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1.0  Introduction

Safety critical systems such as flight controllers, nuclear reactors and radiation therapy
machines are reactive systems involving high levels of natural concurrency, real-time con-
straints, nondeterminism and communication. Such systems must operate reliably as lives,
the environment and property are at stake.

As more software is used to control safety critical systems, thus replacing standard
hardware safety interlocks, more accidents are likely to occur. For example, when the
designers of the Therac-25 radiation therapy machines eliminated standard hardware
safety mechanisms, bugs in the software and other engineering problems resulted in seven
accidents involving massive radiation overdoses and four deaths [19].

Reliability of life-critical applications is often translated into a probability of failure on
the order of  in a one hour mission (this is called ultrareliability). Quantification of
ultrareliability is infeasible using statistical testing methods. For example, life testing on
ten specimens of the software would take 114,155 years to achieve ultrareliability [5,20].

In response to the need for quality assurance, some regulatory agencies now recom-
mend (e.g. the European Space Agency) and some even require (e.g. interim standard UK
MoD 00-55) the use of formal methods, i.e. the use of applied mathematics and logic for
specification, design and verification [3]. North American agencies have not yet on the
whole required the use of formal methods to the same extent as their European counter-
parts. However, we can expect to see this change in the future. For example, the Atomic
Energy Control Board of Canada mandated the use of formal specifications and reviews of
the Darlington nuclear reactor [8,33]. 

Modern conceptions of formal methods do not claim unequivocal correctness, but are
concerned with a balanced life-cycle approach to assurance. Thus, the use of formal meth-
ods complement but do not replace standard software engineering practice including disci-
plined design, documentation, testing and review.

Formal methods help provide precise system specifications free of implementation
detail, as well as the ability to calculate with specifications. For example, having specified
a telephone directory, one might want to “challenge” the specification with a putative the-
orem that asserts that adding a phone number, and then deleting it returns the original
directory. Calculation, in turn, is only practical if there are tools available to the designer
to assist and automate the application of a formal method. Manual proofs of complex the-
orems or hand exploration of large state spaces is just not feasible. Without the appropriate
tools, it is doubtful that the full benefits of formal methods can be achieved.

TTM/RTTL is a comprehensive framework for the specification, development and veri-
fication of real-time reactive programs and devices found in embedded, safety critical, or
concurrent systems. The framework consists of a generic computational model called
timed transition models (TTMs), an abstract specification language called real-time tem-
poral logic (RTTL), and a deductive proof system [24,31]. The framework has heuristics,
which have been mechanized using constraint logic, for aiding the designer in the system-
atic development of infinite state systems, and decision procedures for automatic verifica-
tion of finite state systems (model-checking). A toolset called StateTime [27,28,29,30]
provides automated support for visual specification, simulation and verification in the
framework.

10 9–
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A major dichotomy in formal methods is between the use of proof methodologies (e.g.
[6,22,32]) and by contrast smart state-space exploration (e.g. using partial ordering,
model-checking and symbolic execution [4,7,11]). Usually, state space exploration is suit-
able for dealing with small finite state systems (up to a million states), while proof meth-
ods must be used on infinite state systems. In StateTime, theorem proving and model-
checking are only loosely combined. Much tighter integration has been proposed in other
tools [14,21,34]. 

While the combination of theorem proving and model-checking is an important compo-
nent of tool support, perhaps the most important need is the ability to structure a large sys-
tem into smaller parts, and the ability to abstract out the important detail, while ensuring
that whatever is computed about the abstraction can also be asserted of the original part.

1.1  Purpose and scope of this paper
Early work in formal methods produced proof systems or model-checking methods that

could only be applied to closed systems, i.e. systems in which the complete program
together with its environment is fully specified. Structured systems require the ability of
these proof methods to work on open systems, i.e. systems in which only part of the
behaviour is specified. 

In this paper, we extend the TTM/RTTL deductive and model-checking framework to
deal with open real-time reactive systems. The notions of a real-time reactive module,
module abstraction and module composition are defined, allowing for the structured
development of complex systems. Equivalence transformations are used to obtain abstract
systems, and a composition theorem is provided for deducing global properties from mod-
ule specifications. The StateTime tool is used for checking module correctness. 

Abstraction and composition are applied to an actual industrial example involving the
delay reactor trip (DRT) for a nuclear reactor involving the use of three independent
microprocessors that check sensor readings, with the final decision to shutdown based on a
majority vote. Timing, concurrency, communication and nondeterminism are all important
elements of the problem. While the StateTime tool can verify a single microprocessor con-
troller (under 100k states and edges), the complete 3-version closed system suffers from a
combinatorial explosion of states. However, the modular version of the problems can be
verified using abstraction and composition. Although the StateTime tool was originally
intended for closed systems, this paper shows how to use it in the open modular setting.
We summarize below some of the main concepts:

• (Real-Time Modules). A real-time reactive module has an interface, a body and a speci-
fication. The interface specifies input and output variables and their modes of interac-
tion with the environment. The body is specified as a timed transition model (TTM).
The specification is a formula in real-time temporal logic (RTTL) of the module behav-
iour.

• (Abstraction) A major technique for reducing system complexity is the notion of
abstracting out irrelevant behaviour while preserving the behaviour of interest. The
designer must be allowed to move between levels of abstraction of systems (e.g. via
equivalence preserving transformations) to allow comparison of two systems. Such
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flexibility would allow the designer to project out extraneous behaviour to obtain
abstract high level modules, or conversely, to refine high level modules into workable
implementations.

• (Composition) The properties of a complex system should be deducible from the speci-
fications of its component modules, without any further information about the internal
structure of these modules.
The modular approach proposed in this paper is based on the TTM/RTTL framework

[24,31] for closed systems. The notion of a real-time module is an extension of the reac-
tive modules defined in [22]. The notion of module abstraction and equivalence preserving
transformations is based on the work in [16,17].

The StateTime tool allows for the construction of TTMcharts (that are automatically
translated into TTMs) which are similar to statecharts [9]. This visual approach to specify-
ing systems is appealing to engineers, who may be resistant to the use of process algebras
or formal logics (e.g. Z, Hoare logic, weakest preconditions, VDM, B, and temporal
logic). The visual approach to specification was found useful in the design of the FAA
mandated Traffic Alert and Collision Avoidance System [18].

TTMcharts differ from statecharts. The (non-blocking) broadcast communication in
statecharts is replaced by (blocking) synchronization as in the Ada rendezvous or CSP
message passing. A richer class of timing properties can be directly expressed in TTM-
charts than in an available statechart tool called Statemate [10]. An event  can have a
closed time interval as a firing condition (e.g. ), or be spontaneous (e.g. ). A
spontaneous transition may occur at any moment or never. Statemate [10] allows for dead-
lock detection and reachability analysis. However, it does not allow for real-time temporal
logic model-checking as in StateTime. 

There are two important features of StateTime that make it useful in system design.
Firstly, the finite state verifier need not know the time bounds of specifications a priori .
For example, consider the property  which states that 2 to 4 ticks after every
p-state there must be a q-state. To check this property, the verifier is supplied with p and q
(but not the time bounds). The verifier then returns the minimal and maximal bounds for
which the property is valid. Thus if any changes are made to the system, the verification
can be resubmitted and the new bounds are obtained automatically. Further, if a property
fails to hold, a failing computation can be obtained to debug the design. Second, any
TTMchart can be executed or simulated, even if it is incomplete. The execution facility is
important for early sanity checks of the system under design.

Other compositional systems for real-time systems include the assertional and CSP
style proof system of [13], which now has tool support [12] for the assertional style. A
composition rule (stronger than the one in this paper) for dealing with assumption/guaran-
tee specifications is provided in the TLA formalism of [1]. A major difference between
TLA and the TTM/RTTL approach is that in TLA both programs and specifications are
written as formulas in temporal logic. The TTM/RTTL approach is by contrast a dual
approach — programs are specified visually as TTMs, and specifications are represented
in the RTTL logic. Time is specified in RTTL using special purpose labelled temporal
operators, whereas in TLA time is a variable.

τ
τ 3 7,[ ] τ 0 ∞,[ ]

p e 2 4,[ ]q⇒
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1.2  The design method
Abstraction and composition provide a means for structured design. We provide below

a summary of the main features of the design method, using the delay reactor trip (DRT) to
illustrate the main principles.

