Robust Ordering of Sparse Matrices using Multisection

Cleve Ashcraft* Joseph W.H. Liu'

February 9, 1996

Abstract
In this paper we provide a robust reordering scheme for sparse matrices. The
scheme relies on the notion of multisection, a generalization of bisection. The reordering
strategy is demonstrated to have consistently good performance in terms of fill reduction
when compared with multiple minimum degree and generalized nested dissection.
Experimental results show that by using multisection, we obtain an ordering which
is consistently as good as or better than both for a wide spectrum of sparse problems.

1 Introduction

It is well recognized that finding a fill-reducing ordering is crucial in the success of the
numerical solution of sparse linear systems. For symmetric positive-definite systems, the
minimum degree [38] and the nested dissection [11] orderings are perhaps the most popular
ordering schemes. They represent two opposite approaches to the ordering problem.
However, they share a common undesirable characteristic. Both schemes produce generally
good orderings, but the ordering quality is not uniformly good.

The main contribution of this paper is to introduce a robust ordering scheme that gives
good quality orderings consistently, near equal or better than minimum degree and nested
dissection. The basic tool is a multisector, a generalization of a bisector. A multisector is
a subset of vertices whose removal subdivides the graph into two or more components. We
call the resulting partition a domain decomposition. The whole ordering process has two
independent phases: the ordering of the vertices in the components (the domains) and the
ordering of the multisector (the interface).

An outline of this paper is as follows. In Section 2, we provide evidence on the
inconsistent ordering quality of the minimum degree and nested dissection schemes. The
multisection ordering scheme is described in Section 3, where the notions of domain
decomposition, multisector and multisection ordering are introduced. The quality of
the resulting ordering depends on three factors: the domain decomposition, the ordering
method for the domains, and the ordering method for the multisector.

In Section 4, we consider numerical experiments of the multisection ordering approach
on regular grids. We show that multisection gives an ordering quality close to the
optimal nested dissection ordering [11] for square and cubic grids, and local nested
dissection ordering [8] for grids of large aspect ratios. Section 5 evaluates multisection
on some structural analysis matrices from the Harwell-Boeing collection [10]. We use an

*Boeing Information and Support Services, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124.
This research was supported in part by the ARPA Contract DABT63-95-C-0122.

tDepartment of Computer Science, York University, North York, Ontario, Canada M3J 1P3. This
research was supported in part by the Natural Sciences and Engineering Research Council of Canada under
grant A5509 and in part by the ARPA Contract DABT63-95-C-0122.

1

incomplete nested dissection scheme to determine a multisector and its associated domain
decomposition. Section 6 contains our concluding remarks.

2 Minimum Degree and Nested Dissection Orderings
2.1 General Overview

The minimum degree ordering algorithm is a symmetric version of the Markowitz scheme
[30]. It was first described and used by Tinney and Walker [38]. The basic minimum degree
algorithm can be best described in terms of elimination graphs [35]. Let G be the graph
associated with the given sparse matrix. The scheme selects a vertex v of minimum degree
in (G. This vertex is numbered next in the ordering and is eliminated from the graph G to
form its elimination graph G,. The graph G is then replaced by this elimination graph G,
where the selection/elimination process is repeated. Many important enhancements have
been made to the implementation of the minimum degree ordering; the survey paper [14]
contains a comprehensive account of such enhancements.

To choose a vertex to eliminate, the minimum degree algorithm uses the degree of the
vertex, which is a local graph property. If we view the ordering as the construction of the
elimination tree!, the tree is formed from bottom-up. This means nodes associated with
the bottom part of the tree get their ordering assignments first.

The minimum degree ordering has been generally recommended as a general purpose
fill-reducing reordering scheme. Its wide acceptance is largely due to its effectiveness in
reducing fill and its efficient implementation. However, since the scheme uses only local
information, it produces only adequate orderings for large problems. There is room for
improvement.

Another popular fill-reducing ordering is the nested dissection ordering [11] and its
generalizations. Contrary to the minimum degree algorithm, nested dissection is a top-
down scheme. It uses the notion of a separator, which is a subset of nodes whose removal
renders the remaining graph disconnected. Nested dissection finds a separator and numbers
the nodes in the separator last. The process is then repeated recursively on each component.
Nested dissection constructs the elimination tree from the root down.

The theoretical foundation of nested dissection was given by George [11], and he
showed that nested dissection on grid problems will give optimal orderings with respect
to factor nonzeros and factorization operation counts. For general graph problems, the
recursive approach of finding and ordering separators is often referred to as generalized
nested dissection. For the remainder of this paper, we shall simply use nested dissection to
refer to generalized nested dissection.

A separator is a global property of the graph. The quality of a nested dissection ordering
depends crucially on the quality of its separators. With good separators, nested dissection
gives high quality orderings for a large class of graphs. Unfortunately, that is not the case
for some type of graphs, for example, those of large aspect ratios. A good separator is
not enough; the ordering of the vertices found in the different levels of the separators is
important. In many cases, the ordering given by the recursive ordering of the separators
in nested dissection can be improved.

'The elimination tree is a useful tool in the study of sparse factorization. For more details, see [29].

2.2 Shortcomings of Minimum Degree and Nested Dissection

To illustrate the inconsistent ordering quality from the minimum degree (MMD) and the
nested dissection (ND) algorithms, we apply the two orderings on a sequence of rectangular
grids of increasing aspect ratios. We run the orderings on grids of the following sizes:
128 x 128, 256 x 64, 512 x 32, 1024 x 16, 2048 x 8, and 4096 x 4 respectively, so that the
number of unknowns are the same (2'4 = 16384).

