
Using Domain Decomposition to �nd Graph BisectorsCleve Ashcraft� Joseph W.H. LiuyNovember 8, 1995AbstractIn this paper we introduce a three-step approach to �nd a vertex bisector of a graph.The �rst step �nds a domain decomposition of the graph, a set of connected subgraphs,the domains, and a multisector, the remaining vertices that separate the domains fromeach other. The second step uses a block variant of the Kernighan-Lin scheme to �nda bisector that is a subset of the multisector. The third step improves the bisectorby bipartite graph matching. Experimental results show this domain decompositionmethod �nds graph partitions that compare favorably with a state-of-the-art multilevelpartitioning scheme in both quality and execution time.1 IntroductionGraph partitioning is a well-known practical problem that has many important applications,such as task allocation for parallel computations [13] and circuit partitioning for VLSI design[22]. Our driving interest is to �nd low-�ll orderings for sparse matrix computation [4], [6],[15], [19].An e�ective approach to �nd �ll-reducing orderings is nested dissection [8]. Based on adivide-and-conquer paradigm, it is a recursive bisection method, where the graph associatedwith the given sparse matrix is decomposed into two roughly equal halves by removing asubset of vertices (called the separator). The graph is reordered so that the vertices ineach half are numbered contiguously and the vertices in the separator are numbered last.The reordered matrix is bordered block diagonal and the zero o�-diagonal blocks will bepreserved after factorization. The dissection can be applied recursively to each subgraphs.The success of such reorderings depends crucially on �nding a small separator set in eachsubgraph.1.1 Algorithmic ApproachesFinding a partition of a general graph that satis�es some size constraints is an NP-hardproblem [5], and so practical partitioning algorithms are heuristic in nature. Graphpartitioning methods can be broadly classi�ed into two categories: a direct approachconstructs a partition while an iterative approach improves a partition. Direct approachesinclude level set techniques (used in the automatic nested dissection algorithm [9]) andthe spectral methods [21], [23]. The classic Kernighan-Lin algorithm [17] and its variants[6], [7], use an iterative approach by exchanging vertices of an existing partition. The�Boeing Information and Support Services, P. O. Box 24346, Mail Stop 7L-22, Seattle, Washington 98124.This research was supported in part by the ARPA Contract DABT63-95-C-0122.yDepartment of Computer Science, York University, North York, Ontario, Canada M3J 1P3. Thisresearch was supported in part by the Natural Sciences and Engineering Research Council of Canada undergrant A5509. 1



2algorithm in [19] is an iterative scheme that improves a given partitioning with bipartitegraph matching.Many recent partitioning methods [6], [12], [14], [16] make use the idea of blocking toreduce the complexity of �nding an improved partition. Typically, they �rst construct acoarse graph from the original graph, where each vertex in the coarse graph is usually aconnected subset of vertices in the original one. A bisector of this smaller coarse graph isfound, then projected back to the original graph and (optionally) improved.Often these three phases of coarsening, partitioning and uncoarsening are appliedrecursively to a hierarchy or multiple levels of coarse/�ne graphs. Hence, they have beenreferred to as multilevel methods. These multilevel methods [6], [12], [14], [16] �nd a bisectoron the coarse graph by recursion until the size of the coarse graph is small enough thata constructive method can �nd a good bisector. These methods di�er in the way thecoarsening, partitioning, and uncoarsening phases are implemented. The CHACO [12] andMETIS [16] software packages provide a variety of methods for these three phases.Multilevel methods have a strong similarity to the multigrid method for solving PDE's.There is usually a smooth transition between a �ne and coarse graph; the latter has aroundhalf the vertices of the former. The projection of the coarse graph's bisector is usuallyclose to a good bisector in the �ne graph, so relatively simple improvement methods areadequate in the uncoarsening step.In this paper we propose a di�erent approach, analogous to the domain decompositionmethods for solving PDE's, the main competitor for multigrid. Instead of multiple levels weuse a two-level approach. Our coarse graph consists of domains (large connected subsets ofvertices) and the multisector (the remaining vertices that separate the domains from eachother). The entire scheme consists of three major steps:Step 1: Construct a domain decomposition of the graph.Step 2: Construct a bisector (a subset of the multisector) using a block Kernighan-Lin scheme from Section 5.Step 3: Improve the bisector using a graph matching scheme from Section 6.We use a very simple method to construct the domain decomposition; see [4],[11] for moresophisticated algorithms. Since our coarse graph usually has fewer than a couple of hundreddomains, we are able to construct a bisector on this coarse graph using a block variant ofthe Kernighan-Lin algorithm. We then improve the bisector on the �ne graph using apowerful graph matching algorithm.For solving PDE's, multigrid is generally felt to be more e�cient than domain decom-position for smooth operators and regular discretizations. In the presence of anisotropies,i.e., non-homogeneities in the operator and/or the geometry, domain decomposition usu-ally proves to be more robust. We have observed the same relative behavior between amultilevel method and the domain decomposition method we introduce in this paper. Forrelatively homogeneous graphs, a multilevel method �nds better partitions; in the presenceof irregularities, the domain decomposition method is better.1.2 An Outline of the PaperIn Section 2 we give the background material in the graph partitioning problem. We de�nethe problem in terms of unit-weight and weighted graphs. The notion of a partition isformalized and di�erent evaluation functions to compare partitions are described. In Section3, we present a generic version of the classic Kernighan-Lin scheme. A move operation