A computation is an infinite sequence of states describing a possible execution of a
module. The behaviour of a module  is completely described by the set of all its legal
computations. There are two ways to describe the set of module computations: either (a)
by the timed transition model  (associated with the module ), or (b) by the real-
time temporal logic specification  of the module. Both  and  fully specify
the legal computations of the module. The TTM description is a lower programming level
description, whereas the RTTL description is more abstract. Hence, the global require-
ments are normally specified in RTTL, while implementation is more conveniently per-
formed using TTMs.

In a single language framework, both programs and specifications are formulas in
logic. To prove that  is an abstraction of  (or alternatively  is a refinement of ) we
need only prove the validity of the temporal logic formula . This works if
module specifications such as  and  allow for arbitrary behaviour on the part of
the environment including “stuttering” steps that leave the state unchanged. In a dual lan-
guage framework such as TTM/RTTL, there is an additional freedom to deal with the
TTM  associated with the module. We may thus use intuitively appealing equiva-
lence transformations to obtain the more abstract TTM . 

The parallel composition  of two modules is represented in logic by the con-
junction . Composition is conjunction. In the dual language framework,
there is the additional flexibility of retaining the process oriented description ,
computing an abstract simpler module  equivalent to  thereby obtaining . The
module  may be model-checkable for its specification  (whereas  may be too
big too check). The flexibility to use both process oriented TTM descriptions and logic
based RTTL formulas, allows the designer to choose the most concise format according to
need. A dual framework retains the flexibility to deal with processes or their logical equiv-
alent, but must then provide rules to calculate with both.

The design method used on the DRT example is as follows:

• Model the plant (relay, pressure and power sensors, etc.) as a module whose body is a
TTMchart. 

• Model the controller. In the case of the DRT, the controller module consists of three
independent microprocessors (each modelled as a module), and the majority voting
algorithm (yet another module). A pseudocode outline of the proposed microprocessor
code is supplied by the manufacturer of the reactor from which the body of the micro-
processor modules as TTMcharts can be constructed. The plant is that part of the sys-
tem that is a given. The controller corresponds to that part of the system that must be
designed.

• The system under design ( ) is defined as .

• State the global requirements for  as an RTTL formula R.

m

T m( ) m
S m( ) T m( ) S m( )

m' m m m'
S m( ) S m'( )→

S m( ) S m'( )

T m( )
T m'( )

m1 m2||
S m1( ) S m2( )∧

m1 m2||
m' m1 m' m2||

m' S m'( ) m1

sud sud plant controller||=

sud
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• Verify that sud satisfies R. The reachability graph of  is too big for the StateTime
verifier to check. Hence, the various modules must be checked independently for com-
pliance to their module specifications. Where a module is too big to be model-checked,
the equivalence preserving transformations can be used to simplify the module. Finally,
the global requirement R must be shown to follow from the individual module specifi-
cations.

• The above approach is bottom-up as the modules of the controller were already known,
and the only question is whether the complete system satisfies its global requirements.
If the pseudocode had not been given, then we could do a top-down design starting with
the abstract version of the pseudocode for each microprocessor, and then using the
equivalence transformations to obtain the implemented code.
The rest of this paper is organized as follows. Section 2 summarizes the features of the

StateTime tool, TTMs and RTTL. Section 3 presents the closed system verification of the
DRT using a single controller. The closed system verification shows how the StateTime
tool is used, and provides a benchmark with which to compare the modular approach. Sec-
tion 4 defines the notion of a real-time reactive module. Sections 5 and 6 define the notions
of module abstraction and composition respectively. In Section 7, the 3-version DRT is
verified using the modular design method. Section 8 presents conclusions and a discussion
of future work.

2.0  The StateTime toolset, TTMcharts and RTTL

The StateTime toolset [27] consists of various tools for designing real-time safety criti-
cal systems. The Build tool is used to construct TTMcharts, and the Verify tool can model-
check these charts for various properties specified in real-time temporal logic. The
Develop tool [26] is used as a theorem prover for infinite state systems.

A typical chart built with the StateTime tool is shown in Fig. 1, where hierarchy (clus-
tered activities, default states and XOR-composition), concurrency (AND-composition),
synchronization (shared events), and timing are illustrated. The TTMchart can be mapped
into a TTM. A TTM consists of a set of variables (activity and data variables), an initial
condition, and a set of transitions corresponding to the chart events. The transitions of the
TTM corresponding to the chart of Fig. 1 are shown in Fig. 2. Transitions have an enabling
condition, transformation function and time bounds, on the basis of which the formal
semantics and timed reachability graph of the TTM can be defined [25].

What is called a “state” with respect to statecharts is called an activity in TTMcharts.
This is because the term state is used in TTMs to refer to a global snapshot at any instant
of all the activity and data variables of a chart. 

A computation of a TTMchart is an infinite sequence  of global states ,
starting in an initial state, with successor states computed by the transition of enabled
events. The tick transition occurs an infinite number of times in such a computation. The
tick transition always eventually fires even if there are no other eligible events. All other
transition time bounds are given relative to number of occurrences of the tick transition.
For example, each time a transition  becomes and remains enabled, it is pending
execution until two clock ticks have occurred. Thereafter, before the fifth clock tick, either

 must be taken or become disabled.

sud

s0s1s2…si… si

τ 2 4,[ ]

τ
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FIGURE 1. Example of a TTMchart m=m1||m2

Each activity variable
has its corresponding type
that it ranges over, e.g.
type(M1) = {m3,2}, and
type(M3) = {0,1}. 

The event d is declared a
shared event (indicated by
the symbol “#”), i.e. it will
synchronize with any other
shared event d in a parallel
activity (e.g. see m2 below). 

An upper time bound of
infinity is denoted by the
symbol “*”.

TTMcharts can be developed top down or bottom up. Working top down, the root activity m is AND-
decomposed into subactivities m1 and m2, i.e. m = m1 || m2 (see bottom picture). AND-composition is
indicated by dashed boxes . The root activity m is also called a TTMchart.

If we zoom in to the structured activity m1 of the chart m we get the picture directly below. The activity m1
is XOR-decomposed into the structured activity m3 and the leaf activity 2. An activity with internal structure is
followed by the “@” symbol. Leaf activities have no internal structure.

Y is an integer data variable. The event d in m1 has a guard (Y=4;(6=<Y,Y=<9)). When d is taken it does the
assignment Y:=Y-1, and leads to the default activity 0 of m3. The activity 0 is the default of m3, and m3 is the
default of m1 (default activities are in bold). In guards such as (Y=4;(6=<Y,Y=<9)), the comma stands for
conjunction and the semicolon for disjunction. 

The superactivity m3 is an abstraction of activities 0 and 1, describing the common property that event c
transforms them to activity 2. Conversely, this can be seen as a refinement: m3 is refined to consist of 0 and 1.

Each structured activity has its own activity variable. Thus M1, M2, and M3 are the activity variables of
activities m1, m2, m3 respectively. If execution is at activity 1 then it may do either b or c (nondeterminism).

 The shared event d is taken after having been in activities 3 and 2 simultaneously (with both guards
continuously true) for between two and four ticks of the clock. The lower bound is the maximum of the two
component events in m1 and m2 and the upper time bound is the minimum of the two components, i.e. d[2,4].
A TTMchart can be converted into a TTM. A TTM consists of a set of variables, an initial condition, and a set of
transitions. Each transition of the TTM corresponds to an event in the chart (or pair of synchronizing events). A
transition has an enabling condition, transformation function, and lower and upper time bounds as shown in the
table of Fig. 2.

 The component event d in 
m2 is declared shared, thus 
synchronizing with the 
corresponding component d in 
m1. 

The event e, which is local to 
m2, is taken after having been 
in activity 4 for between two 
and five ticks of the clock, 
unless it is preempted by event f 
which can be taken anytime (the 
upper time bound of event f is 
infinity). 
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State-formulas are boolean valued expressions in the activity and data variables. Given
activity variables such as M1, M2 and M3 and data variable Y of chart m (see Fig. 1) an
example of a state-formula is:

 (Eq. 1)

which asserts that the chart is in subactivity 1 of the clustered activity m3 and the data vari-
able Y is less than 7. The above formula is true in a state <M1:m3, M2:3, M3:1, Y:4>.

