification, repeating the table’s task identifier key in the
list caused the duplicate sub-view problem to arise. Obviously, a serious re-think of the TaskInfo and
TableInfo internals was required.

Figure 7: The definition of TableInfo in the first Iteration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TaskInfo: First Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Contains info pertaining to the list of tasks and their relationships.

%% We keep track of ActionLists.
type TaskData = [TaskId].
type State = [(TaskId, TaskData)].

allTaskNamesReq xs = map fst xs.

taskActionsReq xs n = ...

initially = [("Main Task",["Sub Task 1","Action 1",""]),
("Sub Task 1",["Action 1","Action","Action 3"])].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TableInfo: First Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Contains info pertaining to each task box on the desktop.

%% State is list of pairs: table name and task stack leading to table.
type State = [(TaskId, [TaskId])].

allTableNamesReq xs = map fst (debug xs).

tableTaskStackReq xs n = lookup n xs.

showTableUpdt xs (tableid, taskid) = ...

bringTableToFrontUpdt d tableid =
let p = lookupPos tableid d in

d#(1,p-1) ++ d#(p+1,length d) ++ [d@p]
end let.

initially = [("Main Task", [])].

16

4.1.1.2 Summary

• Most of the difficulties I experienced in this iteration were caused by my unfamiliarity with
ClockWorks.

• Despite this learning curve, I was able to rapidly specify the large-scale components of the application,
based on a general idea of how I wanted the application to look.

• By the end of this iteration, the application allowed me to navigate multiple UAN tables by clicking on
non-terminal subtasks, which would display the associated table.

• This iteration was halted when I realized that there were serious deficiencies in the internal data
structures I had designed to keep track of task and table information.

The first iteration lasted from January well into February: the entire month of January was spent in
administration, learning and practising with the declarative programming style, and getting ClockWorks to
execute anything I wrote at all. Almost all of the above mentioned work was performed in the first and
second week of February.

4.1.2 Second Iteration

4.1.2.1 The Details

During the rethinking at the start of this iteration, it became apparent that it would be sensible to have a
“task library”, with each task in the system identified by a unique number. This would simplify passing
task information around (rather than concatenating strings, e.g. in the case of terminal tasks with multi-
column text), and would also allow the user to access a task directly through a listing of the library
contents. Similarly, it seemed appropriate to designate tables with a unique number as well, to avoid the
multiple-context subview problem. I changed the TaskId and TableId types from strings to numbers, and
introduced the RowId type, also a number. Figure 8 shows the changes made to the browser architecture in
the second iteration.

To solve the duplicate subtask problem, I decided to change the TaskInfo state to a list of ordered pairs of
the form ((TableId, RowId), TaskId), as shown in figure 9. The initial pair in the tuple would be guaranteed
unique in the system, and since the row number would be guaranteed unique in any given table, state
information could be passed to the ActionBoxView subviews as a unique number calculated by multiplying
the RowId by some large constant, and adding the TaskId. The TaskId part of the combined number could
then be extracted within the ActionBoxView.

17

Figure 8: The UAN Browser during the second iteration.

“Task Library” component
added : a keyed list defining

all tasks in the system

Visual specifi-
cation of global
task list added

“Hide” and
“Expand”

buttons added

Editing classes
added Task “stack” rows

and title bars added
to tables

18

Figure 9: The definition of TaskInfo in the second iteration

Making this change altered the whole nature of the information flow between tasks and tables. Almost all of
the information about both tasks and tables was now in TaskInfo, and TableInfo was reduced to a list of
TableId/Boolean pairs, controlling whether or not the table was visible on the desktop (figure 10).

As is apparent from the code, TaskInfo was entirely rewritten, requiring a large number of changes to the
updates and requests in the architecture. However, it was surprisingly quick: the redefinition of TaskInfo
and TableInfo, and the introduction of the Task Library, took only two short days (approximately ten hours
total) to put in place before the system was again working. The rest of this iteration was spent adding
functionality to the system.