Results for 9-point h x k grid

N
N)
. factor operations

MMD/ND

0 1 2 3 4 6 7 8 9 10

5
log2(h/k)

Fig. 1. Comparison of MMD and ND for 2-D regqular grids of different aspect ratios.

In Figure 1, we plot the performance ratio of MMD/ND versus the base-2 logarithm of
the aspect ratios of the rectangular grids. The variation in performance is rather drastic.
For the grid of unit aspect ratio, ND outperforms MMD by a factor of two in factorization
operations. On the other end, for grids of large aspect ratios, MMD is better than ND in
operations by a factor of close to two.

Such performance variations can also be found in practical sparse matrix problems. In
Section 5 we will compare minimum degree, nested dissection and multisection on a set of
matrices from the Harwell-Boeing sparse matrix collection [10]. For seven of the sixteen
matrices minimum degree generates an ordering with fewer operations than our nested
dissection ordering. Part of this can be explained by the aspect ratio of the graphs of the
matrices. For example, one of the test matrices, BCSSTK25, is the finite element model of
a tall building and has a graph with a large aspect ratio.

The shortcomings of the minimum degree ordering are largely due to the local nature
of the algorithm. Making a node selection based on the local degree information often
can lead to less-than-desirable choices. Berman and Schnitger [7] have shown that there
is a minimum degree sequence for the square grid so that the resulting ordering has
factor nonzeros and operation counts an order of magnitude more than the optimal.
By construction, their less-than-optimal ordering gives separators with a severe “fractal”
nature. This property is found to a lesser degree in virtually any minimum degree ordering.

On the other hand, the shortcoming of the nested dissection can be best explained by
its performance on problems of large aspect ratios. The experimental results in Figure 1
on rectangular grids of varying aspect ratios, show that the difference in performance is
quite significant. Since we are using the best separator (best in terms of both the separator

4

size and the component balance) on the grid at each step of nested dissection, we cannot
attribute the problem to the quality of the separators. The problem is with the way the last
few levels of separators are numbered. Indeed, our approach of using multisectors provides
a more effective way of numbering the nodes associated with these separators.

3 The Multisection Ordering Algorithm

In nested dissection, a separator in the form of a bisector is used that splits the given graph
into two subgraphs, where each subgraph is ordered recursively. The nodes associated
with the bisector usually form a clique in the filled graph. Our approach uses the notion
of a multisector separator, which splits the given graph into a number of subgraphs. In
general, the multisector nodes induce a sparse submatrix in the filled graph. Within this
framework, we can therefore view nested dissection as a multi-level bisection scheme. On
the other hand, this new approach is a bi-level multisection scheme. For simplicity, we shall
simply refer to it as multisection.

3.1 Domain Decomposition and Multisector

This approach is closely related to the notion of domain decomposition, which we now
formally define. Let A be a matrix with symmetric structure and let G = (V, E) be
an undirected graph where V are vertices and E C V x V are the edges. Edge (i,)
is in E if and only if a;; # 0. For a subset U C V, the boundary of U, written
Adj(U), is the set of all vertices adjacent to those in U but not including any in U, i.e.,
Adj(U) ={v ¢ U | (u,v) € E for some u € U}.

Consider a block partition of the vertex set V:

V=0UQ UQU...UQy,

where each €Q; is a domain and ® is the set of interface vertices. Each domain €2; is a
connected subgraph of G whose boundary Adj(€2;) is contained in ®. Since the domains
are separated from one another by the set ®, we shall also refer to ® as a multisector, for
it generalizes the notion of a bisector. Without loss of generality, we shall assume that the
multisector partition is nontrivial; that is, M > 1 and ® is nonempty.

Given this domain decomposition, we impose one condition on the ordering: All vertices
in the domains are numbered before any vertex in the multisector. Since the domains are
isolated from each other, each can be ordered independently. For domain €2;, we construct
the graph G; = (Q;, E;) where E; = EN(Q; x (Q; U Adj(€;))) contains all edges (u,v) € E
where u € §2;. To order the multisector vertices we define the set

d=Vv\o=[]JQ,

7

that is, the set of domain vertices. We use the conventional notation Gg to represent the
elimination graph of G after all vertices in the domains have been eliminated. Note that
G is also the graph of the Schur complement matriz

M
—1
Aso — Y As0,Aq, o, A0,
=1

From this equation it is clear that the elimination graph Gg (the structure of the Schur
complement matrix) does not depend on the ordering of domain vertices. Therefore, the

5

ordering of the multisector vertices in this elimination graph can proceed independent of
the ordering of the domain vertices.

Figure 2 is an example of a domain decomposition of a 6 x 6 grid graph. The vertices
are partitioned into six domains and a multisector:

® ={2,4,6,7,8,10,14, 16, 18,19, 20, 21, 22, 23, 27, 33}.

Multisector vertices are represented by squares and domain vertices by circles.

domains and multisector

FiG. 2. A domain decomposition example.

A useful notion related to domain decomposition is the idea of indistinguishable vertices.
For a given graph, two vertices are said to be indistinguishable if they are adjacent and
have exactly the same set of neighbors (except themselves). The elimination graph Gg of
a domain decomposition usually has many fewer indistinguishable vertices than vertices.
This is important since the execution time and, to some extent, the quality of the minimum
degree ordering depends on the number of indistinguishable vertices instead of the number
of original vertices. Figure 3 contains the Schur complement matrix associated with the
domain decomposition of Figure 2. There are 16 vertices and 10 indistinguishable ones. For
example {4,10,16} forms an indistinguishable set, since they all have the same adjacent
set {2,8,14,20,21,22,23} in the elimination graph.