RTTL formulas are constructed from state-formulas together with special temporal
logic operators such as  (henceforth) and  (eventually). For example, the chart m (of
Fig. 1) can be checked automatically by the Verify tool for the real-time response prop-
erty:

. (Eq. 2)

The symbol  is the ordinary propositional conditional connective, whereas the sym-
bol  is the modal entails operator. Thus . The formula

 asserts that: if  is true in the initial state of a computation, then there is some
subsequent state in which  holds. The stronger formula  asserts that: if  is
true in any state of the computation, then eventually  must hold in some subsequent state.

Some examples of real-time temporal logic properties are given below:
[Real-time response ]: between three and five ticks after every p-state there

must be a q-state (i.e. q must be true before the 6-th tick of the clock).
[Exact time ]: is an abbreviation for , i.e.  is true in exactly 5 ticks. Simi-

larly,  is an abbreviation for , i.e.  must become true before the sixth
tick of the clock from now. The formula  asserts that if the initial state is a p-
state, then it must be followed by a later q-state before the next clock tick; there may be
many states between the p and q-states. The  operator is useful in modular specifica-
tions that must allow “stuttering” steps, i.e. steps taken by the environment which leave
the module state unchanged.

[Invariance ]: p entails henceforth q.
[Limited invariance ]:  holds true up to the t-th tick of the clock. Thereafter, ’s

truth value is unconstrained.
The reader is referred to [24,25,28] for a complete treatment of the TTM/RTTL frame-

work and the Verify tool.

FIGURE 2. TTM transitions corresponding to the events of chart m in Fig. 1

Transition: Enabling Condition:       Transformation Func.:    Lower:  Upper:   

-----------  ------                   ---------                ------  ------   

a            M1=m3,(M3=0)             [M3:1]                   0       infinity 

b            M1=m3,(M3=1)             [M3:0]                   0       infinity 

c            M1=m3                    [M1:2]                   0       infinity 

d#           M1=2,(Y=4;(6=<Y,Y=<9)),  [M1:m3,M3:0,Y:Y-1,M2:4]  2       4        

             M2=3,(Y>=2)                                                        

e            M2=4                     [M2:3]                   2       5        

f            M2=4                     [M2:5]                   0       infinity 

M1 m3 M3∧ 1= =( ) Y 7<( )∧

h e

M1( m3 M3∧ 1= = Y 7 )<∧ e 3 9,[ ] M2(⇒ 5 )=

c

i p eq⇒( )yh p eq )→(
p eq→ p

q p eq⇒( ) p
q

p e 3 5,[ ]q⇒

e5 p e 5 5,[ ] p p
e
l5 p e 0 5,[ ] p p

p e0q→

e0

p hq⇒
h
9t p p p
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3.0  A nuclear reactor shutdown system

In earlier reactors, the shutdown systems were constructed of analog devices. The ana-
log control had the virtue of being simple to understand but inflexible, unable to perform
system checks and not always reliable. It was felt that the situation could be improved by
installing computerized control with at least two independent shutdown systems, designed
by different teams, each shutdown system itself having 3-version control and majority vot-
ing logic. A semi-formal approach based on function tables was used to certify the soft-
ware of one such commercial system [33]. In the sequel we present a temporal logic
approach to verifying the time critical part of an shutdown system.

The delayed reactor trip (DRT) problem was first described by Lawford et. al. [16].
Lawford developed behaviour preserving transformations for TTMs with which he was
able to discover a flaw in the proposed design [15]. However, his theory cannot be auto-
mated as no set of transformations is complete for proving observation equivalence
between the actual implementation and its abstract specification. We will analyze the prob-
lem from a temporal logic perspective (RTTL), and will use completely automated verifi-
cation procedures (and the Verify tool) to check the correctness of the implementation
[29].

The delayed reactor trip for the nuclear reactors used to be implemented in hardware
using timers, comparators and logic gates as shown in Fig. 3. The new DRT system is

implemented on microprocessors. Digital control systems provide cost savings and flexi-
bility over the hardware implementation. However, the question now is whether the new
microprocessor based software controller satisfies the same specifications as the old hard-
ware implementation.

The hardware version of the controller implements the following informal require-
ments:

[R1] When the power and pressure of the reactor exceed acceptable
safety limits, the comparators which feed in to the first AND gate
cause Timer1 to start, which times out after 3 seconds and sends a
message to one of the inputs of the second AND gate indicating that
the time-out has occurred. If after this first time-out the power is
still greater than its safety limit, then the relay is tripped (opened),

FIGURE 3. Analog implementation of the delay relay trip system DRT (the “controller”).

Pressure

Power

Timer1 AND Timer2 RelayAND
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and Timer2 starts. The relay must remain open until Timer2 times
out which happens after 2 seconds. 

Requirement [R1] ensures that the relay is opened and remains open for two seconds
thus shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including danger to life.
Conversely, each time the reactor is improperly shut down, the utility operating the reactor
loses money because it must bring additional fossil fuel generating stations on line to meet
demand. The next informal requirement states:

[R2] If the power reaches an acceptable level then the relay should
be closed as soon as possible (thus allowing the reactor to operate
once more).

A final requirement that is implicit in the hardware specification, but must be explicitly
stated for the software version is:

[R3] The controller should never deadlock. 
For example, if after the power and pressure have exceeded their critical values, and the
system has waited 3 seconds to check the power level again, if the power is below its criti-
cal limit, then the system should reset and go back to monitoring its inputs (failure to do so
would result in a deadlock).

In the actual DRT, there are three identical systems running in parallel with the final
decision on when to shut down the reactor implemented on a majority rule basis. In this
section we analyze a closed system consisting of the plant (relay, power and pressure) and
a single microprocessor controller. In Sect. 7.0, we design and verify a majority voting
version consisting of three microprocessor controllers.

Fig. 7 provides a modified version of the pseudocode taken from the original require-
ments document1, which is to be implemented on a microprocessor with a cycle time of
100ms. The microprocessor samples the inputs (pressure and power) and passes through a
block of code every 0.1 seconds. It is assumed that the input signals have been properly fil-
tered and that sampling rate is sufficient to ensure adequate control. In the formal model,
one tick of the clock will represent 100ms.

3.1  Formal model of the DRT as a TTM
The Build tool can be used to construct the TTMchart of the complete system under

design sud (Fig. 4) defined as the parallel composition of the “plant” (relay, pressure and
power sensors) and the “controller” (computer with its supervisory program), i.e.

(Eq. 3)

The chart obs is an “observer” that watches the system without interfering with its opera-
tion. It is used in the sequel to help verify sud (Sect. 3.2.1). The relationship between the
variables of the plant and controller are shown in Fig. 5.

1. The pseudocode originally proposed in the actual requirements document was shown to be incorrect
using the TTM/RTTL framework [15,29].

sud plant control obs|| ||=
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The plant is itself composed of various charts, i.e.  (Fig. 6). The
plant chart specifies that the power and pressure sensor values are updated every two ticks
of the clock (thus capturing the assumption that signals are filtered).

The controller executes the pseudocode of Fig. 7, every one tick of the clock. In addi-
tion it is possible for the controller to fail (in which case ). The pseudocode makes
use of two integer counters Ta and Tb for the two timeouts of 30 and 20 clock ticks respec-

FIGURE 4. The TTM specification of the system under design (sud)

sud = plant||control||obs
The activity variable of  is  where . 
See Fig. 6 for further details of the plant. The internal structure of normal_full in 
the control chart is described in more detail in Fig. 8.

FIGURE 5. Data flow diagram for the plant, controller and observer 

control F1 type F1( ) normal_ full fail,{ }=

CONTROLLER PLANT

OBSERVER

W (Power)

P (Pressure)

C1 (Relay)

SUD CONTROLLER PLANT OBS=

(pseudocode) (reactor & relay)

F1,Ta,Tb D,R

plant relay output||=

F1 0=
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tively. The pseudocode is in turn translated into an equivalent TTM full_controller (Fig. 8)
[16].