3de�nes a partition transformation. A number of existing schemes in the literature that arevariants of the Kernighan-Lin algorithm are discussed relative to our generic version.In Section 4, we �rst formally introduce domain decomposition (domains, multisectorsand segments) and then describe a simple algorithm to �nd a domain decomposition.Section 5 contains the description of the block Kernighan-Lin scheme based on the genericalgorithm in Section 3. An example is used to illustrate the block scheme. Section 6 reviewsthe use of bipartite graph matching in improving a given bisector.We have developed DDSEP, a graph partitioning code based on domain decomposition,block Kernighan-Lin and graph matching. In Section 7 we compare DDSEP with METIS, astate-of-the-art multilevel code from the University of Minnesota [16]. For homogeneousgraphs, METIS creates extremely well-balanced partitions with small bisectors, while DDSEPproduces acceptable partitions. However, for graphs with irregular geometry or graphswith high variability in degrees, we �nd that DDSEP produces better partitions. The CPUtime required to �nd the partitions are comparable between METIS and DDSEP. Section 8contains our concluding remarks.2 BackgroundLet G = (V;E) be a given undirected graph. Without loss of generality, assume the graphis connected. A vertex subset S is a vertex separator if the subgraph induced by the verticesin V but not in S has more than one connected component. An edge separator is a set ofedges whose removal disconnects the graph. A separator is minimal if no subset of it formsa separator. A bisector is a separator whose removal gives two portions; a multisector is aseparator that subdivides the graph into two or more portions. Although we want to �ndgood partitions with vertex separators, in this and the next section, we have overloadedthe use of S to mean either a vertex separator or an edge separator.Many applications, including structural analysis and computational uid mechanics,give rise to weighted graphs. In the underlying physical problem there might be severaldegrees of freedom associated with a location in space. Each degree of freedom can beconsidered as a vertex in the graph. Very often all these degrees of freedom will have thesame adjacency structure in the graph, so for our purposes we can treat all the degreesof freedom associated with the same location as a single weighted vertex in a compressedgraph, where the weight of the vertex is the number of its degrees of freedom. In practice,signi�cant amount of time and space can be saved using such weighted graphs [2]. Weshall encounter a problem in Section 7.2 where the original graph has 30237 vertices andits compressed weighted graph has only 6611 vertices. Using the weighted graph we �nd agraph bisector six times faster than we do by working on the original one.For a weighted graph, each vertex has a positive weight wt(v). Any subset U � V hasa weight, namely jU j �Pu2U wt(u). For a unit-weight graph, each vertex has a weight ofwt(v) = 1 and jU j is just the cardinality of U .We shall use the notation [S;B;W ] to represent a 2-set partition, where the removal ofthe bisector S will give two disconnected portions B and W . Vertices in B have the colorblack, and W with color white. One way to measure the imbalance of a partition is thequantity jjBj � jW jj, another is the ratio maxfjBj; jW jg=minfjBj; jW jg. A partition withperfect balance has jBj = jW j.



42.1 An Evaluation Function for Partition ComparisonIntuitively, a good 2-set partition [S;B;W ] is one with a small separator size jSj, and tworoughly equal portions jBj � jW j. Given an initial partition, we iteratively improve ituntil satis�ed. We need to be able to compare the quality of the modi�ed and the originalpartitions. To this end, we introduce an evaluation function and provide some justi�cationfor its use.Consider a graph G with a 2-set partition [S;B;W ]. The literature contains a numberof di�erent evaluation functions. We shall describe some of them here.� One common evaluation function is based on the separator size jSj subject to somesize constraints on the two portions B and W . The evaluation function is:cost1[S;B;W ] = � jSj if maxfjBj; jW jg < �n1 otherwise,where � is some fraction such as 2/3. Evaluation functions similar to cost1 are foundin [12], [16], [18]. In practice, cost1[S;B;W ] performs well but it has an undesirablediscontinuity around partitions close to the size constraint.� An evaluation function can measure the distance from a given partition to the idealpartition. An ideal partition would have jSj = 0, and imbalance jBj � jW j = 0. Wehave used a weighted 2-norm metric in [3]cost2[S;B;W ] = �jSj2 + (1� �)(jBj � jW j)2;where � is some fraction between 0 and 1. There are analogous 1-norm and 1-normcost functions. A disadvantage is that cost2[S;B;W ] takes the weighted average oftwo quantities that are often of di�erent orders of magnitude in sizes.� In our present experiments we use a di�erent evaluation function. The separatorsize jSj is the primary metric, but the imbalance also has an inuence. We use the\dimensionless" ratio maxfjBj; jW jg=minfjBj; jW jg to measure imbalance, where theperfect value would be 1. The imbalance enters as a \penalty" multiplicative factor,namely [S;B;W ] = jSj�1 + �maxfjBj; jW jgminfjBj; jW jg � ;where � is some constant greater than 0. A large value of � places a large emphasison the balance. In practice, setting � to 1 generally results in good partitions.All these evaluation functions can be used either with an edge separator S � E or a vertexseparator S � V . In the end, any evaluation of a partition is subjective, based on thereader's sense of separator weight and imbalance. We have experimented with the 1-norm,2-norm and the penalty cost functions. The �rst two su�er from a strong sensitivity to the� parameter and an inability to allow a move from a well-balanced partition to one withsmaller separator weight and moderate imbalance. We have used the penalty cost function[S;B;W ] with � = 1 in all the experiments in Section 7. This value for � puts moreemphasis on separator weight but still allows a move from a well-balanced partition if theseparator weight will decrease.