3.2 The Multisection Ordering Algorithm

Immediately below is a skeleton of the multisection ordering scheme based on the notion
of a domain decomposition.

Ms (Ordering method-1, Ordering method-2):
Given a domain decomposition (®,Q,Qo,... Q) of V ;
for each domain €2; do
Order the graph G; = (€, E;) by ordering method-1 ;
Form the elimination graph G and order by ordering method-2 ;

A multisection ordering is defined by three choices:
1. How to determine the domain decomposition?

Fic. 3. The Schur complement matriz has 16 vertices, 10 indistinguishable vertices, original

entries ‘z’, fill entries ‘+’

2 4 1016 6 7 8 14 18 19 20 21 22 23 27 28

x|+ + +|+ X|x + +]+|+
4| +[x x + + o+ ++[+|+
0]+ x x x + o+ ++[+|+
16+ + x x + o+ +| x| x| x

+ X X[+ +|+ +|+

X X X[x x|+ +|+

X|+ + +|+ X|X X|+ +|+]|+|+
wl+|+ + +[+ X[x x|+ x|[x|x]|+
18 + [+ +|x x| +]|+ + o+
19 + +[+ x|x x|x|+ + o+
20| +[+ + +[+ +[+ x|+ x[x|x]|+ + o+
2| +[+ + X + X[+ +|x|x|[x|+]|x +
2| +|[+ + X + o+ + X[x|[x|x +
23 + + X +| x| x|+ +
27 + o+ x| x[+]x %
28 + o+ [+]+ x X

2. What fill-reducing ordering to use to order the domains €2;7

3. What fill-reducing ordering to use to order the multisector?
In the literature, there are a number of existing ordering schemes using this multisection
approach in MS.

e One-Way Nested Dissection — MS(PROFILE, PROFILE)

The one-way dissection scheme by George [12] chooses a set of parallel dissectors as its
multisector. Each component in the remaining graph is ordered by a profile ordering.
The elimination graph associated with the multisector is also numbered by a profile
ordering. We can therefore view one-way dissection as a MS(PROFILE, PROFILE)
multisection ordering scheme. George provided experimental and theoretical results
to show that one-way dissection can be better than nested dissection for grid graphs
with large aspect ratios. In his master thesis [31], Ng has considered the recursive
use of the one-way dissection approach. This can also be viewed as using some form
of multisector.

e Local Nested Dissection =~ MS(ND, BAND)

The local nested dissection LND scheme in [8] carries the one-way dissection idea
further. A rectangular grid of large aspect ratio is subdivided into roughly square
domains by a set of parallel horizontal and vertical dissectors. Each square domain is
ordered by nested dissection. The multisector defined by the set of parallel dissectors
is then numbered by a band ordering. The local nested dissection scheme is therefore
a MS(ND,BAND) multisection ordering method.

e Incomplete Nested Dissection ~ MS(CMD, ND) and MS(MMD, ND)

There are two generic forms of an incomplete nested dissection ordering. In both
forms, the multisector is constructed using the recursive bisection process of nested

7

dissection and the ordering of the multisector vertices follows the given nested
dissection ordering. The difference lies in how the vertices in the domains are
ordered, using either MMD, multiple minimum degree [26] or CMD, constrained
minimum degree [28]. The latter algorithm uses the multisector nodes to compute
the degrees of nodes in the domains and so usually generates a better ordering
than the former on the domain subgraphs. There are many examples of incomplete
nested dissection in the literature [3], [5], [6], [9], [16], [17], [20], [22], [25], [27], [33],
[34], including two excellent state-of-the-art software packages, CHACO from Sandia
National Laboratories [18] and METIS from the University of Minnesota [21].

The above methods are all members of the multisection family of ordering algorithms.
In the following sections we will compare incomplete nested dissection algorithms with a
new method, Ms(CMD, MMD), where vertices in the domains are ordered with constrained
minimum degree and the Schur complement graph is ordered with multiple minimum
degree. We will refer to the Ms(cMD, MMD) algorithm as multisection, abbreviated Ms,
in contrast with an incomplete nested dissection method, abbreviated as ND.

What remains is to specify how the multisector is created. In [5], the authors looked at
two possibilities. The first method is to order the graph using MMD and use the elimination
tree to extract a multisector. (Each domain is a subtree of the elimination tree; the
multisector consists of all remaining vertices.) This multisector is then smoothed to remove
the fractal nature of the separators that form the multisector. The second method, as
described in [3], [5] performs recursive bisection on the graph until the subgraphs are a
certain size, then take the multisector to be the union of the separators.

Subsequent to [5], Rothberg independently discovered the multisection method using
the second technique [36]. In his work, a multisector was formed of the separators
obtained from the CHACO code [18] and automatic nested dissection from SPARSPAK [13].
Multisection consistently performed as well or better than the nested dissection algorithm
that generated the multisector, evidence that supports our results in Section 5 where we
obtain a multisector from the METIS software package [21] and our own nested dissection
software [4].

4 Experimental Results on Regular Grids

In this section we present some experimental results for the MS(CMD,MMD) ordering
algorithm on regular grids. For grid problems it is easy to construct an ideal set of
multisectors. In this way, we can study the effectiveness of MS(CcMD,MMD) ordering when
compared with some theoretically-optimal orderings.