Figure 10: The definition of TableInfo in the second iteration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TaskInfo: Second Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Tracks the task performed by each (table,row) pair in the system.

type State = [((TableId,RowId),TaskId)].

replaceTaskUpdt xs table row task =
enterDict (table,row) task xs.

findTaskReq xs table row = ...

tableRowsReq xs table = findRows xs table.

findRows [] table = [].
findRows (x:xs) table = ...

%% given a TaskId, see if there is a table designated for the task (is it non-term?)
findTableReq xs task = findTab xs task.

findTab [] task = 0.
findTab (x:xs) task = ...

initially = [((1,titleRow),1),((1,titleRow+1),2),((2,titleRow),2),
((2,0),1),((2,titleRow+1),3),((1,titleRow+2),2)].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TableInfo: Second Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Contains info about each task box on the desktop, e.g. visibility

type State = [(TableId, Boolean)].

allTableIdsReq xs = map fst xs.

tableVisibleReq xs tableid = lookup tableid xs.

showTableUpdt xs tableid =...
hideTableUpdt xs tableid = ...
bringTableToFrontUpdt d tableid = ...
isFrontTableReq d tableid = ...

addTableUpdt xs tableid = xs ++ [(tableid,True)].

initially = [(1,True),(2,True)].

19

Table movement was implemented in this iteration through the addition of the WindowTitleBarView
component (see figure 8). By this time, I had got the “hang” of ClockWorks, and table movement was put
in place after one morning’s work copying and altering code from a Critical Path Planner ClockWorks
application developed by Graham [4]. Very little debugging was required. This was first time I became
really impressed with how fast functionality could be added to ClockWorks. The same task in a C++/X
environment would have taken far more work.

This iteration also saw the introduction of several “canned” classes provided by the ClockWorks team. I
introduced a “Hide” and an “Expand” button (the MyButtonView component) to control the visibility of
tables, and a “Replace” button to allow a selected table subtask to be replaced by a selected task from the
library list. The operation of the buttons, as defined in the imported component, did not match what I
desired in feedback characteristics, so I was forced to copy the code, rename the class, and change the
visual function. Again, however, it was a matter of about an hour’s work to alter the function of the button
to my satisfaction.

What took longer was the incorporation of ButtonClick updates into the ActionBoxView and
TaskTableView components. While trying to figure out how and when ButtonClick updates were to be
accepted, it quickly became apparent that the system suddenly had a complex set of selection states: to hide
a table, the table had to be selected; to replace a task, a subtask and a library item had to be selected; to
expand a table, a subtask or a stack item had to be selected. Again, I found that the canned “Selection”
component didn’t provide the functionality I needed; although I initially tried to use the predefined
component and have a separate selection request handler for tables, table rows, and task library list rows, I
ran into a problem. The system contained an update in a component near the base of the architecture tree
that needed the status of all three selections during processing, but was unable to direct the selection
requests to the appropriate ancestors in the hierarchy. Eventually I decided to create a single “super”
selection request handler (MySelection in figure 8), containing information on all three selection areas, and
containing nine requests and updates, instead of the original three. Since this “super handler” was used by
so many components in the system, it had to be placed at the top of the hierarchy. This was the point where
I began to wish for rapid ways to add and remove requests and updates from the system.

Finally, this iteration also saw the introduction of editing. The introduction of the canned
MyClickEditFieldView component was the most successful predefined component introduction
encountered. I modified the ActionBoxView class into a horribly complex (in terms of the number of
requests and updates) form, but the changes only took part of one day, since the scope of the changes was
mostly local, and all of the hard interface work was already performed by the MyClickEditFieldView
component. Once again, the speed of adding functionality was impressive; but the complexity of the
ActionBoxView class became extremely high; for the architecture to be made ‘clean’ again would have
meant creating a whole set of classes to divide up the functionality squashed into ActionBoxView.