53 The Generic Kernighan-Lin Improvement AlgorithmMany practical heuristic partitioning methods are variants of the scheme by Kernighanand Lin [17]. Our block scheme described in Section 5 is another. The original Kernighan-Lin algorithm tries to �nd a small edge separator by executing a sequence of vertex-pairexchanges between two portions of an initial partition. We now present a generic versionof the Kernighan-Lin scheme for a 2-set partition by an edge or vertex separator.The generic partition improvement scheme has two nested loops. The outer loop isgiven in Figure 1. Inside this loop, the partition improvement function GKL-Improve iscalled until no improvement to the partition can be made.Generic-KLInitialize a partition [S;B;W ]repeat[S�; B�;W �] = [S;B;W ][S;B;W ] = GKL-Improve [S�; B�;W �]until [S�; B�;W �] = [S;B;W ]return [S;B;W ]Fig. 1. Generic-KL: Generic Kernighan-Lin Scheme.The basic operation is a move which we now de�ne. Let Q be either B or W andlet Z � V . The move of Z to the portion Q, written as Z 7! Q, merges Z and Q. Wesometimes refer to Q as the destination of Z in this move. Implicit is the assumption thatZ \Q = ;. Moving Z to Q will induce other changes to the partition. We shall denote thenew partition as a result of this move by:[S;B;W ]Z 7!Q � [SZ 7!Q; BZ 7!Q;WZ 7!Q]:The function GKL-Improve is given in Figure 2. The inner loop makes a sequence ofmoves until there are no more movable objects left to be moved. In e�ect, it generates asequence of partitions:[S0; B0;W0] = [S;B;W ] �! [S1; B1;W1] �! ::: �! [Sm; Bm;Wm]:The best partition [ bS; bB;cW ] in this sequence is returned by this function.To de�ne any variant of this generic algorithm, we need to answer three questions:� What are the movable objects?� How to select a move?� When is one partition better than another?Examples are provided later in this section. In this paper, we use the penalty function[S;B;W ] as our evaluation function.The most time consuming step is the selection of an unmarked movable object and itsdestination for the next move. To improve e�ciency, often some eligibility conditions forselection are imposed on unmarked objects. This limits the size of the search space to selectan eligible object for the next move.3.1 Edge Separators: Kernighan-Lin and Fiduccia-MattheysesBoth these methods are designed to �nd small edge separators. They usually use an initialpartition [S;B;W ] where jBj � jW j � n=2.



6GKL-Improve [S;B;W ]Unmark all movable objects[ bS; bB;cW ] = [S;B;W ]while there are unmarked movable objects left dofor all unmarked objects and possible destinations doselect a move: an object Y with destination Q[S;B;W ] = [S;B;W ]Y 7!Qmark Yif [S;B;W ] is a better partition than [ bS; bB;cW ]then [ bS; bB;cW ] = [S;B;W ]end whilereturn [ bS; bB;cW ]Fig. 2. GKL-Improve: Generic Kernighan-Lin Improvement Scheme.3.1.1 The Kernighan-Lin Scheme. A move is based on a pair of vertex exchanges.Consider a pair of vertices b 2 B and w 2W . The exchange of this pair of vertices can beexpressed as the move operation: (b; w) 7! (W;B). It modi�es the partition as follows:B(b;w)7!(W;B) = B [ fwg n fbgW(b;w)7!(W;B) =W [ fbg n fwgand S(b;w)7!(W;B) is the edge separator determined by the two new portions.In terms of the generic method, the Kernighan-Lin algorithm has:� Movable objects: a pair of vertices (b; w) with b 2 B and w 2 W and the moveoperation (b; w) 7! (W;B).� Move selection: �nd a pair of unmarked vertices b 2 B and w 2 W that maximizesthe reduction in separator size: jSj � jS(b;w)7!(W;B)j.� A partition [S�; B�;W �] is better than [S;B;W ] if jS�j < jSj.3.1.2 The Fiduccia-Mattheyses Scheme. Fiduccia and Mattheyses [7] made somepractical improvements to the basic Kernighan-Lin algorithm. Instead of exchanging a pairof vertices, a single vertex is moved at a time. This helps to reduce the time required toselect the next move. In terms of the generic method, Fiduccia-Mattheyses has:� Movable objects: a vertex x and the move operation x 7! Q, where x =2 Q (Q = B orW ).� Move selection: �nd an unmarked vertex x from the larger portion that maximizesthe reduction in separator size (x =2 Q): jSj � jSx7!Qj.� A partition [S�; B�;W �] is better than [S;B;W ] if jS�j < jSj.3.2 Vertex Separators: Using Primitive and Composite MovesIn [3], improvement schemes are considered for partitions with vertex separators. The basicoperation is the move of a subset of the separator into either B or W . Consider the moveZ 7! W of a subset Z of S to the portion W . While W absorbs Z, there are also changesto B and S: WZ 7!W = W [ Z;