4.1 Square and Cubic Regular Grids

We first consider 9-point operators on 2-D n x n grids and 27-point operators on 3-D
n x n x n grids. For these graphs, George’s nested dissection ordering [11] gives the best
results (aside from some minor variations on very small grids due to edge effects). For a
square n X n grid, nested dissection first bisects the grid with a vertical separator creating
two subgrids, each approximately n/2 x n in size. Each of these subgrids is bisected by
a horizontal separator forming a total of four n/2 x n/2 subgrids. The process repeats
on each of the subgrids recursively. The separators are vertical or horizontal lines of grid
points.

We construct a multisector in a similar way, composed of horizontal and vertical grid
lines (planes in 3-D) that span the grid. The simplest multisector we call ®; which splits

the grid into four components in 2-D (eight components in 3-D) with a single separator in
each grid direction. @4 splits each side of the grid into two, so there are four domains in
2-D, each approximately n/2 x n/2 in size. For a 3-D grid there are eight domains, each
approximately n/2 x n/2 x n/2 in size. The multisector ®3 splits the 2-D grid into nine
domains, each approximately n/3 x n/3 in size. In general, the ®,, multisector creates
M = m? domains in 2-D, (M = m? domains in 3-D), each domain is roughly n/m along
each side. Note, the multisector ®; is empty, the entire grid is one domain. We can
parameterize the MS(CMD,MMD) ordering by the ®,, multisector, and ®; corresponds to
MMD on the original grid graph.

Our first experiment is to fix the number of domains and let the grid sizes grow. For
2-D n x n grids we looked at 1 <m < 7. For 3-D n x n x n grids we looked at 1 <m < 4.
Figure 4 contains four plots, results for 2-D grids at the top, 3-D grids on the bottom. The
ratio of Ms(cMD,MMD) factor entries to those of nested dissection are found on the left,
factorization operations on the right.

FiG. 4. Multisection vs nested dissection on square and cubic reqular grids

factor entries on 2D n x n grids factor ops on 2D n x n grids
T T T T T T T T

351

301

factor ops / "3
)
a
T

e
T

factor entries / "2 log10(n)
s

N
S}
T

15F

factor entries on 3D n x n x n grids
20 T T

251

N
=]
T

mmd

[
a
T

factor entries / n*4
factor operations / n"\6

i
1S}
T

L L L
10 15 20 25 10 15 20 25

For ND, the number of factor entries is O(n?logn) in 2-D and O(n*) in 3-D; the number
of factorization operations is O(n?) in 2-D and O(n®) in 3-D. We have scaled the number
of factor entries and operations appropriately. In each plot the bottom curve is ND while
the top curve is MMD. The multisection curves are found between ND and MMD. As n
grows, the relative performance of MMD versus ND becomes appreciably worse, more for
factorization operations than factor entries and more for 3-D than 2-D.

The difference between Ms and ND grows at a much smaller rate. For 2-D grids there
is a steady improvement as m increases. For 3-D grids the smaller values of m are better;
no doubt this is due to the relatively larger portion of factor entries and operations bound
to the top level separators. The difference is mainly a function of n, the diameter of the
graph, not the number of vertices.

4.2 Rectangular Quadrilaterals and Hexahedra

Multisection performs fairly well when compared to nested dissection on square and cubic
regular grids. We now turn to grids with large aspect ratios and compare multisection to
LND, local nested dissection [8], the best ordering for rectangular grids.

TABLE 1
Multisection for Rectangular Grids

255 x 31 grid 127 x 15 x 15 grid
METHOD NZF | OPS METHOD NZF | OPS
MMD/LND 1.24 | 1.73 MMD/LND 1.92 | 3.86
ND/LND 1.11 | 1.41 ND/LND 1.12 | 1.42
MS/LND MS/LND

mi mo M mi mo ms M

16 | 2 32 | 1.14 | 1.35 8 1 1 8 | 1.78 | 3.44
24 1 3 72 | 1.08 | 1.22 || 16 | 2 2 64 | 1.12 | 1.15
32 | 4 | 128 | 1.08 | 1.20 || 24 | 3 3 | 144 | 1.23 | 1.67
40 | 5 | 200 | 1.08 | 1.23

48 | 6 | 288 | 1.08 | 1.25

Table 1 presents some results for a 255 x 31 2-D grid and a 127 x 15 x 15 3-D grid.
Both grids have an aspect ratio of 8, large enough to make local nested dissection clearly
better than nested dissection.

The results of MMD, ND and Ms are given relative to LND. The performance of ND
relative to LND is virtually the same in two and three dimensions; ND requires around 10%
more factor entries and 40% more factorization operations. However, MMD shows its strong
dependence on the dimensionality of the graph for its 3-D performance is much worse than
that for 2-D.

What is important to note is that multisection will generate good orderings with many
different multisectors. We have observed this behavior across a wide range of matrices; the
quality of the multisection ordering is not strongly dependent on the number of domains
induced by the multisector. Furthermore, additional experiments have also shown that the
ordering quality is also relatively insensitive to the shape of domains.

5 Experimental Results on Sparse Matrices from Structural Analysis

The experimental results in Section 4 on the 2D and 3D-grid problems suggest that
the multisection ordering MS(CMD,MMD) can lead to very competitive orderings. The
multisectors used are based on the geometry of the grids, and so can be regarded as
the best we can get for a specified number of domains. For general sparse matrix
problems, the multisection ordering algorithm depends on the use of an appropriate domain

10

decomposition. To avoid the “fractal” nature of the separators from MMD, each domain
should have a “smooth” boundary.

