
Robust Ordering of Sparse Matrices using MultisectionCleve Ashcraft� Joseph W.H. LiuyFebruary 9, 1996AbstractIn this paper we provide a robust reordering scheme for sparse matrices. Thescheme relies on the notion of multisection, a generalization of bisection. The reorderingstrategy is demonstrated to have consistently good performance in terms of �ll reductionwhen compared with multiple minimum degree and generalized nested dissection.Experimental results show that by using multisection, we obtain an ordering whichis consistently as good as or better than both for a wide spectrum of sparse problems.1 IntroductionIt is well recognized that �nding a �ll-reducing ordering is crucial in the success of thenumerical solution of sparse linear systems. For symmetric positive-de�nite systems, theminimum degree [38] and the nested dissection [11] orderings are perhaps the most popularordering schemes. They represent two opposite approaches to the ordering problem.However, they share a common undesirable characteristic. Both schemes produce generallygood orderings, but the ordering quality is not uniformly good.The main contribution of this paper is to introduce a robust ordering scheme that givesgood quality orderings consistently, near equal or better than minimum degree and nesteddissection. The basic tool is a multisector, a generalization of a bisector. A multisector isa subset of vertices whose removal subdivides the graph into two or more components. Wecall the resulting partition a domain decomposition. The whole ordering process has twoindependent phases: the ordering of the vertices in the components (the domains) and theordering of the multisector (the interface).An outline of this paper is as follows. In Section 2, we provide evidence on theinconsistent ordering quality of the minimum degree and nested dissection schemes. Themultisection ordering scheme is described in Section 3, where the notions of domaindecomposition, multisector and multisection ordering are introduced. The quality ofthe resulting ordering depends on three factors: the domain decomposition, the orderingmethod for the domains, and the ordering method for the multisector.In Section 4, we consider numerical experiments of the multisection ordering approachon regular grids. We show that multisection gives an ordering quality close to theoptimal nested dissection ordering [11] for square and cubic grids, and local nesteddissection ordering [8] for grids of large aspect ratios. Section 5 evaluates multisectionon some structural analysis matrices from the Harwell-Boeing collection [10]. We use an�Boeing Information and Support Services, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124.This research was supported in part by the ARPA Contract DABT63-95-C-0122.yDepartment of Computer Science, York University, North York, Ontario, Canada M3J 1P3. Thisresearch was supported in part by the Natural Sciences and Engineering Research Council of Canada undergrant A5509 and in part by the ARPA Contract DABT63-95-C-0122.1



2incomplete nested dissection scheme to determine a multisector and its associated domaindecomposition. Section 6 contains our concluding remarks.2 Minimum Degree and Nested Dissection Orderings2.1 General OverviewThe minimum degree ordering algorithm is a symmetric version of the Markowitz scheme[30]. It was �rst described and used by Tinney and Walker [38]. The basic minimum degreealgorithm can be best described in terms of elimination graphs [35]. Let G be the graphassociated with the given sparse matrix. The scheme selects a vertex v of minimum degreein G. This vertex is numbered next in the ordering and is eliminated from the graph G toform its elimination graph Gv. The graph G is then replaced by this elimination graph Gv,where the selection/elimination process is repeated. Many important enhancements havebeen made to the implementation of the minimum degree ordering; the survey paper [14]contains a comprehensive account of such enhancements.To choose a vertex to eliminate, the minimum degree algorithm uses the degree of thevertex, which is a local graph property. If we view the ordering as the construction of theelimination tree1, the tree is formed from bottom-up. This means nodes associated withthe bottom part of the tree get their ordering assignments �rst.The minimum degree ordering has been generally recommended as a general purpose�ll-reducing reordering scheme. Its wide acceptance is largely due to its e�ectiveness inreducing �ll and its e�cient implementation. However, since the scheme uses only localinformation, it produces only adequate orderings for large problems. There is room forimprovement.Another popular �ll-reducing ordering is the nested dissection ordering [11] and itsgeneralizations. Contrary to the minimum degree algorithm, nested dissection is a top-down scheme. It uses the notion of a separator, which is a subset of nodes whose removalrenders the remaining graph disconnected. Nested dissection �nds a separator and numbersthe nodes in the separator last. The process is then repeated recursively on each component.Nested dissection constructs the elimination tree from the root down.The theoretical foundation of nested dissection was given by George [11], and heshowed that nested dissection on grid problems will give optimal orderings with respectto factor nonzeros and factorization operation counts. For general graph problems, therecursive approach of �nding and ordering separators is often referred to as generalizednested dissection. For the remainder of this paper, we shall simply use nested dissection torefer to generalized nested dissection.A separator is a global property of the graph. The quality of a nested dissection orderingdepends crucially on the quality of its separators. With good separators, nested dissectiongives high quality orderings for a large class of graphs. Unfortunately, that is not the casefor some type of graphs, for example, those of large aspect ratios. A good separator isnot enough; the ordering of the vertices found in the di�erent levels of the separators isimportant. In many cases, the ordering given by the recursive ordering of the separatorsin nested dissection can be improved.1The elimination tree is a useful tool in the study of sparse factorization. For more details, see [29].