7BZ 7!W = B n Adj(Z);SZ 7!W = V n (BZ 7!W [WZ 7!W ) = (S n Z) [ fAdj(Z) nWg:In [3], this operation has been referred to as a composite move. When Z is a single vertex,it is called a primitive move.In terms of the generic method, composite move methods have:� Movable objects: a subset Z � S and the move operation Z 7! Q where Q = B orW .� Move selection: �nd a subset Z � S that maximizes the reduction in separator size:jSj � jSZ 7!Qj.� A partition [S�; B�;W �] is better than [S;B;W ] if [S�; B�;W �] < [S;B;W ].4 Finding a Domain Decomposition of a GraphDomain decomposition is a common approach in the solution of partial di�erential equationsin the area of scienti�c computation. To put it in our context, for an undirected graphG = (V;E), consider a partition of the vertex set V :V = � [ 
1 [ 
2 [ : : : [ 
d;where each 
i is a domain and � is the set of interface vertices. Each domain 
i is aconnected subgraph of G with its boundary Adj(
i) contained in the interface set �. Notwo domains are adjacent, they are separated from one another by interface vertices. The set� is a multisector, for it generalizes the notion of a bisector. Without loss of generality, weshall assume that the multisector partition is nontrivial; that is, d � 2 and � is nonempty.Consider the 6�6 grid graph in Figure 3. The vertices are partitioned into six domainsand a multisector � = f2; 4; 6; 7; 8; 10; 14; 16; 18; 19; 20; 21; 22; 23; 27; 33g. Multisectorvertices are represented by squares, domain vertices by circles.

0 1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

18 19 20 21 22 23

24 25 26 27 28 29

30 31 32 33 34 35

domains and multisector

Fig. 3. Grid example of domains and multisector.



84.1 Constructing a Domain DecompositionThere are many di�erent ways to �nd a multisector and its domain partitioning. Onecould use some geometric knowledge (such as the locations of mesh points) or some othersubstructuring information of the given graph to determine domains. Recent work byGoehring and Saad [11] determines a domain decomposition based on special set of verticescalled centers. Another approach uses a minimum degree ordering [10] of the graph. Asa byproduct of the ordering process, the minimum degree ordering creates a natural treestructure of the vertices. To each subtree is associated a connected subgraph, and bydesign, the subgraph should have a small adjacent set. It is natural to take a number ofdisjoint subtrees to de�ne the domains and the remaining vertices form the multisector.This approach generally gives very e�ective multisectors. We have used this approach in[3], but the process is relatively expensive for the execution time is dominated by the timeto generate a minimum degree ordering.We want to �nd a reasonably e�ective multisector e�ciently. Let !min and !max be thedesired minimum and maximum bounds on domain weights. We construct the multisectorin the following way:Step 1: Initialize the multisectorInitialize the multisector � to include all vertices of degrees greater than some multipleof the median degree.Step 2: Grow the DomainsLet G0 be the subgraph containing vertices outside the current multisector anddomains. Choose a random vertex x from G0. Perform a breadth-�rst search inG0 starting from x to grow a domain until its weight has reached !max. Add theadjacent vertices of this new domain to the multisector �. Repeat step 2 until novertex is left.Step 3: Absorb Small Domains into the MultisectorFor each domain formed in step 2, if its weight is smaller than !min, add the verticesin this domain to the multisector.Step 4: Absorb Excess Multisector Vertices into the DomainsChoose a multisector vertex that is adjacent to only one domain, and merge it to itsneighboring domain. Priority is given to those with smaller degrees. Repeat step 4as long as possible.Step 1 is important for graphs with a large variability in degrees (see Section 7.3 for anexample). Its e�ect is to exclude vertices of high degrees during the formation of thedomains in step 2. In step 3, we absorb small domains into the multisector to reduce thenumber of domains. This helps to reduce the execution time of the block Kernighan-Linpartitioning scheme, since its complexity is largely a function of the number of domains.Step 4 generates a minimal multisector.4.2 Find a Separator using the Domains and MultisectorThe block Kernighan-Lin scheme to be described in the next section will determine apartition [S;B;W ] from a given domain decomposition f�;
1; : : :
dg. The partitionobtained in this phase satis�es the following conditions: S � � and 
i � B or 
i �W , fori = 1; : : : ; d. Note, usually S � �, so the multisector is split among S, B and W . We �nd a



9partition by coloring the domains and multisector vertices. We shall adopt the conventionthat separator vertices in S are colored gray, vertices in B black and vertices in W white.In our block scheme, domains are our movable objects. Vertices of a domain are movedfrom component to component together instead of moving a single vertex. and so all verticesin a domain have the same color. Therefore, we can view the block scheme as an assignmentof black and white colors to the domain sets.How about the separator set? Our goal is to induce the colors of the multisector verticesfrom the given domain colors, and hence determine the separator set. A simple multisectorcoloring scheme colors each multisector vertex white, black, or gray depending on the colorof its adjacent domains.(*) If a vertex v 2 � is adjacent to domain vertices of only one color C,then we color v with C; otherwise color it with gray.Unfortunately, this simple coloring rule (*) may not always produce a separator set.A counterexample is shown in Figure 4. The grid on the left shows the domain interfacepartition: multisector vertices are squares colored light gray, domain vertices are circleswith a given black/white black coloring, The grid on the right illustrates the coloring of themultisector vertices using the coloring rule (*). The gray colored vertices do not form aseparator, for black vertex 15 is adjacent to white vertex 20. Note that we have used lightgray to denote multisector vertices, and darker gray to indicate separator vertices.
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Fig. 4. A situation where the coloring rule failsThe simple coloring rule (*) fails to de�ne a separator for this particular do-main/interface partition. The reason is subtle, and is explained by the following theorem.Theorem 4.1. For a given domain decomposition f�;
1; :::;
dg, the coloring scheme(*) will generate a separator for all colorings of the domains if and only if every adjacentpair of multisector vertices that are adjacent to some domain has a common adjacentdomain.Proof. \If Part": Assume for contradiction that the set of gray-colored multisectorvertices does not form a separator. Then there must be an edge (x; y) where x 2 B andy 2 W . We �rst show that x and y must both be in �. Assume that x is in a domain(colored black). If y were in a domain, it must be the same domain that contains x, so