This iteration ended with the realization that, while a lot of functionality had been added, the internal
structure was inefficient and extremely complex, as indicated by the number of requests and updates in the
system, and the awkwardness of some of the code, notably that in TaskInfo. While the duplicate subtask
info problem had been solved, I realized that, although I could now represent any number of identical task
tables with different stacks, for each different context I would have to store duplicates of the
((TableId,RowId),TaskId) pairs for all of the table’s sub-task rows. Further, I still required the person
keying in the specification to provide a table identifier for every context of every table.

20

The end of this iteration marked an interesting point in the development of the application. It was the most
functional point in the application’s life, but it also had the most confused internal structure. I decided at
this point to focus on simplifying the internals, while providing a slightly restricted functionality by
removing the editing and task-replacing functionality (tasks inappropriate for a browser).

4.1.2.2 Summary

• A “Task Library” was added, to allow keyed access to task names, and to provide a visible list of all of
the tasks specified in the system.

• I decided to identify tasks and tables by unique numbers, rather than strings. Tasks were then
associated with tables using a triple: ((TableId, RowId), TaskId). The table/row pair allowed me to
uniquely identify repeated tasks in the same table, one of the problems identified in the first design.

• Table movement and table hide/expand buttons were quickly implemented using several “canned”
classes provided by the ClockWorks team. Many of the predefined classes did not have behaviors
matching what I wanted, so I had to rewrite parts of them. However, the rewriting was rapid.

• Editing of task names was also introduced. The predefined edit classes worked very well, with almost
no modifications required.

• This iteration was halted when I realized that, although a lot of functionality had been added to the
system, it was at the cost of architectural complexity. Many of my solutions to problems in the first
iteration were proving awkward.

This iteration lasted from mid-February until mid-March, but only involved approximately a week (40
hours) of time spent at the computer. The speed with which I was able to make changes to the system
drastically increased as my familiarity with ClockWorks grew.

4.1.3 Third Iteration

4.1.3.1 The Details

The third iteration was the most rapid. A morning’s work at the chalkboard was dedicated to refining the
internals. Once again, with a clearer understanding of the requirements, it was possible to drastically
simplify the TableInfo and TaskInfo operations. The (table/row) task identifier method in TaskInfo was
abandoned, and I returned to the initial TaskInfo state structure, as shown in figure 11. The duplicate
subtask problem was addressed locally: when generating subviews, the table view was enhanced to generate
sequential row numbers, and the unique combined row/task number was used as described above. The
multiple-context problem was solved by maintaining a list in TableInfo (figure 12) of only currently visible
tables, rather than trying to maintain a list of all possible tables.

21

Figure 11: The definition of TaskInfo in the third iteration

In the current system, a unique table id is generated when the table is created. I tried using a predefined
Counter ADT for this id generation, but settled instead for a function that simply returns the maximum
number from a list of numbers plus 1. This latter approach keeps the operation totally local to the
TableInfo request handler, and avoids adding another request handler to the architecture. Each TableInfo
entry consists of this unique number and a list of task ids representing the stack. The last task id in the
stack list is the task id of the table itself, and is therefore used to associate the table with the TaskInfo data.

Figure 12: The definition of TableInfo in the third iteration

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TaskInfo: Third Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Tracks the tasks required to complete each non-terminal task in the
%% system.

%%---

type State = [(TaskId,[TaskId])].

initially = [(1,[2,3]),(2,[4,5,6]),(3,[11,12,13]),(4,[10]),(6,[7,8,9])].

%%---

allNonTerminalsReq xs = map fst xs.
isNonTerminalTaskReq xs taskid = (find (taskid, xs)) ~= 0.
taskAtRowReq xs taskid rowid = ...
subTaskListReq xs taskid = lookup taskid xs.

%%---

replaceTaskUpdt xs taskid row newtaskid = ...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TableInfo: Third Iteration
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Contains info pertaining to each table instance displayed on the desktop.
%% Entries are added and removed as table instances are created (shown)
%% and destroyed (hidden). Associated with each table id is a list of task ids,
%% representing the path of tasks followed to reach this table. The last task on
%% the list is the title task of this table.

%%--

type State = [(TableId,[TaskId])].
initially = [(1,[1])].