32.2 Shortcomings of Minimum Degree and Nested DissectionTo illustrate the inconsistent ordering quality from the minimum degree (mmd) and thenested dissection (nd) algorithms, we apply the two orderings on a sequence of rectangulargrids of increasing aspect ratios. We run the orderings on grids of the following sizes:128 � 128, 256 � 64, 512 � 32, 1024 � 16, 2048 � 8, and 4096 � 4 respectively, so that thenumber of unknowns are the same (214 = 16384).
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Fig. 1. Comparison of mmd and nd for 2-D regular grids of di�erent aspect ratios.In Figure 1, we plot the performance ratio of mmd/nd versus the base-2 logarithm ofthe aspect ratios of the rectangular grids. The variation in performance is rather drastic.For the grid of unit aspect ratio, nd outperforms mmd by a factor of two in factorizationoperations. On the other end, for grids of large aspect ratios, mmd is better than nd inoperations by a factor of close to two.Such performance variations can also be found in practical sparse matrix problems. InSection 5 we will compare minimum degree, nested dissection and multisection on a set ofmatrices from the Harwell-Boeing sparse matrix collection [10]. For seven of the sixteenmatrices minimum degree generates an ordering with fewer operations than our nesteddissection ordering. Part of this can be explained by the aspect ratio of the graphs of thematrices. For example, one of the test matrices, bcsstk25, is the �nite element model ofa tall building and has a graph with a large aspect ratio.The shortcomings of the minimum degree ordering are largely due to the local natureof the algorithm. Making a node selection based on the local degree information oftencan lead to less-than-desirable choices. Berman and Schnitger [7] have shown that thereis a minimum degree sequence for the square grid so that the resulting ordering hasfactor nonzeros and operation counts an order of magnitude more than the optimal.By construction, their less-than-optimal ordering gives separators with a severe \fractal"nature. This property is found to a lesser degree in virtually any minimum degree ordering.On the other hand, the shortcoming of the nested dissection can be best explained byits performance on problems of large aspect ratios. The experimental results in Figure 1on rectangular grids of varying aspect ratios, show that the di�erence in performance isquite signi�cant. Since we are using the best separator (best in terms of both the separator



4size and the component balance) on the grid at each step of nested dissection, we cannotattribute the problem to the quality of the separators. The problem is with the way the lastfew levels of separators are numbered. Indeed, our approach of using multisectors providesa more e�ective way of numbering the nodes associated with these separators.3 The Multisection Ordering AlgorithmIn nested dissection, a separator in the form of a bisector is used that splits the given graphinto two subgraphs, where each subgraph is ordered recursively. The nodes associatedwith the bisector usually form a clique in the �lled graph. Our approach uses the notionof a multisector separator, which splits the given graph into a number of subgraphs. Ingeneral, the multisector nodes induce a sparse submatrix in the �lled graph. Within thisframework, we can therefore view nested dissection as a multi-level bisection scheme. Onthe other hand, this new approach is a bi-level multisection scheme. For simplicity, we shallsimply refer to it as multisection.3.1 Domain Decomposition and MultisectorThis approach is closely related to the notion of domain decomposition, which we nowformally de�ne. Let A be a matrix with symmetric structure and let G = (V;E) bean undirected graph where V are vertices and E � V � V are the edges. Edge (i; j)is in E if and only if ai;j 6= 0. For a subset U � V , the boundary of U , writtenAdj(U), is the set of all vertices adjacent to those in U but not including any in U , i.e.,Adj(U) = fv =2 U j (u; v) 2 E for some u 2 Ug.Consider a block partition of the vertex set V :V = � [ 
1 [ 
2 [ : : : [ 
M ;where each 
i is a domain and � is the set of interface vertices. Each domain 
i is aconnected subgraph of G whose boundary Adj(
i) is contained in �. Since the domainsare separated from one another by the set �, we shall also refer to � as a multisector, forit generalizes the notion of a bisector. Without loss of generality, we shall assume that themultisector partition is nontrivial; that is, M > 1 and � is nonempty.Given this domain decomposition, we impose one condition on the ordering: All verticesin the domains are numbered before any vertex in the multisector. Since the domains areisolated from each other, each can be ordered independently. For domain 
i, we constructthe graph Gi = (
i; Ei) where Ei = E \ (
i� (
i [Adj(
i))) contains all edges (u; v) 2 Ewhere u 2 
i. To order the multisector vertices we de�ne the set� = V n � =[i 
i;that is, the set of domain vertices. We use the conventional notation G� to represent theelimination graph of G after all vertices in the domains have been eliminated. Note thatG� is also the graph of the Schur complement matrixA�;� � MXi=1A�;
iA�1
i;
iA
i;�:From this equation it is clear that the elimination graph G� (the structure of the Schurcomplement matrix) does not depend on the ordering of domain vertices. Therefore, the