5.1 Finding Domain Decomposition via Recursive Bisection

A simple domain decomposition method can be formulated based on incomplete nested
dissection. The vertex set V of the initial graph is decomposed into two or more connected
subgraphs by removing a bisector S. The connected components of V' \ S are recursively
bisected until each remaining subgraph is smaller than some prescribed size. The quality
of the resulting domain decomposition depends on the method to find bisectors in the
recursive steps.

Recently, there have been a number of published papers and software codes that find
a partition of a given graph. Notable examples include the CHACO [18] and METIS [21]
software packages. We have developed a software code called DDSEP [4], that partitions a
graph in three steps.

e (Initial Multisector) Construct a multisector that gives a domain decomposition

of the graph.

e (Bisector Constructor) Apply a block version of the Kernighan-Lin scheme [24] to
find a bisector, which is a subset of the multisector.

e (Bisector Smoother) Apply a graph matching scheme [27] to improve the bisector.
The DDSEP software has been demonstrated to be quite effective in finding good partitions of
general connected graphs and also efficient in terms of execution time [4]. For our purpose of
finding domain decompositions for the multisection ordering, DDSEP is appropriate because
of its bisector smoothing step in the algorithm. For our experiments, we recursively extract
the subgraph under consideration and apply DDSEP to the subgraph. The set of bisectors
from the recursive steps collectively forms the multisector. Each un-dissected subgraph is
a domain in the domain decomposition.

5.2 Results on Practical Structural Problems

We have selected a set of practical sparse matrices arising from structural analysis problems
from the Harwell-Boeing collection [10]. Table 2 provides a list of the problems and their
characteristics. The column labeled ORIGINAL contains the number of vertices |V| and
number of edges | F| of the original given graph. We have also applied the graph compression
technique in [1] to identify the indistinguishable vertices in the original graph. The column
labeled COMPRESSED gives the number of vertices |V| and the number of edges |E| of the
compressed graph. Each compressed vertex u has a weight w(u), namely the number of
vertices in the original graph that u contains. An edge (u,v) in the compressed graph has
a weight w(u,v) = w(u)w(v), and the compressed graph is the smallest graph such that
this property holds. All of our ordering software works with the compressed graph, and
this oftens results in significantly decreased ordering times when compared with using the
original graph.

The last two columns in Table 2 presents the number of factor entries and operations
(both additions and multiplications) when the matrices are ordered using our multiple
minimum degree software, scaled by 10 and 10° respectively. For each matrix we made
twenty-one runs of MMD where each run randomly permuted the adjacency structure of the
graph. Table 2 contains the median values of these runs. When we compare the ordering

11

TABLE 2
Statistics for Harwell-Boeing Matrices

ORIGINAL COMPRESSED MMD
MATRIX V] E| V| E| | ~nzr/10° | ops/10°
BCSSTK15 | 3948 | 113868 | 3948 | 113868 663 172
BCSSTK16 | 4884 | 285494 | 1778 | 36502 742 146
BCSSTK17 | 10974 | 417676 | 5219 | 81062 1141 201
BCSSTK18 | 11948 | 137142 | 10926 | 122177 657 138
BCSSTK23 | 3134 42044 2930 | 35256 461 142
BCSSTK24 | 3562 | 156348 892 12756 296 38
BCSSTK25 | 15439 | 236802 | 13183 | 161964 1544 339
BCSSTK29 | 13992 | 605496 | 10202 | 313846 1721 424
BCSSTKJ30 | 28924 | 2014568 | 9289 | 222884 3731 869
BCSSTKJ31 | 35588 | 1145828 | 17403 | 288806 5160 2411
BCSSTK32 | 44609 | 1970092 | 14821 | 226974 5175 1048
BCSSTKJ33 | 8738 | 583166 | 4344 | 164284 2656 1300
BCSSTKJ3H | 30237 | 1419926 | 6611 | 65934 2782 406
BCSSTKJ36 | 23052 | 1120088 | 4351 | 37166 2766 618
BCSSTKJ37 | 25503 | 1115474 | 7093 | 88924 2831 558
BCSSTKJ39 | 46772 | 2042522 | 10140 | 81762 7671 2194

quality of the nested dissection and multisection methods, we scale their statistics by the
corresponding MMD values.

Table 3 contains statistics for two nested dissection algorithms one from METIS
and one using our DDSEP software — and multisection where the multisector has been
obtained from either METIS or DDSEP. Again, we made twenty-one runs for each algorithm
and matrix and present the median value, scaled by the MMD factor entries (NZF) and
factorization operations (OPS). An entry in the table that is greater (less) than one means
that the ordering algorithm performed worse (better) than MMD. Both METIS? and DDSEP
recursively split a subgraph until it has 100 or fewer vertices, (for a weighted graph, until
the vertices in the subgraph have total weight less than 100).

Of the two nested dissection algorithms, DDSEP consistently outperforms METIS. We
believe that DDSEP produces better separators; see [4] for a comparison. There are three
possible reasons.

e DDSEP is more flexible in enforcing a balance constraint than METIS; the latter tries

to balance the size of the two subgraphs at the expense of a possible larger bisector.
See [37] for a more complete discussion.

e DDSEP works exclusively with vertex bisectors while METIS finds an edge bisector and
then extracts a vertex bisector; see [19] for a further explanation.

e DDSEP uses a powerful graph matching algorithm to smooth a bisector.