3.2  Global System Requirements
The first requirement may be written in real-time temporal logic (RTTL) as:

R1: (Eq. 4)

where the precise definitions of  are given below (Eq. 5). The
above formula asserts that provided the controller never fails, whenever a critical high is

FIGURE 6. The DTR plant specification as a TTM

plant(C1;R,W,P,D)=relay(C1;R)||output(;D,P,W)
where R=relay position, C1 =command to move relay, D=activity variable of output, P=pressure 

and W=power.
The relay is opened (closed) immediately upon receiving the C1 command to do so. When D=0, the 

last sensor updates have just been made and there are two ticks to the next change. 
type(R)={open, closed}, type(D)={0,update}, and type(C1)=type(P)=type(W) ={0,1}

Inner Structure of update@ — pressure P and power W are updated once every two ticks

h fail1¬ bothHi e30 powerHi e 30 32,[ ]h920 R open=( )⇒∧[ ]→

fail1 bothHi powerHi, ,
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sensed, and 30 clock ticks later the power is still high, then the relay is opened within 32
ticks from the critical state and remains open for 20 ticks.

How should the predicates  and  be defined? The intuitively obvious
definition  is not valid because the controller cannot respond to
instantaneous changes in the sensor values. The clause  must therefore be a con-
junct of bothHi, thus indicating that the antecedent is measured from a state from which
the power and pressure remain constant for two clock ticks (see Fig. 6). Alternatively, we
could have written  to indicate that the pressure and power must
remain high for at least two clock ticks.

The controller cannot respond to a critical high if it is in the middle of counting its
timeouts — thus the controller initialization clause  is a conjunct of bothHi in
the antecedent. 

The correct definitions for (Eq. 4) are thus given by:

(Eq. 5)

The stateformula  must satisfy the requirement

[R3]: (Eq. 6)

[R3] is required so as to ensure that the controller does not deadlock under normal opera-
tion. The second requirement is specified as: 

FIGURE 7. Pseudocode for the computer to control the DRT

Every one tick Do:
If W=1 /* power is high */ then CodeA Else CodeB

CodeA: CodeB:

If counter Ta is reset then

If counter Tb is reset then
If P=1 {pressure is high} then

increment Ta {Transition : µ1}
EndIf

Else
If counter Tb has timed out then

reset Tb {Transition : γ}
Else

increment Tb {Transition:  µ2}
open Relay

Endif
Endif

Else
If counter Ta has timed out then

open Relay {Transition: α}
reset Ta
increment Tb

Else
increment Ta {Transition : µ1}

Endif

If counter Ta is reset then
If counter Tb is reset then

close Relay {Transition : ß}
Else

If counter Tb has timed out then
reset Tb {Transition : p2}

Else
increment Tb {Transition : µ2}
open Relay

Endif
Endif

Else
If counter Ta has timed out then

reset Ta {Transition : p1}
Else

increment Ta {Transition : µ1}
Endif

bothHi powerHi
bothHiy P 1= W 1=∧( )

D 0=( )

h
92 P 1= W 1=∧( )

init control( )

init control( )y F1 normal_ full= Ta 0 Tb 0=∧=∧( )

fail1y F1 fail=( )

bothHiyinit control( ) R closed= D∧ 0= P(∧ ∧ 1= W 1 )=∧
PowerHiy D 0= W 1=∧( )

init control( )

h f¬ ail1 init control( )¬ e
l52init control( )⇒[ ]→
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[R2]:  (Eq. 7)

where .

3.2.1  Checking the correctness of the specifications.
Once the Build tool has been used to construct the complete model, the requirements

must be proven correct. The Verify tool is used for this purpose. The Verify tool can
model-check temporal logic properties such as invariance ( ) and real time
response ( ). An important feature of the verifier is that the lower and upper
time bounds l and u in the real-time response property need not be specified — the tool
will figure out the minimal and maximal bounds respectively for a specification pair

. This ability of the verifier to return the bound values is useful as it saves the speci-
fier from having to know in advance what the timing constraints are. For example, the
RTTL property of sud given by

(Eq. 8)

can be submitted to the verifier (without having to specify any bounds). The verifier then
returns the bounds [0,1]. We then know by temporal logic reasoning that (Eq. 8) is also
true because its bounds of [0,2] are less stringent, and in fact the more stringent conse-
quent  can be used instead.

FIGURE 8. Result of transforming the controller pseudocode into a TTM

Provided the controller is in its normal operating mode ( ) one of the self-looping 
events executes precisely every one tick of the clock.

F1 normal_ full=

h f¬ ail 1 powerLo e
l2 R closed=( )⇒[ ]→

powerLoy D 0= W 0=∧( ) init control( )∧

p1 hp2⇒
p1 e l u,[ ] p2⇒

p1 p2,

init control( ) D 0= W 0=∧ ∧( ) e
l2 R closed F1 fail=∨=( )→

e
l1 R closed F1 fail=∨=( )
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The temporal logic theorem  entails
that (Eq. 8) implies the validity of (Eq. 7) — hence requirement [R2] is valid. Require-
ment [R3] can be checked in a similar fashion.

The verifier can check a small but important set of RTTL properties, but requirement
[R1] in (Eq. 4) is not one them. However, an observer can be constructed that will detect
all behaviour that is a counterexample to the property to be verified. The chart obs (Fig. 9)

moves to a “bad” state when it observes violations of the property. The validity of [R1] can
then be demonstrated by model-checking the validity of . The observer merely
watches the system without interfering with its operation (hence its events have no assign-
ments to system variables in its transformation functions). The use of an observer
increases the size of the reachability graph. However, any model checking algorithm for
arbitrary formulas will also add additional complexity to the verification. 

3.2.2  Incremental specifications and putative challenges
The approach of (a) building a model (the TTMchart), (b) stating the global require-

ments (in RTTL), and then (c) verifying that the model satisfies its requirements (i.e. for-
mal correctness), rarely proceeds in a smooth straight line. Usually, the initial modelling
attempts are either wrong or fail to capture pertinent behaviour. Once an appropriate

FIGURE 9. Observer to check requirement 1

The activity variable of the observer is V, where type(V)={0,1,2,4,5,bad}. When V=bad, requirement 
1 is false, i.e. (Eq. 4) is false. The events v1 and v10 detect when the antecedents bothHi and PowerHi 
of (Eq. 4) are true. At V=5, the observer waits 1 tick before resetting (via event v9) as powerHi must 
occur between the 30th and 31st tick of the clock. The events v3 and v4 trigger if the relay fails to 
open within two ticks or fails to stay open for 20 ticks of the clock.

p1 e
l2 p2 p0∨( )⇒[ ] h p0¬ p1 e

l2 p2⇒( )→[ ]→

h V bad≠( )
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model is obtained, the initially stated requirements can either be wrong or incomplete. In
fact, there is no formal method that can close the gap between the model and the actual
system. At best, we can validate the model to the best of our abilities. The StateTime tool
does provide important methods for validating the model, including simulation, challeng-
ing the system with putative theorems, and incremental specification.

RTTL specifications are incremental. If after developing a set of requirements, we sud-
denly realize that the resulting specification is incomplete, the situation can be rectified by
adding the missing property to the requirements as an additional conjunct, without having
to regenerate the reachability graph. For example, the three requirements for sud presented
above are incomplete. An additional property that must be satisfied is: “the relay should
not open unnecessarily” — which is given by the unless (or “waiting-for”) property

[R4]: (Eq. 9)

The above property was submitted to the verifier and found to be valid. Such unless prop-
erty can be checked directly by the verifier without the need for an observer.

A useful validation method involves posing a “challenge” to the system with putative
theorems. Thus, if the model is correct, then such and such a property should hold. The
fact that the relay should not open unnecessarily (Eq. 9) is one such putative theorem. In
the beginning phases, most putative theorems will fail to be proven. The verifier then
returns information, such as the failing trajectory, which is useful for debugging and cor-
recting the problem.

Another important method of validation, is to use the simulation capability of the Build
tool. Simulation was in fact performed regularly as the model of the DRT was developed,
and played an important part in developing the model. For example, the plant update func-
tion was incorrectly designed in the first approximation so that only one of (but not both)
power and pressure could change every two clock ticks. This modelling error was quickly
revealed in early simulations.

4.0  Modules

In the previous section, the complete system under design was checked for correctness.
As the systems get larger, so the problem of combinatorial explosion of states arises. For
example, when a system of three independent controllers with majority voting control is
designed, then the reachability graph is too large for the verifier to handle. It is in such sit-
uations that a modular approach together with abstraction and composition are vital.

In a modular approach, a system is composed of modules, and the global properties of
the system are checked by verifying each module, without having to consider the complete
system all at once. Such an approach usually reduces the size of the reachability graphs
that must be generated, and ameliorates the problem of combinatorial explosion of states. 