5ordering of the multisector vertices in this elimination graph can proceed independent ofthe ordering of the domain vertices.Figure 2 is an example of a domain decomposition of a 6� 6 grid graph. The verticesare partitioned into six domains and a multisector:� = f2; 4; 6; 7; 8; 10; 14; 16; 18; 19; 20; 21; 22; 23; 27; 33g:Multisector vertices are represented by squares and domain vertices by circles.
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Fig. 2. A domain decomposition example.A useful notion related to domain decomposition is the idea of indistinguishable vertices.For a given graph, two vertices are said to be indistinguishable if they are adjacent andhave exactly the same set of neighbors (except themselves). The elimination graph G� ofa domain decomposition usually has many fewer indistinguishable vertices than vertices.This is important since the execution time and, to some extent, the quality of the minimumdegree ordering depends on the number of indistinguishable vertices instead of the numberof original vertices. Figure 3 contains the Schur complement matrix associated with thedomain decomposition of Figure 2. There are 16 vertices and 10 indistinguishable ones. Forexample f4; 10; 16g forms an indistinguishable set, since they all have the same adjacentset f2; 8; 14; 20; 21; 22; 23g in the elimination graph.3.2 The Multisection Ordering AlgorithmImmediately below is a skeleton of the multisection ordering scheme based on the notionof a domain decomposition.ms (Ordering method-1, Ordering method-2):Given a domain decomposition (�;
1;
2; : : :
M ) of V ;for each domain 
i doOrder the graph Gi = (
i; Ei) by ordering method-1 ;Form the elimination graph G� and order by ordering method-2 ;A multisection ordering is de�ned by three choices:1. How to determine the domain decomposition?



6Fig. 3. The Schur complement matrix has 16 vertices, 10 indistinguishable vertices, originalentries `x', �ll entries `+'
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2. What �ll-reducing ordering to use to order the domains 
i?3. What �ll-reducing ordering to use to order the multisector?In the literature, there are a number of existing ordering schemes using this multisectionapproach in ms.� One-Way Nested Dissection | ms(profile, profile)The one-way dissection scheme by George [12] chooses a set of parallel dissectors as itsmultisector. Each component in the remaining graph is ordered by a pro�le ordering.The elimination graph associated with the multisector is also numbered by a pro�leordering. We can therefore view one-way dissection as a ms(profile, profile)multisection ordering scheme. George provided experimental and theoretical resultsto show that one-way dissection can be better than nested dissection for grid graphswith large aspect ratios. In his master thesis [31], Ng has considered the recursiveuse of the one-way dissection approach. This can also be viewed as using some formof multisector.� Local Nested Dissection | ms(nd, band)The local nested dissection lnd scheme in [8] carries the one-way dissection ideafurther. A rectangular grid of large aspect ratio is subdivided into roughly squaredomains by a set of parallel horizontal and vertical dissectors. Each square domain isordered by nested dissection. The multisector de�ned by the set of parallel dissectorsis then numbered by a band ordering. The local nested dissection scheme is thereforea ms(nd,band) multisection ordering method.� Incomplete Nested Dissection | ms(cmd, nd) and ms(mmd, nd)There are two generic forms of an incomplete nested dissection ordering. In bothforms, the multisector is constructed using the recursive bisection process of nested