%%--

allTableIdsReq xs = map fst xs.
tableTaskReq xs tableid =...
tableStackReq xs tableid = ...
stackAtRowReq xs tableid rowid =...
isFrontTableReq d tableid = ...

%%--

addTableUpdt xs tasklist = ...
removeTableUpdt xs tableid = ...
bringTableToFrontUpdt d tableid = ...

22

I also decided to focus on the “browser” aspect of the application, and removed the editing functionality,
which was extremely dependent on the internal structures of the application defined in the second iteration.
Adding editing, I realized, caused an explosion in the number of new tasks that the system would have to
support. In the interests of clarity and simplicity, I decided to forego editing in the third iteration.

With this clearer view of the required functionality, it was extremely easy to remove extraneous
components and clean up the architecture. As mentioned above, the user action information was associated
with interface feedback, state, and computation calling information in the tables. This was done in the
SubTaskBoxView component, which replaced ActionBoxView. The table title row was also given its own
TitleBoxView component, since it differed visually from the other rows of the table. The resulting
architecture is shown in figure 13.

Figure 13: The UAN Browser during the third iteration

 For the first time, significant effort was spent documenting and standardizing the style of the component
text, and half a day was spent making alterations to the look and feel of the application (colours, text styles
and sizes, etc.).

4.1.3.2 Summary

• This iteration was the most rapid. Some final rethinking of the relationship between tasks and tables
was done, allowing me to drastically simplify the TaskInfo and TableInfo components.

Selection ADT added
to control user’s

selected tables and
table rows

Table titles added;
subtask information
expanded to display

all defined UAN
table columns

Editing
functions
removed

23

• The editing functions, too complex to easily rewrite, were removed. Cleaning up and removing
extraneous components was extremely quick and easy.

• The User Action information was finally associated with Interface Feedback, Interface State, and
Connection to Computation information in a new SubTaskBoxView component.

• Significant time was finally devoted to standardizing the code style, and some time was spent tinkering
with changes to the “look and feel (colours, fonts, etc.), of the application.

Overall, the third iteration took approximately two solid days of work.

4.2 The UAN Browser: current implementation and future work

The current browser software directly supports the task “View Table of Specific Task” identified in section
2.3. It provides a desktop upon which multiple tables can be concurrently displayed. Each table contains a
complete specification of the table’s title task according to the UAN standard. A specific task can be
located by tracing subtasks in the visible tables: the user selects any non-terminal task in a visible table and
presses the ‘Expand’ button. This makes the table of the selected non-terminal task visible. Alternately, the
user can select the task by name directly from the task library list of all of the non-terminal tasks in the
system, and pressing the ‘New Root’ button. Figure 14 shows a screen shot of the current application.

Figure 14: The user interface of the Browser

Global task list

UAN Tables:
these can be

hidden or dragged

Buttons

Desktop

24

The “View Context of specific Task(s)” task is partly supported by the mechanism described above, when
used in conjunction with the stack information presented with each table. The stack is the set of rows
located above the table’s title, each of which indicates an ancestor task selected in order to arrive at the
current table. In essence, the stack shows the “path” (from most distant to most immediate ancestor, in
order) followed in the graph to arrive at the current table, and therefore shows the context of the table’s
task. It is therefore possible (although still inconvenient) to identify all of the contexts of a single task: for
example, the user can display the table for task D - found by traversing task A and task B - right beside
another table for task D found by traversing tasks F and G. The two tables are identical, except for the
stack information.

Each task on the stack is, of course, a non-terminal task, and so is also selectable and expandable by the
user, allowing a two-way traversal of the task hierarchy. If the desktop gets too cluttered with tables, the
user may hide any table by selecting it and pressing the ‘Hide’ button. Note that if a table is created with
the ‘New Root’ button from the task library list, the system does not attempt to place the context of the
table: it is considered to form the root of an extracted portion of the task hierarchy (hence the cryptic
name). Tables can be moved around the screen by clicking and dragging on the title bar of the table
window. Tables cannot currently be iconified.