2The options we used for METIS were recommended to us by the author, George Karypis, namely SHEM
(sorted heavy edge), BGKLR (combination of boundary greedy and boundary Kernighan-Lin) and GGPKL
(graph growing followed by boundary Kernighan-Lin).

12

TABLE 3
A comparison of ND (nested dissection) and MS (multisection) relative to MMD (multiple

minimum degree)

NZF OPS

ND MS ND MS
MATRIX METIS | DDSEP | METIS | DDSEP | METIS | DDSEP | METIS | DDSEP
BCssTK15 | 0.80 0.75 0.83 0.76 0.60 0.53 0.64 0.56
BCSSTK16 | 1.01 0.97 0.89 0.89 1.01 0.96 0.77 0.77
BCssTK17 | 1.07 0.95 0.93 0.86 1.12 0.90 0.80 0.67
BCSSTK18 | 1.04 0.93 0.91 0.89 0.84 0.77 0.67 0.70
BcssTk23 | 1.01 0.84 0.95 0.83 0.88 0.67 0.81 0.66
BCssTK24 | 1.18 1.04 1.08 1.00 1.32 1.05 1.13 0.97
BCSSTK25 | 1.16 1.02 0.96 0.90 1.34 1.14 0.86 0.80
BCSSTK29 | 1.15 0.96 0.98 0.97 1.15 0.85 0.86 0.89
BCssTK30 | 1.29 1.19 1.08 1.05 1.62 1.51 1.16 1.07
BCSSTK31 | 1.02 0.88 0.90 0.94 0.72 0.55 0.64 0.72
BCSSTK32 | 1.32 1.08 1.11 0.95 2.00 1.37 1.38 0.87
BCssTK33 | 0.93 0.80 0.84 0.78 0.82 0.59 0.68 0.57
BCSSTK35 | 1.38 1.10 1.14 1.00 2.16 1.33 1.48 0.98
BCSSTKJ36 | 1.27 1.07 1.11 0.93 1.68 1.25 1.29 0.82
BCSSTK37 | 1.35 1.05 1.14 0.92 2.04 1.25 1.45 0.78
BCssTK39 | 1.11 0.93 1.02 0.90 1.38 0.94 1.06 0.78
MEAN 1.13 0.97 0.99 0.92 1.29 0.98 0.98 0.79

13

Both multisection algorithms, the first using the multisector from METIS, the second using
the multisector from DDSEP, consistently outperform their corresponding nested dissection
algorithms. Where ND is better than Ms, the difference is not large. While there are seven
matrices where ND using DDSEP does not produce as good an ordering as MMD, there is
only one such case for MS using DDSEP.

TABLE 4
Exzecution time for the ordering algorithms

ordering CPU time portion of factorization time
ND MS ND MS
MATRIX MMD | METIS | DDSEP | DDSEP | MMD | METIS | DDSEP | DDSEP

BCcsSTK15 | 1.18 1.33 3.39 3.45 | 11.7% | 13.2% | 33.6% | 34.2%
BCSSTK16 | 0.27 2.76 1.40 1.39 3.1% | 32.1% | 16.3% | 16.2%
BCSSTK17 | 0.82 5.19 4.43 4.45 7.6% | 44.0% | 37.5% | 37.7%
BCSSTK18 | 2.50 1.81 10.38 | 10.47 | 30.9% | 22.4% | 128.2% | 129.3%
BcssTK23 | 0.90 0.77 1.95 1.95 | 10.7% | 92% | 23.2% | 23.2%
BCsSTK24 | 0.07 1.32 0.58 0.57 3.2% | 60.0% | 26.4% | 25.9%
BCSSTK25 | 3.34 4.79 | 11.62 | 11.42 71% | 10.2% | 24.6% | 24.2%
BCSSTK29 | 1.77 6.89 | 11.22 | 11.24 71% | 27.7% | 451% | 45.1%
BcssTK30 | 1.66 | 23.81 | 11.08 | 11.15 3.3% | 46.6% | 21.7% | 21.8%
BCsSTK31 | 4.74 | 18.51 | 20.04 | 20.27 3.3% | 13.1% | 14.1% | 14.3%
BCSSTKJ32 | 2.75 | 28.63 | 16.89 | 17.08 4.5% | 46.5% | 27.4% | 27.7%
BcssTKJ33 | 1.04 | 18.51 5.75 5.78 1.4% | 24.2% 7.5% 7.6%
BCSSTKJ3S | 0.85 | 17.69 6.50 6.57 3.6% | 74.0% | 272% | 27.5%
BCsSSTK36 | 0.74 | 13.72 4.20 4.23 20% | 37.7% | 11.5% | 11.6%
BCSSTKJ7 | 0.93 | 14.22 6.81 6.82 2.8% | 43.4% | 20.8% | 20.8%
BCcsSTKJ39 | 1.28 | 29.99 | 10.09 | 10.18 1.0% | 23.2% 7.8% 7.8%

Table 4 contains the ordering times for four out of the five methods. All ordering
codes are written in C and were run on a Sparc2(using the gcc compiler with the -04
option. In general, METIS takes modest amounts of CPU times, but it is penalized because
it cannot work with the compressed graph.? Compare the times for BCSSTK15 where the
compressed graph is identical to the original graph. For this matrix, METIS is almost three
times as fast as DDSEP. We have observed this general tendency across the entire set of
test matrices; DDSEP is usually a factor of two or more slower than METIS on the original
graph. Part of this difference is due to the more powerful graph matching smoother, but
part is because DDSEP trades more computation for reduced working storage. DDSEP uses
only O(|V|log(|V])) working storage and does not replicate or destroy the input structure
of the graph.