7dissection and the ordering of the multisector vertices follows the given nesteddissection ordering. The di�erence lies in how the vertices in the domains areordered, using either mmd, multiple minimum degree [26] or cmd, constrainedminimum degree [28]. The latter algorithm uses the multisector nodes to computethe degrees of nodes in the domains and so usually generates a better orderingthan the former on the domain subgraphs. There are many examples of incompletenested dissection in the literature [3], [5], [6], [9], [16], [17], [20], [22], [25], [27], [33],[34], including two excellent state-of-the-art software packages, chaco from SandiaNational Laboratories [18] and metis from the University of Minnesota [21].The above methods are all members of the multisection family of ordering algorithms.In the following sections we will compare incomplete nested dissection algorithms with anew method, ms(cmd, mmd), where vertices in the domains are ordered with constrainedminimum degree and the Schur complement graph is ordered with multiple minimumdegree. We will refer to the ms(cmd, mmd) algorithm as multisection, abbreviated ms,in contrast with an incomplete nested dissection method, abbreviated as nd.What remains is to specify how the multisector is created. In [5], the authors looked attwo possibilities. The �rst method is to order the graph using mmd and use the eliminationtree to extract a multisector. (Each domain is a subtree of the elimination tree; themultisector consists of all remaining vertices.) This multisector is then smoothed to removethe fractal nature of the separators that form the multisector. The second method, asdescribed in [3], [5] performs recursive bisection on the graph until the subgraphs are acertain size, then take the multisector to be the union of the separators.Subsequent to [5], Rothberg independently discovered the multisection method usingthe second technique [36]. In his work, a multisector was formed of the separatorsobtained from the chaco code [18] and automatic nested dissection from sparspak [13].Multisection consistently performed as well or better than the nested dissection algorithmthat generated the multisector, evidence that supports our results in Section 5 where weobtain a multisector from the metis software package [21] and our own nested dissectionsoftware [4].4 Experimental Results on Regular GridsIn this section we present some experimental results for the ms(cmd,mmd) orderingalgorithm on regular grids. For grid problems it is easy to construct an ideal set ofmultisectors. In this way, we can study the e�ectiveness of ms(cmd,mmd) ordering whencompared with some theoretically-optimal orderings.4.1 Square and Cubic Regular GridsWe �rst consider 9-point operators on 2-D n � n grids and 27-point operators on 3-Dn � n � n grids. For these graphs, George's nested dissection ordering [11] gives the bestresults (aside from some minor variations on very small grids due to edge e�ects). For asquare n� n grid, nested dissection �rst bisects the grid with a vertical separator creatingtwo subgrids, each approximately n=2 � n in size. Each of these subgrids is bisected bya horizontal separator forming a total of four n=2 � n=2 subgrids. The process repeatson each of the subgrids recursively. The separators are vertical or horizontal lines of gridpoints.We construct a multisector in a similar way, composed of horizontal and vertical gridlines (planes in 3-D) that span the grid. The simplest multisector we call �2 which splits



8the grid into four components in 2-D (eight components in 3-D) with a single separator ineach grid direction. �2 splits each side of the grid into two, so there are four domains in2-D, each approximately n=2 � n=2 in size. For a 3-D grid there are eight domains, eachapproximately n=2 � n=2 � n=2 in size. The multisector �3 splits the 2-D grid into ninedomains, each approximately n=3 � n=3 in size. In general, the �m multisector createsM = m2 domains in 2-D, (M = m3 domains in 3-D), each domain is roughly n=m alongeach side. Note, the multisector �1 is empty, the entire grid is one domain. We canparameterize the ms(cmd,mmd) ordering by the �m multisector, and �1 corresponds tommd on the original grid graph.Our �rst experiment is to �x the number of domains and let the grid sizes grow. For2-D n� n grids we looked at 1 � m � 7. For 3-D n� n� n grids we looked at 1 � m � 4.Figure 4 contains four plots, results for 2-D grids at the top, 3-D grids on the bottom. Theratio of ms(cmd,mmd) factor entries to those of nested dissection are found on the left,factorization operations on the right.Fig. 4. Multisection vs nested dissection on square and cubic regular grids
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ndFor nd, the number of factor entries is O(n2 logn) in 2-D and O(n4) in 3-D; the numberof factorization operations is O(n3) in 2-D and O(n6) in 3-D. We have scaled the numberof factor entries and operations appropriately. In each plot the bottom curve is nd whilethe top curve is mmd. The multisection curves are found between nd and mmd. As ngrows, the relative performance of mmd versus nd becomes appreciably worse, more forfactorization operations than factor entries and more for 3-D than 2-D.