The current system provides no support for the third major subtask, “View Section of Task Hierarchy”.
One solution to this inability to extract structural information would be to provide another work surface in
addition to the desktop displaying a low-detail overview of the task hierarchy. The desktop could continue
to provide information on table details, while the new space could provide the graph-specific information
required. Alternatively, some functions could be tied to the tasks themselves: for example, the user could
select a task from the task list and have the system display a table for each context in which the task occurs
in the system.

I believe that the current system constitutes an acceptable start towards a fully-featured tool. However,
there is obviously a lot left to be done to implement the full usefulness of a graph-structured UAN
browser/editor.

5 ClockWorks: pros and cons for the Lazy Programmer

This section contains a series of observations about how the ClockWorks approach aids and/or irritates the
lazy programmer.

5.1 The Speed vs. Structure Debate

Tools such as ClockWorks that enforce a specific architectural style tend to produce clearly-defined and
well-understood applications. This contrasts favourably with tools such as Microsoft’s Visual Basic [8]
that favour speed over structure: these tend to produce applications that are architecturally singular (any
two applications will have dissimilar architectures). This type of application is hard to understand, since to
understand the application structure, anyone other than the original programmer probably has to start from
scratch.

25

The ClockWorks tool also allows for smoother software evolution by forcing the system structure to keep
pace with the addition of function to the application over time. ClockWorks makes it difficult to “fudge”
functionality on a bad internal system structure. Development reaches a point (in my case at the end of the
second iteration) where the messiness and inefficiency of the system is totally, visually apparent, and the
amount of work required to add new functionality to the mess begins to outweigh the amount of work
required to streamline the structure. The end result is that the application’s functionality remains based on
clearly defined and understood internals. This kind of functionality is easy to adapt and extend. The
evolutionary ‘smoothness’ of ClockWorks applications contrasts favourably with the Visual Basic group,
whose applications’ system structures often freeze in an early and incomplete form as it becomes too
difficult to reorganize the growing web of workarounds into a new, coherent structure. Over time, the
functionality of such applications becomes increasingly based on workarounds, and changes or extensions
become a game of side-effect Russian roulette.

However, enforcing a specific architecture has drawbacks. By restricting the use of workarounds and short
cuts, ClockWorks sometimes is a frustrating tool for the lazy programmer. Having to stop and rethink
fundamentals, and possibly face the fact that a good portion of the system function that has been so
painstakingly developed must be scrapped, is not something a lazy programmer wants to do. This builds
resentment against the tool, and may, especially with an inexperienced ClockWorks user, give rise to the
belief that the tool is limited in power, since the programmer’s perception then becomes “there’s no easy
way to do what I want to do”.

The drawback just mentioned concerns programmer perceptions. There is another, more serious, related
drawback. If a tool strictly enforces an architecture, then the tool does in fact (not just in programmer
perception) become limited by any weaknesses of that architecture. The architecture designer has placed
himself in control, and has developed a set of rules about how systems can be structured. The usability of
the whole tool becomes tied to the completeness and power of that set of rules, since the programmer can’t
develop extra-architectural solutions to problems not manageable within the architecture. ClockWorks
enforces an extremely well thought-out architecture: care in architecture design is the only way to minimize
this problem.

Strict enforcement of an architecture causes programmer claustrophobia. The biggest attraction of the free-
form tools such as Visual Basic is the belief that a programmer using them can always solve a problem his
own way, and that there are always several optional solutions available. With restricted architectures there
is a greater risk that, even if there is a way to solve a given problem, a less experienced developer may be
unable to find it.

I encountered these types of drawbacks when dealing with the Selection ADT, as described in the “Second
Iteration” section, above. Here was a requirement that I felt was legitimate: I wanted to be able to make
three requests within an update handler, to obtain the selection status of three elements of the system. There
was a predefined Selection ADT that initially seemed to fit the bill, and a logical place in the hierarchy for
each of the three required instances of Selection. However, I found that since the architecture automatically
routed my request messages (very convenient 99% of the time), I couldn’t control the delivery of the
requests to a specific handler. Not specifying a specific message recipient does prevent tight coupling
between components and facilitates changing the program structure, but not having the option to specify a
recipient forced me to produce either one enormous new ADT customized to the application, or three
customized variations of Selection -- a lot more work than managing a specific address in the update
handler.