The ordering times for ND and MS with DDSEP include the time to order the vertices in
the domains using our MMD software. The time in MS to order the vertices in the multisector
is relatively small, and so we see the ND and MS ordering times are almost identical (again
the median of twenty-one runs). It is clear that the bulk of the ordering time is spent
finding the multisector via nested dissection.

3METIS first finds an edge separator and then extracts the vertex separator using the graph matching
algorithm from [32] that does not take into account any vertex weights.

14

Table 4 also provides the ordering times as the percentage of time needed for the
numerical factorization of the MMD ordering. Our multifrontal factorization code from [2]
consistently achieves 15-20 mflops for this collection of matrices. The MMD ordering time is
a small per cent of the factorization time for the larger problems, while the ND and MS times
can be up to five times greater. For all but four matrices, the MS ordering time takes less
than one third of the factorization time. All the matrices in Table 4 are small to moderate
in size. For larger matrices that we see in practice, up to two million degrees of freedom,
the MMD ordering time is a very small fraction of the factorization time, much less than
one per cent. The cost of the ND and Ms orderings is also negligible.

TABLE 5

The Influence of Mazimum Domain Size

NZF OPS CPU
MATRIX |Qmax| | ND | MS | ND | MS ND MS
BCSSTK31 100 | 0.88 | 0.94 | 0.56 | 0.73 | 20.04 | 20.27
200 | 0.88]0.90 | 0.57 | 0.62 | 17.38 | 17.49
400 | 0.90 | 0.88 | 0.59 | 0.59 | 15.27 | 15.29
800 | 0.90 | 0.88 | 0.61 | 0.60 | 13.48 | 13.62
1600 | 0.91 | 0.88 | 0.65 | 0.61 | 12.08 | 12.16
BCSSTK37 100 | 1.05 1092 |1.25|0.78 | 6.81 | 6.82
200 | 1.07 | 095|130 | 0.85 | 5.61 | 5.59
400 1.08 | 0.98 | 1.32 | 0.94 | 4.82 | 4.82
800 1.12 | 1.05 | 1.44 | 1.12 | 4.05 | 4.04
1600 1.14 | 1.09 | 1.54 | 1.32 | 3.39 | 3.39
BCSSTK39 100 | 0.93 | 0.90 | 0.94 | 0.78 | 10.09 | 10.18
200 1093089093077 | 7.88 | 7.92
400 | 0.96 | 0.91 | 0.98 | 0.79 | 6.66 | 6.72
800 |0.99|0.92|1.02|081 | 556 | 557
1600 | 1.01 | 0.94 | 1.09 | 0.85 | 4.66 | 4.66

The quality of the ND and MS orderings is somewhat dependent on the depth to which
the nested dissection is taken. Table 5 presents some statistics for three of the matrices.
We have varied the maximum domain size (domain weight for a compressed graph) that
defines when a subgraph will be split. Doubling the maximum domain size roughly means
reducing the number of levels in the separator tree by one. The results for BCSSTK31 show
that ND improves as one reduces the maximum domain size but the MS ordering becomes
worse. For BCSSTK37 both orderings improve as the maximum domain size decreases, while
for BCSSTK39 the ordering quality is more flat throughout the parameter range. Note that
the bulk of the ordering times are spent finding the separators at the highest levels. In
general, the ordering quality of Ms tends to be less sensitive to the number of levels of
separators that are used to construct the multisector, although this is problem dependent.

6 Concluding Remarks

In this paper, we have introduced multisection, a robust ordering method using the notion
of multisectors. We have demonstrated that it produces consistently high quality orderings
for graphs of different characteristics. Its performance compares favorably with the popular
minimum degree ordering MMD, and a state-of-the-art generalized nested dissection software

15

METIS.

There are several directions for future work. Foremost is to find high quality
multisectors at less cost than performing nested dissection. In the past [5] we have found
a multisector by first ordering the graph using MMD, extracting a multisector from the
elimination tree, smoothing this multisector, and then ordering using multisection, for a
total cost of between two and three times a single MMD ordering. In general, the quality
of these orderings lie somewhere between those of MMD and MsS using nested dissection
to find the multisector. We have constructed decent multisectors using the generalized
pseudo-extents algorithm from [15]. Again, the ordering quality lies between that of MMD
and MS using nested dissection to find the multisector, but finding the multisector can take
considerable time, particularly when the number of domains is large. Each of these two
methods produce multisectors that are locally smooth, i.e., the boundary of each domain is
smooth, but there is little or no global smoothness as is found in a multisector from nested
dissection. In other words, the multisector may not contain a good global bisector that can
be easily found by the MMD ordering.

It appears that some type of global smoothness should be present, i.e., the multisector
must contain smooth portions at a higher level than the boundary of a single domain. We
feel that a viable approach is to form the multisector using recursive multisection of the
graph, in the same spirit as the quadrisection and octasection from [17] and the k-way
partitioning from [23]. This has the potential to reduce the ordering time because fewer
levels of recursion are required, and possibly improve the resulting ordering, for often a
multisector with a small number of subgraphs has better properties than the equivalent
multisector found by repeated application of bisection.

Acknowledgements.