9The di�erence between ms and nd grows at a much smaller rate. For 2-D grids thereis a steady improvement as m increases. For 3-D grids the smaller values of m are better;no doubt this is due to the relatively larger portion of factor entries and operations boundto the top level separators. The di�erence is mainly a function of n, the diameter of thegraph, not the number of vertices.4.2 Rectangular Quadrilaterals and HexahedraMultisection performs fairly well when compared to nested dissection on square and cubicregular grids. We now turn to grids with large aspect ratios and compare multisection tolnd, local nested dissection [8], the best ordering for rectangular grids.Table 1Multisection for Rectangular Grids255 � 31 gridmethod nzf opsmmd/lnd 1.24 1.73nd/lnd 1.11 1.41ms/lndm1 m2 M16 2 32 1.14 1.3524 3 72 1.08 1.2232 4 128 1.08 1.2040 5 200 1.08 1.2348 6 288 1.08 1.25
127 � 15� 15 gridmethod nzf opsmmd/lnd 1.92 3.86nd/lnd 1.12 1.42ms/lndm1 m2 m3 M8 1 1 8 1.78 3.4416 2 2 64 1.12 1.1524 3 3 144 1.23 1.67Table 1 presents some results for a 255 � 31 2-D grid and a 127 � 15 � 15 3-D grid.Both grids have an aspect ratio of 8, large enough to make local nested dissection clearlybetter than nested dissection.The results of mmd, nd and ms are given relative to lnd. The performance of ndrelative to lnd is virtually the same in two and three dimensions; nd requires around 10%more factor entries and 40% more factorization operations. However, mmd shows its strongdependence on the dimensionality of the graph for its 3-D performance is much worse thanthat for 2-D.What is important to note is that multisection will generate good orderings with manydi�erent multisectors. We have observed this behavior across a wide range of matrices; thequality of the multisection ordering is not strongly dependent on the number of domainsinduced by the multisector. Furthermore, additional experiments have also shown that theordering quality is also relatively insensitive to the shape of domains.5 Experimental Results on Sparse Matrices from Structural AnalysisThe experimental results in Section 4 on the 2D and 3D-grid problems suggest thatthe multisection ordering ms(cmd,mmd) can lead to very competitive orderings. Themultisectors used are based on the geometry of the grids, and so can be regarded asthe best we can get for a speci�ed number of domains. For general sparse matrixproblems, the multisection ordering algorithm depends on the use of an appropriate domain



10decomposition. To avoid the \fractal" nature of the separators from mmd, each domainshould have a \smooth" boundary.5.1 Finding Domain Decomposition via Recursive BisectionA simple domain decomposition method can be formulated based on incomplete nesteddissection. The vertex set V of the initial graph is decomposed into two or more connectedsubgraphs by removing a bisector S. The connected components of V n S are recursivelybisected until each remaining subgraph is smaller than some prescribed size. The qualityof the resulting domain decomposition depends on the method to �nd bisectors in therecursive steps.Recently, there have been a number of published papers and software codes that �nda partition of a given graph. Notable examples include the chaco [18] and metis [21]software packages. We have developed a software code called ddsep [4], that partitions agraph in three steps.� (Initial Multisector) Construct a multisector that gives a domain decompositionof the graph.� (Bisector Constructor) Apply a block version of the Kernighan-Lin scheme [24] to�nd a bisector, which is a subset of the multisector.� (Bisector Smoother) Apply a graph matching scheme [27] to improve the bisector.The ddsep software has been demonstrated to be quite e�ective in �nding good partitions ofgeneral connected graphs and also e�cient in terms of execution time [4]. For our purpose of�nding domain decompositions for the multisection ordering, ddsep is appropriate becauseof its bisector smoothing step in the algorithm. For our experiments, we recursively extractthe subgraph under consideration and apply ddsep to the subgraph. The set of bisectorsfrom the recursive steps collectively forms the multisector. Each un-dissected subgraph isa domain in the domain decomposition.5.2 Results on Practical Structural ProblemsWe have selected a set of practical sparse matrices arising from structural analysis problemsfrom the Harwell-Boeing collection [10]. Table 2 provides a list of the problems and theircharacteristics. The column labeled original contains the number of vertices jV j andnumber of edges jEj of the original given graph. We have also applied the graph compressiontechnique in [1] to identify the indistinguishable vertices in the original graph. The columnlabeled compressed gives the number of vertices jVj and the number of edges jEj of thecompressed graph. Each compressed vertex u has a weight w(u), namely the number ofvertices in the original graph that u contains. An edge (u;v) in the compressed graph hasa weight w(u;v) = w(u)w(v), and the compressed graph is the smallest graph such thatthis property holds. All of our ordering software works with the compressed graph, andthis oftens results in signi�cantly decreased ordering times when compared with using theoriginal graph.The last two columns in Table 2 presents the number of factor entries and operations(both additions and multiplications) when the matrices are ordered using our multipleminimum degree software, scaled by 103 and 106 respectively. For each matrix we madetwenty-one runs of mmd where each run randomly permuted the adjacency structure of thegraph. Table 2 contains the median values of these runs. When we compare the ordering