26

If I have a suggestion about fundamentals in ClockWorks, it is this: I think that it would be worthwhile to
take a second look at the strongly restrictive policies, specifically message addressing and scoping (i.e.
which components can see a request/update handler), with a view to relaxing the architectural requirements
as much as possible without compromising ClockWorks fundamentals. This would increase the variety of
solutions available to programmers: it probably wouldn’t result in much additional real functionality, but
programmers like to have multiple options when solving problems. If some of these restrictions are
carefully relaxed, I think that additional real (and perceived) flexibility and power can be added to
ClockWorks. For example, the hiding mechanism that has been proposed for request handlers within
groups would be very useful if implemented.

Personally, I believe that the tradeoff of short-term development speed for the ability to maintain a clear
internal system structure is worthwhile, and in fact repaid over time. I also believe that this tradeoff will not
be acceptable to the lazy programmers of the world outside the pure research community if the tool is
viewed as rigidly enforcing a specific architecture.

5.2 The Visuals

I found the DisplayView type to be a surprisingly powerful abstraction. I didn’t run into anything that I
couldn’t figure out how to display (except a minor X pane problem with my brief foray into menu use at
the end of the project, solvable but for lack of time). I still find the left-to-right order of evaluation in
DisplayViews confusing, given that order of evaluation in the declarative paradigm works the other way. If
this order of evaluation were reversed (I realize that this would make incremental updates harder or
impossible: this is just hypothetical), it would also allow class subtypes to redefine some or all of the view
definition of the supertype; whether this would be useful or just dangerous is not clear.

I found that my ability to reuse predefined visual components was relatively low. In almost every case, I
ended up making a local copy of the predefined component and making changes to the component function.
ADTs were more portable than the visual classes, but even these sometimes couldn’t be made to work. Part
of the problem was due to my inexperience, and part due to the complexity of the class inclusion process. It
often wasn’t clear just which classes of an apparently associated set of classes would be required to provide
the desired function, especially when borrowing classes from other projects that used grouping. Even once
the classes were included in my project, there inevitably seemed to be extraneous or missing
requests/updates or handlers: the predefined classes did too much, or not enough.

When dealing with visually-oriented components like buttons, of course, class re-use can be expected to
drop. These classes are more like widgets, and common wisdom promotes customizing widgets into specific
sets rather than placing a vast amount of generalized function into them and making them too cumbersome
to use. In the case of ADTs, however, re-use is a worthwhile goal.

My suggestion on the topic of reuse is simply to continue the evolution of a component library, and to
streamline the inclusion process: make it easy for a programmer to try the predefined components.

The ClockWorks visual development environment was very useful, if not essential.

• It facilitated navigating through the system. During coding, it provided a means of single-click access
to any code module in the system. My only navigational suggestion would be to provide editor-specific
(e.g. emacs) extensions to ClockWorks. In the case of emacs, it would be nice to operate within a single

27

session (it is much faster to create/destroy buffers or frames than entire editing sessions), and it would
be useful to have a Clock syntax checking module similar to the C++/Lisp modules available.

• It allowed efficient complexity management by allowing the user to display or hide the visual

representation of the components and messages.

• It served as a memory aid, both during a development session between sessions. Even after a week

away I was able to sit down and recall the last state of the project’s structure within a few minutes.

• Interestingly, it served to shame me when the structure was in a bad state. Many symptoms of poor

Clock structure (overly complex components with enormous request/update lists, poorly named
components, etc.) are embarrassingly visible. By the end of the second development iteration, I couldn’t
stand to look at the mess anymore--the visual interface goaded me into cleaning up the structure. This
raises the question of just how much sloppiness in development would vanish if programmers had to
display their application’s structure and code in front of a critical audience every day.