We would like to thank Ed Rothberg and Bruce Hendrickson for much helpful correspon-
dence during the course of this research.

References

[1] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput.,
16:1404 1411, 1995.

[2] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear equation
solvers. Technical Report ISSTECH-95-029, Boeing Computer Services, 1995.

[3] C. Ashcraft and J. W. H. Liu. A partition improvement algorithm for generalized nested
dissection. Technical Report BCSTECH-94-020, Boeing Computer Services, 1994.

[4] C. Ashcraft and J. W. H. Liu. Using domain decompositions to find graph bisectors. Technical
Report ISSTECH-95-024, Boeing Computer Services, 1995.

[5] C. Ashcraft and J. W. H. Liu. Generalized nested dissection: some recent progress.
Minisymposium presentation at the Fifth STAM Conference on Applied Linear Algebra,
Snowbird, Utah, June 18, 1994.

[6] S.T.Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems. In Proceedings of the Sizth SIAM Conference on
Parallel Processing for Scientific Computing, pages 711 718, 1993.

[7] P. Berman and G. Schnitger. On the performance of the minimum degree ordering for Gaussian
elimination. SIAM J. Matriz Analysis and Applic., 11:83-88, 1990.

[8] M. V. Bhat, W. G. Habashi, J. W. H. Liu, V. N. Nguyen, and M. F. Peeters. A note on nested
dissection for rectangular grids. SIAM J. Matriz Analysis and Applic., 14:253 258, 1993.

[9] T. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix factorization. In
Proceedings of Sixth SIAM Conference on Parallel Processing, pages 445-452, 1993.

[10] I.S. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM Trans. on Math.
Software, 15:1-14, 1989.

[11]
[12]

[13]

16

J. A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal.,
10:345 363, 1973.

J. A. George. An automatic one-way dissection algorithm for irregular finite element problems.
SIAM J. Numer. Anal., 17:740 751, 1980.

J. A. George, J. W. H. Liu, and E. G. Ng. User’s guide for SPARSPAK: Waterloo sparse
linear equations package. Technical Report Tech. Rep. CS78-30(revised), Dept. of Computer
Sciences, Univ. of Waterloo, Waterloo, Ontario, Canada, 1980.

J.A. George and J. W. H. Liu. The evolution of the minimum degree ordering algorithm.
SIAM Review, 31:1 19, 1989.

T. Goehring and Y. Saad. Heuristic algorithms for automatic graph partitioning. Technical
report, Computer Science Department, University of Minnesota, Minnesota, 1995.

M.T. Heath and P. Raghavan. A cartesian nested dissection algorithm. Technical Report
UIUCDCS-R-92-1772, Dept, of Computer Science, University of Illinois, Urbana, IL, 1992.

B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping
parallel computations. Technical Report SAND92-1460, Sandia National Laboratories,
Albuquerque, NM, 1992.

B. Hendrickson and R. Leland. The Chaco user’s guide. Technical Report SAND93-2339,
Sandia National Laboratories, Albuquerque, NM, 1993.

B. Hendrickson and E. Rothberg. A multi-level approach to computing node separators for
nested dissection ordering. Technical report, Sandia National Laboratories, 1996. in progress.
G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. Technical Report TR 95-035, Department of Computer Science, University
of Minnesota, Minnesota, 1995.

G. Karypis and V. Kumar. METIS: Unstructured graph partitioning and sparse matrix
ordering system. Technical report, Department of Computer Science, University of Minnesota,
Minnesota, 1995.

G. Karypis and V. Kumar. Multilevel graph partition and sparse matrix ordering. In Intl.
Conf. on Parallel Processing, 1995.

G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. Technical
report, Department of Computer Science, University of Minnesota, Minnesota, 1995.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
System Technical Journal, 49:291-307, 1970.

C. E. Leiserson and J. G. Lewis. Orderings for parallel sparse symmetric factorization. In
Parallel Processing for Scientific Computing, pages 27 31, 1989.

J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM
Trans. on Math. Software, 11:141 153, 1985.

J. W. H. Liu. A graph partitioning algorithm by node separators. ACM Trans. on Math.
Software, 15:198-219, 1989.

J. W. H. Liu. On the minimum degree ordering with constraints. SIAM J. Sci. Stat. Comput.,
10:1136 1145, 1989.

J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matriz Analysis
and Applic., 11:134-172, 1990.

H. M. Markowitz. The elimination form of the inverse and its application to linear
programming. Management Sci., 3:255-269, 1957.

E. Ng. On one-way dissection schemes. Master’s thesis, Dept of Computer Science, University
of Waterloo, Waterloo, Ontario, 1979.

A. Pothen and C. Fan. Computing the block triangular form of a sparse matrix. ACM Trans.
on Math. Software, 16:303-324, 1990.

A. Pothen, H. Simon, and K.P. Liou. Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matriz Analysis and Applic., 11:430 452, 1990.

P. Raghavan. Parallel ordering using edge contraction. Technical Report CS-95-293, Dept. of
Computer Science, The University of Tennessee, Knoxville, Tennessee, 1995.

D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In R. Read, editor, Graph Theory and Computing, pages 183—

17

217. Academic Press, 1972.

[36] E. Rothberg. private communication, 1995.

[37] E. Rothberg. Exploring the tradeoff between imbalance and separator size in nested dissection
ordering. unpublished, 1996.

[38] W. F. Tinney and J. W. Walker. Direct solutions of sparse network equations by optimally
ordered triangular factorization. J Proc. IEFE, 55:1801-1809, 1967.