11Table 2Statistics for Harwell-Boeing Matricesoriginal compressed mmdmatrix jV j jEj jVj jEj nzf/103 ops/106bcsstk15 3948 113868 3948 113868 663 172bcsstk16 4884 285494 1778 36502 742 146bcsstk17 10974 417676 5219 81062 1141 201bcsstk18 11948 137142 10926 122177 657 138bcsstk23 3134 42044 2930 35256 461 142bcsstk24 3562 156348 892 12756 296 38bcsstk25 15439 236802 13183 161964 1544 339bcsstk29 13992 605496 10202 313846 1721 424bcsstk30 28924 2014568 9289 222884 3731 869bcsstk31 35588 1145828 17403 288806 5160 2411bcsstk32 44609 1970092 14821 226974 5175 1048bcsstk33 8738 583166 4344 164284 2656 1300bcsstk35 30237 1419926 6611 65934 2782 406bcsstk36 23052 1120088 4351 37166 2766 618bcsstk37 25503 1115474 7093 88924 2831 558bcsstk39 46772 2042522 10140 81762 7671 2194quality of the nested dissection and multisection methods, we scale their statistics by thecorresponding mmd values.Table 3 contains statistics for two nested dissection algorithms | one from metisand one using our ddsep software | and multisection where the multisector has beenobtained from either metis or ddsep. Again, we made twenty-one runs for each algorithmand matrix and present the median value, scaled by the mmd factor entries (nzf) andfactorization operations (ops). An entry in the table that is greater (less) than one meansthat the ordering algorithm performed worse (better) than mmd. Both metis2 and ddseprecursively split a subgraph until it has 100 or fewer vertices, (for a weighted graph, untilthe vertices in the subgraph have total weight less than 100).Of the two nested dissection algorithms, ddsep consistently outperforms metis. Webelieve that ddsep produces better separators; see [4] for a comparison. There are threepossible reasons.� ddsep is more 
exible in enforcing a balance constraint than metis; the latter triesto balance the size of the two subgraphs at the expense of a possible larger bisector.See [37] for a more complete discussion.� ddsep works exclusively with vertex bisectors while metis �nds an edge bisector andthen extracts a vertex bisector; see [19] for a further explanation.� ddsep uses a powerful graph matching algorithm to smooth a bisector.2The options we used for metis were recommended to us by the author, George Karypis, namely SHEM(sorted heavy edge), BGKLR (combination of boundary greedy and boundary Kernighan-Lin) and GGPKL(graph growing followed by boundary Kernighan-Lin).



12

Table 3A comparison of nd (nested dissection) and ms (multisection) relative to mmd (multipleminimum degree) nzf opsnd ms nd msmatrix metis ddsep metis ddsep metis ddsep metis ddsepbcsstk15 0.80 0.75 0.83 0.76 0.60 0.53 0.64 0.56bcsstk16 1.01 0.97 0.89 0.89 1.01 0.96 0.77 0.77bcsstk17 1.07 0.95 0.93 0.86 1.12 0.90 0.80 0.67bcsstk18 1.04 0.93 0.91 0.89 0.84 0.77 0.67 0.70bcsstk23 1.01 0.84 0.95 0.83 0.88 0.67 0.81 0.66bcsstk24 1.18 1.04 1.08 1.00 1.32 1.05 1.13 0.97bcsstk25 1.16 1.02 0.96 0.90 1.34 1.14 0.86 0.80bcsstk29 1.15 0.96 0.98 0.97 1.15 0.85 0.86 0.89bcsstk30 1.29 1.19 1.08 1.05 1.62 1.51 1.16 1.07bcsstk31 1.02 0.88 0.90 0.94 0.72 0.55 0.64 0.72bcsstk32 1.32 1.08 1.11 0.95 2.00 1.37 1.38 0.87bcsstk33 0.93 0.80 0.84 0.78 0.82 0.59 0.68 0.57bcsstk35 1.38 1.10 1.14 1.00 2.16 1.33 1.48 0.98bcsstk36 1.27 1.07 1.11 0.93 1.68 1.25 1.29 0.82bcsstk37 1.35 1.05 1.14 0.92 2.04 1.25 1.45 0.78bcsstk39 1.11 0.93 1.02 0.90 1.38 0.94 1.06 0.78mean 1.13 0.97 0.99 0.92 1.29 0.98 0.98 0.79