My suggestions for the visual aspects of ClockWorks are straightforward, and have probably already been
identified.

• Make the type information of updates/requests and ADTs easily accessible, e.g. via one or two button
clicks. This type information is hard to remember, and I found myself constantly going through the
complex task of calling up a request or update definition just to remember the type of its parameters.

• More thought needs to be given to the definition, addition, and removal of requests and updates. Fewer

menu selections should control this process - I was constantly getting into the update list when I wanted
the request list, etc. Perhaps one dialog allowing access to both updates and requests would be more
efficient. Direct manipulation of request and update graphical objects would be ideal: the user could
select a displayed update object, copy it around, move it, delete it. etc. Also nice would be some way to
identify and manipulate sets of requests/ updates: for example, it would be nice to be able to delete all
instances of a given request/update from the system in one operation, or to identify all components
using a specific request/update.

5.3 Miscellanea

I found debugging to be very fast: Clockworks provides minimal tool support for debugging, but what is
provided is adequate, since there are a minimal number of types of bugs that are encountered due to the
architectural restrictions. The number of times major changes ran the first time was encouraging. All the
debugging tools have to do is let the programmer know where the problem is located, which they do
admirably. This is not to say that all of the work is done: there are still type errors that aren’t caught until
runtime, such as the X-degrading ‘above’ function problem mentioned previously. I would strongly support
the inclusion of type-checking.

There are some problems in the ‘above’ and ‘aboveStretching’ functions when one of the DisplayViews in
the list evaluates to a NoView. I have replaced the aboveStretching code: the version that works with
NoViews is in the Globals file for the project.

28

ClockWorks is very easy to learn, if harder to master. Less experience in applying “technique” is required
than in a low-level imperative language environment - since the specification language is high-level, there
are a restricted number of ways to accomplish each programming task. This results in a rapid learning
curve: I began to feel comfortable with the concepts quickly, and was able to improve the quality of (i.e.
simplify) my implementation considerably in each iteration. In Clock, the best way to do things usually
involves basic concepts, unlike many imperative languages, where efficiency is often tied to complex
concepts and cryptic coding techniques.

6 Conclusion

ClockWorks embodies a very well thought out approach to the problems of incremental interactive
software development. The approach produces software that is structurally precise and therefore all the
things software should be: extendible, maintainable, understandable, reusable. ClockWorks’s approach is
also risky. Many of the decisions that went into its design, such as the use of a declarative language and
the enforcement of a specific architecture, cut both ways: they form the basis of the quality of the current
product, but they reduce the audience to which the product appeals. I, however, am among that audience--I
enjoyed working with ClockWorks very much.

With regard to the UAN, it seems apparent that the amount of value provided by UAN specifications in the
development process is tied directly to their ability to evolve concurrently with the system specification.
This ability to evolve is not inherent in the notation; UAN requires sophisticated tool support if it is to
realize its potential. The belief that UAN can be effectively used with basic text-processing tools is wishful
thinking: too much of a specification’s information is unavailable or obscured in such a form.

The incorporation of UAN tool support into the ClockWorks environment appears to be a worthwhile goal;
supporting both task-oriented and behavioural specification in one environment provides the lazy
programmer with two convenient and powerful ways of looking at development problems.

7 References

[1] H. Rex Hartson, Antonio C. Siochi, Deborah Hix. The UAN: A User-Oriented Representation for
Direct Manipulation Interface Designs. ACM Transactions on Information Systems, 8(3):181-209,
July 1990.

[2] T.C.N. Graham, C.A. Morton, T. Urnes. ClockWorks: Visual Programming of Component-Based
Software Architectures. Journal of Visual Languages and Computing, Academic Press, July 1996 (to
appear).

[3] T.C.N. Graham. The Clock Language. Reference Manual. Electronic Technical Report CS-ETR-95-
01, Department of Computer Science, York University, June 1995.

[4] T.C.N. Graham et. al. The Clock Methodology: Bridging the Gap Between User Interface Design and
Implementation. Department of Computer Science, York University (in progress).