A module m is defined by its interface , body  and specification :

1.  The interface  identifies the variables  that are shared between mod-
ule m and other modules. The types and modes of these variables must be identified.
The mode of a variable includes whether it can be written to (out) or only read (in) by
the module. If the module m has a declaration out , then no other module in the envi-

R closed= W 0=∧( ) R closed=( )W W 1= P 1=∧( )⇒

I m( ) B m( ) S m( )

I m( ) y y1 … yk, ,=

y1
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ronment of m may have a writing reference to . If two (or more) modules each write
to y, then they must each have the declaration external out , thus indicating that the
external environment may also change . 

2. The body  is a program that implements the module specifications. The program
statements may refer only to variables declared local to the body, or to variables in the
interface. Usually, the program is represented as a TTMchart. The initial condition of
the module is written , and is the conjunction of all the initial conditions
declared on both local and interface variables.

3. The specification  of the module is an RTTL formula whose only free variables are
in the interface. The specification specifies the expected behavior of the module. It is
ultimately intended that the specification be modularly-valid (the precise definition is
given in Sect. 4.1), i.e. hold true no matter what the behaviour of the external environ-
ment is.

Let , where  are the external in or external out vari-
ables (all the variables whose value may be interfered with by the environment), and
where  are the remainder (the out variables). We often refer to the module as

, where the semicolon divides the interfering variables from those
that cannot be interfered with from the environment.

The reactor trip relay module relay is shown in Fig. 13. When the command to open the
relay ( ) comes from the environment, then the relay is immediately opened
( ) thus shutting down the reactor. The specification of the relay (Eq. 10) does
not contain any immediate operators such as the next operator  in the consequent;
instead, the operator  is used. This is because the computations of a module may have
stuttering steps that leave the state unchanged. Specifications must therefore allow such
stuttering steps.

The following definition ensures that two modules communicate with each other in a
way allowed by their respective interface declarations:

Definition 1: Two modules are interface compatible, if on their
shared variables they agree on type, their initial conditions are not
inconsistent, and if one of the module declarations specifies an out
mode, then the other specifies an external mode.

4.1  The computations of a module
Given a chart M, its corresponding TTM is denoted T(M). The computations of T(M)

are infinite sequences of states such as

, which we will also write as 

where  are taken from the transition set of the TTM. Each computation must
satisfy five requirements that define the legal behaviour of a TTM [24]. For example, the
ticking requirement specifies that there must be an infinite number of tick transitions in
any computation (i.e. time always advances). The set of all these computations defines the
timed behaviour of the TTM.

In order to define the computations of a module m, we may add to the transition set of a
chart M associated with the module body, an environmental transition , that pledges to

y1
y1

y1

B m( )

init m( )

S m( )

y y1 … y j y j 1+ … yk, , , , ,= y1 … y j, ,

y j 1+ …yk,
m y1 … y j y j 1+ …yk,;, ,( )

C 1=
R open=

n

e0

s0cs1cs2cs3…a b tick so a[ , ] s1 b,[ ] s2 tick,[ ]…

a b … tick, , ,

τE
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maintain the value of all local and non-external variables of the module. The transition 
is arbitrarily interleaved with the other transitions of the body chart, and may make arbi-
trary changes to any of the external variables. For example, a computation of the module m
might look like: .

A transition is a 4-tuple consisting of an enabling condition, transformation function,
and lower and upper time bounds. In general the transition  is a nondeterministic func-
tion on the state-space , i.e. , where  is the transformation function of
the environment transition. For example, in the case of the module relay (Fig. 13), the suc-
cessor state to  can (nondeterministically) have the module interface variable C set to
either zero or one.

Although the Build tool only allows for deterministic transition functions in assignment
format, nevertheless different transitions are executed nondeterministically. Hence, the
environment module of relay is given by the chart:

The environmental chart has two spontaneous transitions e1 and e2 that may change the
value of C at any instant. In addition, the environment may at any time execute the stutter-
ing transition null. The stuttering transition pledges to leave unchanged all local and exter-

FIGURE 10. Relay module  for the DRT

module relay
INTERFACE
external in C: {0,1} where initially  /* when the input command C=1 is given, the relay 

is opened, and when C=0 the relay is closed */
out R: {open, closed} where initially  /* R is the relay actvity variable that is exported as 

output */
BODY

SPECIFICATION

:  for any time constants . (Eq. 10)

/* Informal description: The operator  is needed in the consequent. Although the relay responds to a 
stimulus (i.e. a change in C) before the next clock tick, the reponse is not immediate but may occur a few 
states later (as actions of the environment are interleaved with actions of the relay). */
end module relay.

relay C R;( )

C 0=( )

R closed=( )

S relay C R;( )( )
h
9t1

C 1=( ) e0h9t1
R open=( )⇒

h
9t2

C 0=( ) e0h9t2
R closed=( )⇒

t1 t2 1≥,

e0

τE

s0 a,[ ] s1 τE,[ ] s2 b,[ ] s3 τE,[ ] s4 tick,[ ] s5 τE,[ ]…

τE
Q hτE

: Q 2Q→ hτE

τE
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nal module variables, but may change any variables in the environment. Thus, when a
stuttering transition occurs, in effect the module state is left unchanged. The three transi-
tions e1, e2 and null capture the nondeterministic behaviour of the original environmental
transition . 

Definition 2: Let a module m have body chart B(m) and environ-
mental chart E(m). Then the TTM  associated with module m
is given by .

Thus, the open module m, may be replaced by the closed system T(m) taken by com-
posing the body chart with its environment. All the tools developed for closed systems
may now be applied to the analysis of T(m) in the standard fashion.

The body chart B(m) may be replaced by any other chart (program) provided that the
module with the new body has the same timed behaviour as the old with respect to the
interface variables. The definition of modules given in this section allows for a separation
of the concerns between the module user (i.e. systems analyst) and its implementor (i.e.
the programmer).

• The module user specifies the module interface and specification — the module body
can be ignored at the systems level.

• The implementor refines the module by programming a body that satisfies the module
interface and specification. The body can be changed at any time provided it continues
to satisfy the interface specification, without impacting the systems level.

5.0  Module abstractions

Abstraction is the notion of projecting out irrelevant behaviour while preserving the
behaviour of interest, thereby reducing system complexity. The ability to move between
levels of abstraction allows the designer to obtain abstract high level simple TTMs, or
conversely, to refine high level TTMs into workable implementations. 

In this section, we apply the algebraic equivalence of TTMs developed in [16,17], and
corresponding behaviour preserving transformations to define a notion of module abstrac-
tion. Module abstraction is then used to reduce the combinatorial explosion of states in the
verification of the DRT example by an order of magnitude.

A transformation is a rule that changes a TTM  into a new TTM  without alter-
ing the timed behaviour of the TTM over a set of variables of interest . As an example,
consider the transformation rule TA/TD — Transition Addition/ Transition Deletion —
that transforms TTM  into module  (Fig. 11).

The initial condition of  prevents the event  from ever becoming enabled. If event
 has the same time bounds in both TTMs, then both have the same timed behaviour over

the variables of interest . We could therefore delete event  to transform  into 
without changing the set of legal computations as projected onto y and z. Similarly, we can
reverse the transformation by adding  to .

The TTM  does not contain any reference to the local variable  occurring in the
more complex TTM , and it has a simpler structure. We may think of the simpler TTM

 as an abstraction of  (similarly  is a refinement of ). In general, we may

τE

T m( )
T B m( ) E m( )||( )

M1 M2
w

M1 M2

M1 b
a

y z, b M1 M2

b M2

M2 r
M1

M2 M1 M1 M2
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replace a complex system  with an abstraction  provided they are observationally
equivalent on the variables of interest.

5.1  Observational congruence of TTMs
The above discussion provides an intuitive understanding of transformations that pre-

serves the behaviour of interest. We refer the reader to [16] for a rigorous definition of
what it means for two TTMs to be observationally equivalent in the above sense. A notion
of equivalence is needed that distinguishes between deadlocking and non-deadlocking
systems, and allows two equivalent TTMs to synchronize on tick transitions. 

The notion of observationally congruent TTMs  and  on a set of variables of
interests  (written ) is developed based on the process algebraic notion of
the largest weak bisimulation relation [23]. However, the standard algebraic approach
focuses on concurrent programs of uninterpreted actions. The definition of the weak
bisimulation therefore had to be extended to deal with the data variables, states, timing and
transitions of TTMs. Many of the TTM transformations have no direct analog in process
algebras.