13Both multisection algorithms, the �rst using the multisector from metis, the second usingthe multisector from ddsep, consistently outperform their corresponding nested dissectionalgorithms. Where nd is better than ms, the di�erence is not large. While there are sevenmatrices where nd using ddsep does not produce as good an ordering as mmd, there isonly one such case for ms using ddsep. Table 4Execution time for the ordering algorithmsordering CPU time portion of factorization timend ms nd msmatrix mmd metis ddsep ddsep mmd metis ddsep ddsepbcsstk15 1.18 1.33 3.39 3.45 11.7% 13.2% 33.6% 34.2%bcsstk16 0.27 2.76 1.40 1.39 3.1% 32.1% 16.3% 16.2%bcsstk17 0.82 5.19 4.43 4.45 7.6% 44.0% 37.5% 37.7%bcsstk18 2.50 1.81 10.38 10.47 30.9% 22.4% 128.2% 129.3%bcsstk23 0.90 0.77 1.95 1.95 10.7% 9.2% 23.2% 23.2%bcsstk24 0.07 1.32 0.58 0.57 3.2% 60.0% 26.4% 25.9%bcsstk25 3.34 4.79 11.62 11.42 7.1% 10.2% 24.6% 24.2%bcsstk29 1.77 6.89 11.22 11.24 7.1% 27.7% 45.1% 45.1%bcsstk30 1.66 23.81 11.08 11.15 3.3% 46.6% 21.7% 21.8%bcsstk31 4.74 18.51 20.04 20.27 3.3% 13.1% 14.1% 14.3%bcsstk32 2.75 28.63 16.89 17.08 4.5% 46.5% 27.4% 27.7%bcsstk33 1.04 18.51 5.75 5.78 1.4% 24.2% 7.5% 7.6%bcsstk35 0.85 17.69 6.50 6.57 3.6% 74.0% 27.2% 27.5%bcsstk36 0.74 13.72 4.20 4.23 2.0% 37.7% 11.5% 11.6%bcsstk37 0.93 14.22 6.81 6.82 2.8% 43.4% 20.8% 20.8%bcsstk39 1.28 29.99 10.09 10.18 1.0% 23.2% 7.8% 7.8%Table 4 contains the ordering times for four out of the �ve methods. All orderingcodes are written in C and were run on a Sparc20 using the gcc compiler with the -O4option. In general, metis takes modest amounts of CPU times, but it is penalized becauseit cannot work with the compressed graph.3 Compare the times for bcsstk15 where thecompressed graph is identical to the original graph. For this matrix, metis is almost threetimes as fast as ddsep. We have observed this general tendency across the entire set oftest matrices; ddsep is usually a factor of two or more slower than metis on the originalgraph. Part of this di�erence is due to the more powerful graph matching smoother, butpart is because ddsep trades more computation for reduced working storage. ddsep usesonly O(jVj log(jVj)) working storage and does not replicate or destroy the input structureof the graph.The ordering times for nd and ms with ddsep include the time to order the vertices inthe domains using our mmd software. The time in ms to order the vertices in the multisectoris relatively small, and so we see the nd and ms ordering times are almost identical (againthe median of twenty-one runs). It is clear that the bulk of the ordering time is spent�nding the multisector via nested dissection.3metis �rst �nds an edge separator and then extracts the vertex separator using the graph matchingalgorithm from [32] that does not take into account any vertex weights.



14Table 4 also provides the ordering times as the percentage of time needed for thenumerical factorization of the mmd ordering. Our multifrontal factorization code from [2]consistently achieves 15-20 m
ops for this collection of matrices. The mmd ordering time isa small per cent of the factorization time for the larger problems, while the nd and ms timescan be up to �ve times greater. For all but four matrices, the ms ordering time takes lessthan one third of the factorization time. All the matrices in Table 4 are small to moderatein size. For larger matrices that we see in practice, up to two million degrees of freedom,the mmd ordering time is a very small fraction of the factorization time, much less thanone per cent. The cost of the nd and ms orderings is also negligible.Table 5The In
uence of Maximum Domain Sizenzf ops cpumatrix j
maxj nd ms nd ms nd msbcsstk31 100 0.88 0.94 0.56 0.73 20.04 20.27200 0.88 0.90 0.57 0.62 17.38 17.49400 0.90 0.88 0.59 0.59 15.27 15.29800 0.90 0.88 0.61 0.60 13.48 13.621600 0.91 0.88 0.65 0.61 12.08 12.16bcsstk37 100 1.05 0.92 1.25 0.78 6.81 6.82200 1.07 0.95 1.30 0.85 5.61 5.59400 1.08 0.98 1.32 0.94 4.82 4.82800 1.12 1.05 1.44 1.12 4.05 4.041600 1.14 1.09 1.54 1.32 3.39 3.39bcsstk39 100 0.93 0.90 0.94 0.78 10.09 10.18200 0.93 0.89 0.93 0.77 7.88 7.92400 0.96 0.91 0.98 0.79 6.66 6.72800 0.99 0.92 1.02 0.81 5.56 5.571600 1.01 0.94 1.09 0.85 4.66 4.66The quality of the nd and ms orderings is somewhat dependent on the depth to whichthe nested dissection is taken. Table 5 presents some statistics for three of the matrices.We have varied the maximum domain size (domain weight for a compressed graph) thatde�nes when a subgraph will be split. Doubling the maximum domain size roughly meansreducing the number of levels in the separator tree by one. The results for bcsstk31 showthat nd improves as one reduces the maximum domain size but the ms ordering becomesworse. For bcsstk37 both orderings improve as the maximum domain size decreases, whilefor bcsstk39 the ordering quality is more 
at throughout the parameter range. Note thatthe bulk of the ordering times are spent �nding the separators at the highest levels. Ingeneral, the ordering quality of ms tends to be less sensitive to the number of levels ofseparators that are used to construct the multisector, although this is problem dependent.6 Concluding RemarksIn this paper, we have introduced multisection, a robust ordering method using the notionof multisectors. We have demonstrated that it produces consistently high quality orderingsfor graphs of di�erent characteristics. Its performance compares favorably with the popularminimum degree orderingmmd, and a state-of-the-art generalized nested dissection software