10y would be colored black, a contradiction. If y were in the multisector, then y must becolored either black or gray by (*), another contradiction. Therefore x must be in �. Asimilar argument shows that y is also in �. If x and y share a common domain, then eachwould be colored either gray or the same color as the domain, a contradiction. Therefore,x and y have no common adjacent domain.\Only If Part": Let x and y be two adjacent multisector vertices that do not have acommon adjacent domain. Then introduce the following coloring of the domains. Color alladjacent domains of x white and all adjacent domains of y black. Apply the multisectorcoloring scheme. The vertex x will be colored white and y black. This implies that thegray-colored multisector vertices will not form a separator.Theorem 4.1 provides a necessary and su�cient condition for the multisector coloringscheme to produce a separator. For problems not satisfying this condition, the multisectorcoloring scheme will not work properly. Figure 4 illustrates the situation. Black vertex 15is adjacent to white vertex 20, for these two adjacent vertices have no common adjacentdomain.Obviously we cannot depend on applying the coloring rule (*) to single vertices. Wemust use a coloring rule for subsets of the � vertices.(**) If a subset � � � is adjacent to domains of only one color C,then color all vertices in � with C; otherwise color gray.There is no need to color a vertex more than once, so these sets can be disjoint; let� = f�1; : : : ; �rg be a partition of �. We also need the following generalization of Theorem4.1 to subsets of multisector vertices.Theorem 4.2. For a given domain decomposition f�;
1; : : : ;
dg and a partition �of �, the coloring scheme (**) will generate a separator for all possible colorings of thedomains if and only if �i is adjacent to �j implies there exists a domain that is adjacent toboth �i and �j.Proof. Very similar to Theorem 4.1.We are searching for some partition � of � that will satisfy the coloring rule (**) butcontain as few � sets as possible. It turns out that a simple two-step process will �nd sucha partition.4.3 Find the Maximal Segment PartitionThe notion of blocking the multisector vertices into segments, �rst introduced in [1], isthe key to speed up the multisector coloring scheme. Instead of repeatedly using (*) toevaluate the color of a single vertex, we use (**) to evaluate the color of a segment, asubset of �. We want to use the smallest number of segments as practical. Finding themaximal segment partition � is a two step process.1. First we construct 	, a partition of �, such that Theorem 4.2 holds. If two adjacentmultisector vertices have no common adjacent domains, they should belong to thesame subset in 	. Formally, consider the graph G(�; E\ (���)), the subgraph over�, and delete all edges (x; y) where x and y are adjacent to a common domain. If wede�ne E� = (E \ (�� �)) n m[i=1 (Adj(
i)�Adj(
i)) ;then the 	 partition is simply the connected components in G(�; E�) and it satis�esTheorem 4.2.



112. Given a partition 	 that satis�es Theorem 4.2, we �nd the maximal segment partition� as follows: if  1 and  2 in 	 are adjacent to exactly the same sets of domains, then 1, and  2 belong to the same subset in �.Note, the partition 	 satis�es Theorem 4.2 by construction, and the segment partition �will still satisfy the conditions of Theorem 4.2. Furthermore, this partition is maximal insome sense, for by construction, no two segments are adjacent to exactly the same set ofdomains.Consider the example in Figure 5. The left hand grid shows the edges in E� =f(14; 21); (15; 20)g. The �rst partition	 = ff3g; f9g; f12g; f13g; f14; 21g; f15; 20g; f22g; f23ggcontains eight singleton vertices and f14; 21g and f15; 20g. The right hand grid shows thesegments partition� = ff3; 9g; f12; 13g; f14; 15; 20; 21g; f22; 23g; f26; 32gg :Vertices 26 and 32 form one segment since they are adjacent to the same two domains.Subsets f14; 21g and f15; 20g of 	 are both adjacent to the same four domains, so theyform a new segment f14; 15; 20; 21g. All adjacent segments have at least one commonadjacent domain so the coloring rule (**) holds.
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Fig. 5. A two step process to de�ne the segments5 The Block Kernighan-Lin SchemeWith the notions of domains and segments introduced, we are now ready to describe theblock Kernighan-Lin scheme that we use to construct the initial bisector. Recall fromSection 3, we need to specify the movable objects, the selection of the next move, and theevaluation function.5.1 Movable Objects and Move SelectionLet f�;
1; : : : ;
dg be a domain decomposition of the graph and let � = f�1; : : : ; �sgbe the segment partition of the multisector �. Domains are colored black or white, and