29

[5] T.C.N. Graham, T. Urnes. Linguistic Support for the Evolutionary Design of Software Architectures.
Technical Report In Proceedings of the Eighteenth International Conference on Software Engineering.
IEEE Computer Society Press, Berlin, Germany, pp. 418-427, March 1996.

[6] P. Hudak, J. Fasel. A Gentle Introduction to Haskell. Department of Computer Science, Yale
University, 1992

[7] Borland International Inc. Borland C++ User’s Guide. Borland International, 1993.

[8] Microsoft Corporation. Visual Basic User’s Guide. Microsoft Press, 1996.

30

Appendix A: A UAN Specification for the implemented UAN Browsing Tool

TASK: Browse UAN Specification
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
({ View Table of
Specific Task }
⇔
{ View Context(s) of
Specific Task(s) in
Task Hierarchy }
⇔
{ View Section of
Task Hierarchy }

**NOT
IMPLEMENTED**

)+

TASK: View Table of Specific Task
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
(Rearrange Desktop
{ (Select Task via
Table on Desktop
OR
Select Task via Task
Library List)
Display Table })*

TASK: View Context(s) of Specific Task(s) in Task Hierarchy
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
(Rearrange Desktop
{ (Select Task via
Table on Desktop
OR
Select Task via Task
Library List)
Display Table })*

31

TASK: Rearrange Desktop
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
(Bring Table To
Front
OR
Move Table
OR
Hide Table) *

TASK: Select Task via Table on Desktop
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
(~[table.stack_ item]
Mv^) displayOnTop(table)

table.stack_item-! :
table.stack_item!
∀ table.rows’! :
table.rows’-!
expand_button-! :
expand_button!

sel_table_task =
table.stack_item
sel_table = table
frontOfList(table) in
TableInfo list

OR
(~[table.non-
term_sub_task]
Mv^) displayOnTop(table)

table.non-
term_sub_task-! :
table.non-
term_sub_task!
∀ table.rows’! :
table.rows’-!
expand_button-! :
expand_button!

sel_table_task =
table.non-
term_sub_task
sel_table = table
frontOfList(table) in
TableInfo list

TASK: Select Task via Task Library List
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
~[library list.row]
Mv^ library_list.row-! :

library_list.row!
∀ library_list.row’! :
library_list.row’-!
new_root_button-! :
new_root_button!

sel_lib_task =
library_list.row

32

TASK: DisplayTable
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
(~ [expand_button]
Mv expand_button! :

expand_button!!
table_sel_task <>
nulltask :
displayOnTop(
sel_table_task)

addTable(
sel_table_task,
sel_table_stack) to
TableInfo list

M^) expand_button-!!
OR
(~[new_root_button]
Mv new_root_button! :

new_root_button!!
sel_lib_task <>
nulltask :
displayOnTop(
sel_lib_task)

addTable(
sel_lib_task, NULL)
to TableInfo list

M^) new_root_button-!!

TASK: Bring Table To Front
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
~[table]
Mv^ table-! : table!

∀ table’! : table’-!
displayOnTop(table)
hide_button-! :
hide_button!

sel_table = table,
frontOfList(table) in
TableInfo list

TASK: Move Table
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
~[table.title_bar]
Mv table-! : table!

table.title_bar!!
∀ table’! : table’-!
displayOnTop(table)
hide_button-! :
hide_button!

sel_table = table,
frontOfList(table) in
TableInfo list

~[x,y]* table > ~ tablePos(table, x,y)
M^ table.title_bar-!!

33

TASK: Hide Table
USER ACTIONS INTERFACE

FEEDBACK
INTERFACE STATE CONNECTION TO

COMPUTATION
Bring Table To Front
~[hide_button]
Mv hide_button! :

hide_button!!
erase(sel_table)

remove_table(
sel_table) from
TableInfo list
sel_table = nullTable
sel_table_task =
nulltask

M^ hide_button-!!
hide_button-!
expand_button! :
expand_button-!