15metis.There are several directions for future work. Foremost is to �nd high qualitymultisectors at less cost than performing nested dissection. In the past [5] we have founda multisector by �rst ordering the graph using mmd, extracting a multisector from theelimination tree, smoothing this multisector, and then ordering using multisection, for atotal cost of between two and three times a single mmd ordering. In general, the qualityof these orderings lie somewhere between those of mmd and ms using nested dissectionto �nd the multisector. We have constructed decent multisectors using the generalizedpseudo-extents algorithm from [15]. Again, the ordering quality lies between that of mmdand ms using nested dissection to �nd the multisector, but �nding the multisector can takeconsiderable time, particularly when the number of domains is large. Each of these twomethods produce multisectors that are locally smooth, i.e., the boundary of each domain issmooth, but there is little or no global smoothness as is found in a multisector from nesteddissection. In other words, the multisector may not contain a good global bisector that canbe easily found by the mmd ordering.It appears that some type of global smoothness should be present, i.e., the multisectormust contain smooth portions at a higher level than the boundary of a single domain. Wefeel that a viable approach is to form the multisector using recursive multisection of thegraph, in the same spirit as the quadrisection and octasection from [17] and the k-waypartitioning from [23]. This has the potential to reduce the ordering time because fewerlevels of recursion are required, and possibly improve the resulting ordering, for often amultisector with a small number of subgraphs has better properties than the equivalentmultisector found by repeated application of bisection.Acknowledgements.We would like to thank Ed Rothberg and Bruce Hendrickson for much helpful correspon-dence during the course of this research.References[1] C. Ashcraft. Compressed graphs and the minimum degree algorithm. SIAM J. Sci. Comput.,16:1404{1411, 1995.[2] C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric inde�nite linear equationsolvers. Technical Report ISSTECH-95-029, Boeing Computer Services, 1995.[3] C. Ashcraft and J. W. H. Liu. A partition improvement algorithm for generalized nesteddissection. Technical Report BCSTECH-94-020, Boeing Computer Services, 1994.[4] C. Ashcraft and J. W. H. Liu. Using domain decompositions to �nd graph bisectors. TechnicalReport ISSTECH-95-024, Boeing Computer Services, 1995.[5] C. Ashcraft and J. W. H. Liu. Generalized nested dissection: some recent progress.Minisymposium presentation at the Fifth SIAM Conference on Applied Linear Algebra,Snowbird, Utah, June 18, 1994.[6] S. T. Barnard and H. D. Simon. A fast multilevel implementation of recursive spectral bisectionfor partitioning unstructured problems. In Proceedings of the Sixth SIAM Conference onParallel Processing for Scienti�c Computing, pages 711{718, 1993.[7] P. Berman and G. Schnitger. On the performance of the minimum degree ordering for Gaussianelimination. SIAM J. Matrix Analysis and Applic., 11:83{88, 1990.[8] M. V. Bhat, W. G. Habashi, J. W. H. Liu, V. N. Nguyen, and M. F. Peeters. A note on nesteddissection for rectangular grids. SIAM J. Matrix Analysis and Applic., 14:253{258, 1993.[9] T. Bui and C. Jones. A heuristic for reducing �ll-in in sparse matrix factorization. InProceedings of Sixth SIAM Conference on Parallel Processing, pages 445{452, 1993.[10] I.S. Du�, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. ACM Trans. on Math.Software, 15:1{14, 1989.
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