12segments are colored black, white or gray (the separator color) using the coloring rule (**)of Section 4.2. This will induce a partition [S;B;W ] of the graph, where B is the setof vertices in black domains and segments, W the set of vertices in white domains andsegments, and S the set of multisector vertices in gray segments.The block Kernighan-Lin scheme improves an initial partition based on the givendomain decomposition of the graph. It is a variant of the generic algorithm of Section 3where the movable objects are domains. For a domain 
, the basic move operation is
 7! B or 
 7! W . The move ips the color of the domain. Furthermore, we use thestandard technique where a domain is eligible to be moved if it has not yet been ippedduring this inner iteration and if it is adjacent to the current bisector.In terms of the generic method, our block Kernighan-Lin method has:� Movable objects: All unipped domains that are adjacent to the current bisector.� Move selection: Select an unipped domain 
 and its destination Q such that[S;B;W ]
7!Q is minimum among the eligible moves.� Partition comparison: We use the penalty function [S;B;W ].We choose to select the best move in terms of the evaluation function among the movabledomains. If d is the number of domains, it will take O(d2) work in the worst case to selectthe moves. This seems like an excessive amount of work, but in practice d is relativelysmall and we rarely have to make a selection from all d domains at once. Overall the blockKernighan-Lin method takes 5%� 15% of the total time to �nd a bisector. We can a�ordthe expensive move selection process and can avoid the usual tricks to reduce the executiontime, e.g., an early bailout of the inner loop after no improvement has been observed for acertain number of steps.5.2 Implementation Details in the Block SchemeThe generic Kernighan-Lin scheme of Figure 1 starts with an initial partition, then callsGKL-Improve to iteratively improve the partition. In our implementation of the blockmethod, we construct an initial partition based on a level structure of the domains. Domainsin the �rst levels are colored black until the black domains exceed half the weight of all thedomains.Another important detail is the evaluation of [S;B;W ]
7!Q for each unipped domain
 for move selection. Let 
 be an unipped domain in B. Consider the evaluation of thefunction value [S;B;W ]
7!W . The new partition after the move di�ers from [S;B;W ]only locally; 
 has moved from B to W and some of its adjacent segments may changecolor. To study such local change, we de�ne:�jSj = jS
7!W j � jSj; �jBj = jB
7!W j � jBj; and �jW j = jW
7!W j � jW j:These terms are the changes in the respective sizes of the three subsets in the partition ifthe move 
 7!W were to be performed. Note also that these quantities can be positive ornegative.Figure 6 shows how we compute the � values for the move 
 7! W . Evaluating a movefrom W to B is similar. For each unipped domain 
 and its destination Q, we computethe three values �jSj, �jBj and �jW j. that measure the changes in the partition weights ifthe domain should ip its color. Then the function value [S;B;W ]
7!Q can be computedusing the new partition weights jSj+�jSj, jBj+�jBj and jW j+�jW j.



13Fig. 6. Evaluate the move 
 7! Weval(
 7!W )�jSj = 0, �jBj = �j
j, �jW j = j
jfor each segment � adjacent to 
 doif � is colored black then� will move into S, �jSj = �jSj+ j�j, �jBj = �jBj � j�jelse if 
 is the only black domain adjacent to � then� will move into W , �jSj = �jSj � j�j, �jW j = �jW j+ j�jend ifend forThe three � values are quantities local to its domain 
. They remain unchanged untila move is made of a domain ~
 that shares a common adjacent segment with 
. Onlyat this time must the � values of 
 be updated. We add one line to the generic schemeGKL-Improve of Figure 2; after a move of a domain is made, we update the three �values of all unipped domains that share a boundary with the domain.5.3 A Grid ExampleWe use the graph in Figure 3 as an example to illustrate the execution of the block scheme.The six domains and eleven segments are given below.
1 = f0; 1g
2 = f3; 9; 15g
3 = f5; 11; 17g
4 = f12; 13g
5 = f24; 25; 26; 30; 31; 32g
6 = f28; 29; 34; 35g� = ff2g; f6; 7g; f8g; f4; 10; 16g; f14g; f18; 19g; f20g; f21g; f22g; f23g; f27; 33ggThe algorithm begins with the partition [S;B;W ] = [;; V; ;]. We use the parameter valueof � = 1 for the penalty function, and the cost of this initial partition is set at in�nity.In Figure 7, we illustrate the coloring process in the execution of GKL-Improve.Initially, all domains are colored black. In the �rst step, we evaluate what would happen ifeach domain is ipped. Of all the domains, the best evaluation function is obtained if weip 
5. The new evaluation function value is 30. In the second step, ipping the domain
6 results in the best evaluation function value of 15. The process is repeated until no moredomains are left unipped in this round. The function value of the partition is found aboveeach grid. The algorithm compares the best cost (15) obtained from this round with theold cost (in�nity) and an improvement is detected. The initial partition is then replacedby the improved partition with the new cost.The block Kernighan-Lin algorithm again calls the improvement scheme GKL-Improve, but uses the new partition as its initial partition in the second round. Figure 8gives the detailed illustration of the coloring process of the domain and multisector vertices.In this round, a better cost value of 14.5 is encountered, and this better partition will bereturned. The next call to GKL-Improve does not �nd a better partition, and so the
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Fig. 7. First Execution of GKL-Improve.
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16method returns the partition with cost value 14.5.6 Partition Improvement by Bipartite Graph MatchingAfter the �rst two steps of the partitioning scheme, a bisector is found that is a subset ofthe initial multisector. Because of the block nature of domains and segments, it is to beexpected that the bisector can be improved. We call this third and �nal step the \bisectorsmoothing" step.Consider a given partition [S;B;W ]. Let Z be a subset of the bisector S such thatjAdj(Z) \Bj < jZj;that is, the weight of Z is larger than that of its adjacent set in B. We then consider themove operation that moves the subset Z from S to W , and replaces Z by Adj(Z) \ B inS. More formally, as before let [Z;B;W ]Z 7!W be the partition after this move operationZ 7!W is performed, we have:BZ 7!W = B n Adj(Z); WZ 7!W =W [ Z; and SZ 7!W = (S n Z) [ (Adj(Z) \B):Note that this move operation is di�erent from the move operations used in the blockKernighan-Lin scheme in Section 5.It should be obvious that the new bisector SZ 7!W has smaller weight than that of Ssince jAdj(Z) \Bj < jZj. On the other hand, subsets Z where jAdj(Z) \Bj = jZj can alsobe useful. If jBj > jW j, then moving such a set Z to W will not decrease the separatorweight but it may improve the balance of the partition. Our improvement scheme is basedon �nding and moving such bisector subsets.Sep-Improve [S;B;W ]Improved = truewhile Improved doif jBj < jW j then interchange B and W // make B the larger portionif a subset Z of S is found with jAdj(Z) \Bj � jZjand [S;B;W ]Z 7!W < [S;B;W ] then[S;B;W ] = [S;B;W ]Z 7!Welseif a subset Z of S is found with jAdj(Z) \W j < jZjand [S;B;W ]Z 7!B < [S;B;W ] then[S;B;W ] = [S;B;W ]Z 7!BelseImproved = falseend ifend ifend while Fig. 9. Partition Improvement Scheme.Figure 9 contains a high-level description of the improvement algorithm. The method�rst attempts to improve the partition by reducing the size of the larger portion B. If nosuch subset/move can be found, the algorithm tries to improve the partition by moving a