A transformation rule such as TA/TD is sound iff it transforms a given TTM into
another TTM that is observationally congruent to the first. All the rules of transformation
in [16] are sound. The rules are visually intuitive and can be safely used by a software
engineer, without the need to understand process algebras and their bisimulations.

There is no complete set of transformations (such as TA/TD) for transforming systems
in the general case. However, this does not prevent the theory from being useful in many
practical settings. Where the reachability graph of the TTM is finite, the results of [17]
provide an efficient algorithm for checking observational congruence of two TTMS.

5.2  Observational congruence of modules
The results of Sect. 5.1 may be applied to modules in a straightforward way. Given two

modules  and  (with different bodies but the same interface specification), we
can compute if  is observationally congruent to  as follows:

• For each of the modules, compute the associated timed transition models  and
 as discussed in Sect. 4.1 and (Dfn. 2), by arbitrarily interleaving the respective

environmental transitions. 

FIGURE 11. Observational congruence of two TTMs

TTM  is observationally congruent to TTM , i.e. . 
Data variables are y, z, r, and x is an activity variable, i.e. type(x)={0,1,2}.

M1 M2 M1 M2≈( )/ y z,( )
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b: z 2 r:r 2–[ ]→=

a: z 0 y: y+1[ ]→= a: z 0 y: y+1[ ]→=

initially:  z 0 x 0=∧=( ) initially:  z 0 x 0=∧=( )
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• The variables of interest are the interface variables . Thus we may define 
iff . Since it is clear that the variables of interest are the interface vari-
ables, we may write more simply .
Let module  be an abstraction of module , i.e. . Since the two modules

are observationally equivalent, they have the same set of reduced computations modulo
stuttering. The reduced computations can be obtained from the module computations

 by replacing each state  by its projection onto the module interface variables . 
Any quantifier-free temporal logic formula p with no immediate operators is robust

with respect to stuttering [22 page 261]. Hence, if the free variables of  are in , then we
may model-check the abstraction  for , with the assurance that  will also hold for .
The module specifications generally satisfy the robustness to stuttering requirement, as
they must be valid in the face of arbitrary moves on the part of the environment.

5.3  Abstraction simplifies the DRT controller verification
Applying the equivalence rules (such as TA/TD) to the DRT controller of Fig. 8 to

project out the two counters , produces the more abstract controller of Fig. 12 (see

[16] for the details). The resulting controller is much simpler than the original, and can
serve as a high level specification of the controller. The fact that Fig. 12 is observationally
congruent to Fig. 8 is used by [16] as a proof that the pseudocode of Fig. 7 is correct.

FIGURE 12. Abstraction of the DRT controller in Fig. 8

The module  has initial condition , 
where  are activity variables with , and 

y m y( ) m' y( )≈
T m( ) T m'( )≈( )/y

m m'≈
m' m m' y( ) m y( )≈

s0s1s2… si y

p y
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Ta Tb,

control W P F1 N1 C1, ,;,( ) init control( )y F1 normal= N1 0=∧( )
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However, until the controller is verified in the context of the plant (Fig. 6), we as yet
have no guarantee of correctness. For example, if the pressure (P) and power (W) vary
arbitrarily, then it is possible for the controller to remain at  (see
Fig. 12) indefinitely (“livelock”). Since, in fact, the sensor variables remain stable for two
clock ticks, no livelock occurs, and consequently requirement 3 (Eq. 6) is valid. Further-
more, the 3-version controller is not easily specified by an equivalent TTM. The satisfac-
tion of the temporal logic requirements is therefore the key to system correctness. 

The abstract controller helps reduce the combinatorial explosion of states when per-
forming the verification of the requirements. Instead of constructing the reachability graph
for  (Fig. 4 and Fig. 8) we may instead replace  in sud
with its observationally congruent abstraction Fig. 12, taking care to let the observer 
watch for the new initial condition  in Fig. 12. The resulting simpler TTM

 may now be checked for the three requirements of Sect. 3.2. As can be seen from
Table 1,  has a significantly smaller reachability graph than , and the requirements
can be checked in time an order of magnitude smaller than the full system.

Abstraction on its own will not solve the problem of verifying larger systems. For
example, when the controlling system is changed to a 3-version system with majority vot-
ing, then the computation of the reachability graph is still beyond the power of the verifier,
even when the abstract version of each microprocessor is used. To overcome the problem
of combinatorial explosion of states, compositional reasoning must be used.

6.0  Compositional Reasoning

In Sect. 4.1 we defined the timed behaviour of a module by introducing the notion of an
external environment transition that is allowed to make arbitrary changes to the interface
variables. The related notion of “modular-validity” is the corresponding notion for module
specifications:

Definition 3: An RTTL formula  is modularly-valid for a given
module  iff  for every module  that is interface
compatible with . (The notation  denotes that p is modu-
larly valid for module m). The conjunction of all modularly-valid
properties of module m is denoted by A(m).

Modular validity ensures that  satisfies  independently of the behaviour of its environ-
ment, provided that its environment respects the constraints imposed by the interface spec-
ification. Usually, the formula  will refer only to the variables in the interface
specification, and not to any of the local variables. An immediate consequence of (Dfn. 3)
is the following:

(Theorem 1) [Composition Theorem] Let  be any two
interface compatible modules. Then:

TABLE 1. Comparison of model-checking times for the DRT and its abstraction

Type of system under design
Size of graph 

(states + events)
Time to generate graph and check 

three requirements on a Sun Sparc 10

Full system . 73,403 116 minutes

System with abstract controller . 16,155 16 minutes

F1 normal= N1 2=∧( )

sud plant control obs|| ||= control
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init control( )
sud'

sud' sud
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p
m m m'||[ ]mp m'
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(a) , and
(b) 

Proof: (a) By assumption we have  and . Since  are interface
compatible, we have by (Dfn. 3) that  and  both hold. Hence, by
propositional temporal logic the formula in (a) must also hold. (b) By assumption and (a)
we have that  holds. Since , it then follows by proposi-
tional temporal logic that  must hold.

6.1  Modular model-checking
The definition of modular-validity appears to require that we should somehow consider

the infinitely many interface compatible modules. However, the notion of the timed transi-
tion model T(m) associated with module m (Dfn. 2) presents a more direct approach, as it
includes all possible interleavings with the environment. To check the modular-validity of

 it suffices to:

• Use the Build tool to construct T(m).

• Then, use the Verify tool to check  (using standard closed system theory).
The behaviour of a module  is completely described by a particular set of computa-

tions. These computations can be interchangeably described as a timed transition model
T(m) or by the conjunction of all modularly-valid temporal logic formulas A(m). In fact,
A(m) is just the set of all RTTL formulas that satisfy T(m). In principal, there is a proce-
dure to deduce from T(m), the set of formulas A(m) [24]. However, A(m) is usually quite
large, and one would never want to expand its definition in practice. Part (c) of the follow-
ing theorem allows for the conversion of modular-validities into ordinary validities condi-
tional on A(m):

(Theorem 2) 
(a) , and
(b)  for compatible modules .
(c)  for any RTTL property p.

Proof: (a) and (c) follow directly from the definition of A(m). (b) follows from (a) and
the Composition Theorem.

6.2  Structured design of modules
A top down method for developing real-time systems may now be followed. To develop

a program  satisfying :

1. decompose m into two compatible modules  and  so that
.

2. Then develop bodies  and  that satisfy their specifications 
and  respectively.

3. The final modules are then  and . The
required program is , which is guaranteed to satisfy p.
A team assigned to the implementation of a module  is given its interface  and

its temporal logic specification . The job of the team is then to find a suitable body
. Many different bodies may satisfy the same specification. One possibility for the

m1mp1( ) m2mp2( )∧[ ] m1 m2||[ ]m p1 p2∧( )→
mp1 p2∧ p→( ) m1mp1( ) m2mp2( )∧∧[ ] m1 m2||[ ]mp→

m1mp1 m2mp2 m1 m2,
m1 m2|| mp1 m1 m2|| mp2

m1 m2||[ ]m p1 p2∧( ) p1 p2∧( ) p→
m1 m2||[ ]mp

mmp

T m( )mp

m

mmA m( )
m1 m2||[ ]mA m1( ) A m2( )∧ m1 m2,
mmp[ ] mA m( ) p→[ ]≡

m p

I m1( ) S m1( ),[ ] I m2( ) S m2( ),[ ]
S m1( ) S m2( )∧ p→

B m1( ) B m2( ) I m1( ) S m1( ),[ ]
I m2( ) S m2( ),[ ]

I m1( ) B m1( ) S, m1( ),[ ] I m2( ) B m2( ) S, m2( ),[ ]
m m1 m2||=

mi I mi( )
S mi( )

B mi( )
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team, is that they may start with a high-level abstract version of the body, and then use the
equivalence preserving transformations to refine the body into real code.