17subset of the separator into the larger portion B. In both cases, a move is made only if itimproves the partition in terms of the evaluation function. The process continues until noreduction can be found. Central to the algorithm is the determination of a subset Z of Ssuch that jAdj(Z) \Qj � jZj where Q = B or W .In [19], the technique of bipartite graph matching is used to �nd such bisector subsetsZ. We have improved this technique to �nd larger subsets to move (and thus reduce thenumber of steps and the execution time). We use the Dulmage-Mendelsohn decomposition[20] to �nd the Z sets. Although the Dulmage-Mendelsohn decomposition is de�ned onlyfor unit-weight graphs, we are able to work with the weighted graph, thus greatly reducingthe execution time. The details in the use of matching and the Dulmage-Mendelsohndecomposition are beyond the scope of this paper. Readers are referred to [19], [20] and afuture paper by the authors for such details.Figure 10 contains an example to illustrate a bisector smoothing step. On the left we seethat the subset Z = f7; 13; 19; 25g of S has an adjacent set in B of Adj(Z) \B = f14; 20g.The size of its adjacent set is 2 which is smaller than jZj = 4. On the right we see the newpartition obtained by adding the set Z toW , removing f14; 20g from B, and replacing Z byf14; 20g in S. The new bisector now has size two less than before. It should be noted thatthere are di�erent subsets of S that satisfy the condition on its adjacent set size. Movingf7; 13; 19g or f7; 19; 25g both decrease the separator size by one.
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Fig. 10. Grid example of bisector smoothing.7 Experimental ResultsIn this section we describe some experiments with our prototype domain decompositioncode DDSEP and a state-of-the-art multilevel code METIS available from the University ofMinnesota [16]. Neither code is consistently better than the other. Each has strengths andweaknesses that we will illustrate.11The options we used for METIS were recommended to us by the author, George Karypis, namely SHEM(sorted heavy edge), BGKLR (combination of boundary greedy and boundary Kernighan-Lin) and GGPKL(graph growing followed by boundary Kernighan-Lin). DDSEP used !min = 40, !max = 80 and � = 1.



18We have experimented with the graphs of many sparse matrices. However, to illustrateour preliminary �ndings, we only present the partition results for three graphs.� In Section 7.1 we examine R2D7905, an unstructured but relatively homogeneousgraph. METIS consistently �nds extremely well-balanced partitions with smallbisectors while DDSEP �nds partitions with small bisectors and an acceptable amountof imbalance.� In Section 7.2 we study BCSSTK35 which displays a number of \local minima"partitions where most do not lie near perfect balance. METIS �nds extremely well-balanced partitions at the expense of larger bisectors. DDSEP consistently returnspartitions with smaller separators and fairly signi�cant but acceptable imbalance.� In Section 7.3 we look at BCSSTK08 which has a number of vertices that haveextremely high degree. For reasons that we do not completely understand, this causesproblems for both METIS and DDSEP.Most algorithms to partition a graph have some sensitivity to the order vertices arevisited or an adjacency list is traversed. In many cases, the quality of the resulting partitionwill show a large variability. To study such variability, our prototype DDSEP code uses arandom number generator internally to shu�e vertex lists and �nd seed vertices for atraversal; METIS has a similar capability. For BCSSTK35, due to randomization we haveobserved a factor of six di�erence in separator weights from DDSEP and a factor of threedi�erence for METIS. On the other hand, some graphs show little variability; DDSEP andMETIS consistently return the optimal bisector for 2-D and 3-D regular grids.We recommend that for any graph, particularly if it is unstructured, several partitionsbe created and the best used. \Several" is hard to quantify. If k runs have been made, thereis one chance in (k + 1) that a better partition will be found by making another run, buthow much better it is not possible to say. Multilevel and domain decomposition methodshave so dramatically reduced the times to partition a graph that it is easy to amortizemultiple runs when the partition variability is large. We generally advise two or three runs,then choose the best partition.For a given graph and method, what partition can we expect? There are many waysto answer, and we present a very simple approach. For each graph we have made 100 runswith a particular method and collected the following statistics:� separator weight = jSj,� imbalance = maxfBj; jW jg=minfBj; jW jg,� cost = jSj(1 + �maxfjBj; jW jg=minfjBj; jW jg), and� elapsed CPU time (not counting any I/O).We have used � = 1 in our experiments, and since imbalance is usually close to one invalue, cost is almost linear in jSj. CPU time usually shows little variation, for the bulk ofthe time of both METIS and DDSEP is devoted to creating the coarse graph(s). We studythe data in two ways.� We plot the (jSj; imbalance) data points as circles in a weighted scatter plot. (SeeFigures 11, 12 and 13.) Some partitions occur many times in the one hundred runswe made, so to represent their multiplicity we use larger circles. The area of a circleis proportional to the number of times the partition occurred. The center of the circleis located at the (jSj; imbalance) point.