6.3  Conditional Specifications
Let  and  be any two compatible modules that are to be composed together (thus
 may be thought of as the environment within which  operates and vice versa). It is

possible for module  to have a modularly-valid specification of the form 
where  is an RTTL formula. This specification asserts that if the environment of 
behaves according to , then  satisfies property . Such a specification for , when
we know that  is guaranteed by its environment, does not contradict our definition
that the specification should hold independently of what the environment does. The prop-
erty  indeed holds for all environments of , even those that do not maintain
the behaviour of  — it is the validity of  that depends on the behaviour of the environ-
ment and not the validity of  which is always guaranteed.

A conditional specification of the form  for module  is also known as an
assumption/guarantee property, i.e. if the environment of  can be assumed to behave
like , then  is guaranteed to behave according to .

(Theorem 3) Let  and  be two compatible mod-
ules. Then .

Proof:

<(Th. 2) part (c) >

< propositional temporal logic >

< (Th. 2) part (b) and propositional temporal logic>
          Q.E.D.

The above theorem will be useful in the sequel. Consider a compatible system
. It might not be possible to prove the modular-validity of property 

for module , but the weaker conditional property  may well hold. However,
the formula  may be quite long and complex, thus slowing down the model-check-
ing. 

An alternative approach would be to verify  using model-checking
(Sect. 6.1), and then use (Th. 3) to obtain  as required. We may then con-
clude that  by the Composition Theorem. Model-checking the composition of two
modules  is significantly better than having to check the complete system sud con-
sisting of three modules, especially if  is complex.

The Composition Theorem is not strong enough to deal with circularities in module
specifications in which each module needs the behaviour of the other as an assumption to
guarantee its behaviour. One approach is to introduce a stronger assumption/guarantee
operator than implication [1], but then the new operator is outside the standard logic con-
nectives. The stronger operator is usually necessary only when two modules have strong
dependencies and linkages with each other. In such cases, we have found it easier to retain

m1 m2
m2 m1

m1 A m2( ) p→
p m1

m2 m1 p m1
A m2( )

A m2( ) p→ m1
m2 p

A m2( ) p→
A m2( ) p→ m1

m1
A m2( ) m1 p

m1 m2
m1mA m2( ) p→[ ] m1 m2||[ ]mp≡

m1mA m2( ) p→[ ]
≡

mA m1( ) A m2( ) p→[ ]→
≡

mA m1( ) A m2( )∧ p→
≡

m1 m2||[ ]mp

sud m1 m2 m3|| ||= p
m1 A m2( ) p→
A m2( )

m1 m2||[ ]mp
m1mA m2( ) p→

sudmp
m1 m2||

m3



Abstraction and Composition of Discrete Real-Time Systems October 2, 1995 26

the standard implication operator, and to verify the two modules taken together, as
explained in the previous paragraph.

6.4  A small example illustrating the Composition Theorem
The module  (Fig. 13) is part of the DRT controller which will

be used in the sequel. The controller consists of three independent microprocessors, each
one with independent sensors of reactor power and pressure. Each microprocessor control-
ler  signals through a variable  whether to open the relay (which shuts down the
reactor), or to close the relay (allowing the reactor to be started up again). The in variables
of majorVote are thus , and the out variable is , which is set to one when the
majority of the microprocessor vote for opening the relay (i.e. when ).
The specification  can be shown to be modularly-valid by model-checking
(Sect. 6.1).

If we compose the relay module (Fig. 13) and the voting module (Fig. 13), we may use
the modularly-valid module specifications (Eq. 10) and (Eq. 11), and the Composition
Theorem to obtain the validity of

FIGURE 13. Module for majority voting logic

module majorVote
with bitType={0,1} /* 1 stands for a vote to open the relay, and 0 to 

close the relay. */
INTERFACE

external in : bitType;
out : bitType where initially  /* Only majorVote can write to . */

BODY
local : bitType where initially /* activity variable */.

SPECIFICATION

S(majorVote): (EQ 11)

for any integer time constants .
/*Informal description

The first line of the specification states that once the majority of microprocessor controllers vote to 
open the relay, and this vote remains in place for time , then within one tick of the clock, the 
output variable  will be set so as to command the relay to open, and will remain set for  ticks 
of the clock. The second line states a similar specification for closing the relay. */

end module

majorVote C1 C2 C3 C;, ,( )

controli Ci

C1 C2 C3, , C
C1 C2 C3 2≥+ +

S majorVote( )

C1 C2 C3, ,
C C 0=( ) C

v V 0=( )

h
9t1

C1 C2 C3 2≥+ +( ) e
l1 h9t1

C 1=( )⇒

h∧
9t2

C1 C2 C3 1≤+ +( ) e
l1 h9t2

C 0=( )⇒

t1 t2 2≥,

t1
C t1
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 (Eq. 12)

where p is defined by:

p: (Eq. 13)

The proof of (Eq. 12) is as follows:

1. by modular-validity of (Eq. 11)

2. by modular-validity of (Eq. 10)

3. (2) and RTTL 

4. (3) and RTTL

5. RTTL on (1), (4) and the Com-

position Theorem

The temporal logic reasoning is performed in the RTTL proof system of [24]. For exam-
ple, the RTTL theorem used in step (3) is: . 

The above proof can in fact be performed automatically because it uses the proposi-
tional fragment of RTTL [2]. A semi-automated deduction system will soon be available
for quantified temporal logic [21].

The Composition Theorem provides a powerful technique for beating combinatorial
explosion of states. To verify a global requirement p of a system composed of modules, it
is not necessary to deal with the complete system (e.g. by generating its global reachabil-
ity graph). Instead, we need only verify the specification of each of its components one at
a time, provided we can show that the component specifications entail the global require-
ment.

7.0  Majority voting control of the DRT

The actual controller of the DRT involves the use of three independent microproces-
sors, with the final decision to shutdown based on majority voting. The single processor
controller (Fig. 4) must be replaced by the new 3-version controller shown in Fig. 14 (the
plant remains the same as before).

The new controller itself consists of various modules. The module majorVote (Fig. 13)
was discussed in the previous section. The module  (and by analogy

) is shown in Fig. 15. The abstract version of the controller is used, thus
simplifying the design, because the congruence transformations may be used to refine the
abstract controller into pseudocode (Sect. 5.3).

The global requirements (Sect. 3.2) for the new system under design involving the
majority voting logic is given by:

R: (Eq. 16)

majorVote relay||[ ]mp

h
920 C1 C2 C3 2≥+ +( ) e

l1 h920 R open=( )⇒[ ]

h
92 C1 C2 C3 1≤+ +( ) e

l1 R closed=( )⇒[ ]∧

majorVotemh
920 C1 C2 C3 2≥+ +( ) e

l1 h920
C 1=( )⇒

relaymh
920 C 1=( ) e0h920

R open=( )⇒

e
l1 h920 C 1=( ) e

l1 e0
h
920

R open=( )⇒

e
l1 h920 C 1=( ) e

l1 h920 R open=( )⇒

majorVote relay||[ ]mh
920 C1 C2 C3 2≥+ +( ) e

l1 h920
R open=( )⇒

p q⇒( ) e
l1 p e

l1 q⇒( )→

control1
control2 control3,

i∀ j: 1 2 3, ,{ }

i j≠( ) h f¬ aili h f¬ ail j∧ ∧ →
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where i and j range over the three controllers, i.e. . Control
failure is  and controller initialization is defined as:

where . The predicates bothHi, powerHi and
powerLo are defined in Fig. 15. 

7.1  Modular verification of the system
Given that the system under design sud is the composition of the plant and the control-

ler with majority voting logic (Fig. 14), we must now show the truth of . 
The first step is to make sure that the temporal logic module specifications are modu-

larly-valid. (Eq. 10) and (Eq. 11) were already treated in a previous section. What remains
is to prove that (Eq. 14) is modularly-valid for  (and by symmetrical reasoning
the corresponding analogous specifications are modularly-valid for the other two control-
lers ). 

(Eq. 14) is defined as a conditional specification  which states that if
the environment of  behaves like output, then the controller satisfies . By
(Th. 3), its is sufficient to check the modular-validity of . In fact

 is a closed system and has no input environment (although its outputs
are the variables ). The validity of  is easily checked by using an observer
similar to that of Sect. 3.2.1.

FIGURE 14. Majority voting control module

module control
/*  */

INTERFACE
external in W, P /* power and pressure */
out C /* command to relay based on majority voting */
out  /* where  are the failure variables needed for specifying failed behaviour */
out  /* where  specify normal controller behaviour */
BODY

end module

control control1 control2 control3|| ||( ) majorVote||=

F F F1 F2 F3, ,=
N N N1 N2 N3, ,=

control1 control2 control3

majorVote

W P,

C

C2
C1 C3

F1 N1, F2 N2, F3 N3,

type i( ) type j( )= y 1 2 3, ,{ }
failiy Fi fail=( )

cont0 i j,( )yinit controli( ) init control j( )∧
init controli( )y Fi normal= N i 0=∧( )

sudmR

control1

control2 control3,
A output( ) p1→

control1 p1
output control1||[ ]mp1

output control1||
F1 N1 C1, , p1
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FIGURE 15. Control module for processor 1

module control1
INTERFACE
external in W,P /* power and pressure */
out  where initially  /* the fail variable */
out  /* command to open or close relay */
out  where initially  /* activity variable for normal behaviour */
BODY
/* The body is similar to that of Fig. 12, except that the event delay20 in the normal chart has been 
replaced by delay21. This ensures that plant updates occur at even clock times, and controller 
responses at odd clock times — which is closer to how the actual system will work. */

SPECIFICATION

, (Eq. 14)

where  is the specification for processor 1 given by:

: (Eq. 15)

where , , 
, , and . 

/* (Eq. 14) asserts that if the power and pressure variables (the environment of the module) behave
as defined by the module output (Fig. 6), then  must hold. The output module specifies that the val-
ues of power and pressure are updated at most every two clock ticks. The specification  requires
that if the controller does not fail, then properties similar to the three requirements for a single pro-
cessor must hold. In an environment in which the power and pressure are allowed to vary arbitrarily,
the consequent  will be invalid. */
end module

F1 F1 fail=
C1
N1 N1 0=

A output P W D, ,;( )( ) p1→

p1

p1

  h f¬ ail 1 init control1( ) bothHi e30 powerHi e31h920 C1 1=( )⇒∧∧[ ]  →
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l1h92 C1 0=( )⇒∧[ ]∧

init control1( )¬ e
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Having proved that all the module specifications are modularly-valid, we may now
directly prove the global requirement . Let  be arbitrary variables that range
over the three controllers. Then

1. Assume

2. Modular validity of (Eq. 14) for i-th controller

3. Modular-validity of (Eq. 14) for j-th controller

4. (2), (3) and Composition Theorem

5. Assume

6. (Th. 3) and (4), (5) 

7. (1), RTTL and the defini-

tion of .

8. integer reasoning

9.  (1), (6), (7), (8) and RTTL

10. from (Eq. 12)

11. Assume 

12. (Th. 3) and (10), (11)

13. (9), (12) and RTTL

14. (13) and RTTL

Line (14) of the above proof produces requirement 1 (first conjunct in the consequent
of (Eq. 16)). The other two conjuncts are obtained by similar (and much simpler) reason-
ing. We thus have:

15. discharging (1)

16. R (15) and i and j were arbitrary

17. discharging assumptions (5) and (11)

18. (17) and (Th. 3)

8.0  Conclusions

This paper has presented a modular design method that scales up to larger real-time
reactive systems than the non-modular approach. In the DRT example, abstraction
speeded up automatic verification of individual module specifications, and composition
was used to deduce global requirements from the module specifications, without having to
produce the global reachability graph. The same techniques can be applied to infinite state
systems, except that the StateTime semi-automated deduction tool “Develop” would have
to be used to verify the module specifications.

sudmR i j,

i j≠( ) h f¬ aili h f¬ ail j∧ ∧

output controli||[ ]mpi

output control j||[ ]mp j

output controli control j|| ||[ ]mpi p j∧

A output( ) A controli( ) A control j( )∧ ∧

pi p j∧

pi p j∧ cont0 i j,( ) bothHi e30 powerHi e31h920 Ci 1= C j 1=∧( )⇒∧∧[ ]→

cont0 i j,( )

i j: 1 2 3, ,{ },( ) i j≠( ) Ci 1= C j 1=∧( )∧ ∧[ ] C1 C2 C3+ + 2≥( )⇒

cont0 i j,( ) bothHi e30 powerHi e31h920 C1 C2 C3+ + 2≥( )⇒∧∧[ ]

majorVote relay||[ ]m h
920 C1 C2 C3 2≥+ +( ) e

l1 h920
R open=( )⇒[ ]

A majorVote( ) A relay( )∧

h
920 C1 C2 C3 2≥+ +( ) e

l1 h920
R open=( )⇒

cont0 i j,( ) bothHi e30 powerHi e31el1 h920
R open=( )⇒∧∧

cont0 i j,( ) bothHi e30 powerHi e 30 32,[ ]h920 R open=( )⇒∧∧[ ]

i j≠( ) h f¬ aili h f¬ ail j∧ ∧ →

cont0 i j,( ) bothHi e30 powerHi∧ ∧ e⇒ 30 32,[ ]h920 R open=( )[ ]

cont0 i j,( ) powerLo∧ e
l2 R closed=( )⇒[ ]∧

cont0 i j,( )¬ e
l52cont0 i j,( )⇒[ ]∧

A sud( ) R→

sudmR



Abstraction and Composition of Discrete Real-Time Systems October 2, 1995 31

The DRT example was a case of “reverse” engineering. A fully specified design down
to pseudocode was already present, and module abstraction was then just a means of
reducing the combinatorial explosion of states so that the verifier could automatically
check the module specifications. If the methods of this paper are used from scratch, then
the abstract controller modules can be developed first; the abstract version of the micro-
processor controller (Fig. 15) is close conceptually to the original analog design (Fig. 3),
and hence relatively easy to obtain. Then, the equivalence transformations can be used to
refine the abstract module down to pseudocode.

If the StateTime tool can verify the complete “closed” system, then such a non-modular
approach is preferable; global requirements are usually simple, and the system can be ver-
ified automatically. However, more often than not, a modular approach will be needed for
realistic systems due to combinatorial explosion of states, and also to keep the system
structured and manageable. But, the modular approach requires much more effort on the
part of the designer. Module specifications tend to be more complex than global require-
ments because they must take into account the behaviour of the environment. Also, the
composition theorem requires the additional step of applying RTTL compositional reason-
ing to obtain the global requirements from module specifications.

Much of the RTTL reasoning can be automated. The STeP temporal logic theorem
prover and model checker [21] is one possibility (a propositional fragment called PTL was
used to check part of the DRT example). Real-time extensions are currently being imple-
mented.

The Build tool was originally designed for closed systems. In future work, it is pro-
posed to automate the facility for real-time reactive modules. Once modules are available,
then the refinement checking algorithms of [17], and the equivalence transformations of
[16] can also be implemented.

The Verify tool took just under two hours to generate and check a reachability graph of
73,000 states and edges (Table 1). More efficient model-checkers [4,11] can check
(untimed) systems of a similar size in a few minutes, but cannot directly verify real-time
systems. A current research project has shown that there is a way to use these “smart”
model-checkers on real-time systems using a special purpose conversion algorithm. Tenta-
tive results indicate that the large system of Table 1 can be checked in a few minutes (an
improvement of two orders of magnitude). The intention is therefore to extend the ability
of the StateTime tool to export data to these more efficient model-checkers. That would
result in a substantial improvement in checking the validity of module specifications.

The addition of the abovementioned features will certainly enhance the effectiveness of
the StateTime tool. However, specifying and verifying real systems will still rely on the
creativity and hard work of the designer. Although the visual specification language (and/
or table specification methods) will allow the software designer to communicate more
effectively with the plant engineers, there will still be a need for trained verifiers to deal
with the theorem proving aspects of the design.
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