19� A production code would make k trials and use the best of the k partitions. Whilethe partition using k trials will generally be better than that found using one trial,the cost will be k times as great. So we are interested in the partition quality as afunction of the number of trials. Towards this aim, we de�ne the k-median as follows.If we make k trials and take the best partition, the probability is 1=2that we have a separator weight (or imbalance or cost) less than or equalto the k-median value of separator weight (or imbalance or cost).We made 100 runs of the algorithm on each graph, collected the data and sorted thedata into ascending order. We then �nd approximations to the 1-median at entry50, the 2-median at entry 30 and the 3-median at entry 21. (If there are m sortedobservations, an approximation to the k-median is found at locationm �1� (0:5)1=k�.)7.1 Homogeneous GraphsSome graphs are relatively homogeneous, e.g., any portion of a regular grid that does notlie on the boundary is similar to any other portion of the same size. Multilevel methodsappear to be better suited to graphs of this type than are domain decomposition methods.Our test matrix for this family of graphs is R2D7905. To generate this graph we placed570 equally spaced vertices along the boundary of [0; 1]� [0; 8] and then added 7335 verticesto the interior in a quasi-random manner. We then found the Delauney triangulation of thevertices to generate the edges of the graph. While this graph is not regular, it is relativelyhomogeneous.For this graph, a multilevel method generates a chain of coarse graphs that are relativelysimilar. The coarsening and re�nement processes are smooth, and thus it is likely to createa well-balanced partition with near optimal separator weight. Indeed the results from METIScon�rm this intuition. See Figure 11. Note the strong clustering of jSj around 29 and 30and the extremely well-balanced partitions; 99% show imbalance less than 1.008.Our domain decomposition algorithm is much less likely to �nd a domain/multisectorgraph that is similar to the original graph. The crude way to construct the domains boundstheir size but has little control of their shape or orientation. When projected back to the�ne graph, the separator that is found by our block Kernighan-Lin algorithm may notbe \close" to a separator of small size that de�nes a well-balanced partition. Often thesmoother is able to reduce the separator size but cannot \move" the separator to create awell-balanced partition. On the other hand, DDSEP is able to locate the smallest separator,jSj = 28, in a partition that is still fairly well-balanced.7.2 Not all local minima are created equalThe \weakness" of domain decomposition, the inability to �nd a well-balanced coarse levelseparator, can be a strength when a graph has many separators with local minima weight.Consider a string of nine pearls. The separator with perfect balance slices through thecenter of the middle pearl. A nearby separator, located on the string, divides the pearlsinto sets of four and �ve. On the one hand we have a large separator with perfect balance,on the other a small separator with acceptable balance.BCSSTK35 is not a string of pearls, but a �nite element model of a car seat andframe assembly. Yet we see much the same behavior as we look at the top two plots inFigure 12. METIS �nds extremely well-balanced partitions with relatively large separators.DDSEP �nds a spectrum of partitions with varying degrees of imbalance and consistently
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Fig. 11. R2D7905, jV j = 7905, jEj = 54193
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21smaller separators. In fact, twenty-three of the hundred DDSEP runs found the partitionwith jSj = 90, imbalance = 1.064, a particularly strong \attractor" partition.The bottom plot shows the results for DDSEP acting on the natural compressed graph[2] which has 6611 vertices and 72545 edges. Note that the CPU time has dropped by afactor of six. On the other hand, the partition quality also drops. At present we do notcompletely understand these results. There is some e�ect of granularity | the originalgraph is like sand, the natural compressed graph like gravel | that de�nitely inuencesthe construction of the domain/segment partition and possibly the smoothing process. Atleast the results are not that much di�erent, and we can easily make more runs to �nd abetter partition because the CPU time is so much reduced.7.3 Beware of nodes of high degreeIn Section 7.1 we saw that homogeneity is a desirable property for a graph as we search fora well-balanced partition with a small separator. The converse is also true | heterogeneitycan cause problems. BCSSTK08 is the model of a television studio; its graph contains 1074vertices and 12960 edges. The average degree of a vertex is 12.1, the median degree is 10,yet 19 vertices have degrees over 63, 14 over 100, and 3 over 200.These nodes of high degree gave DDSEPmuch di�culty, until we found a solution. See themiddle plot in Figure 13. The one hundred runs generated relatively few distinct partitions.We traced the di�culty to the generation of the domain/segment partition. Once a nodeof high degree was absorbed into a domain, havoc resulted. No matter how we varied the!min and !max parameters that constrained domain weight, we would end up with twoor three very large domains and often a segment that contained over a hundred vertices.These inferior domain/segment partitions crippled the algorithm.For a sparse matrix ordering, nodes of high degree must be put into the separator. Thestar graph with n vertices is a simple example. If the root of the star graph is ordered �rst,the factor matrix has n(n+ 1)=2 entries. If the root is ordered last, the factor matrix has2n � 1 entries. This observation led us to Step 1 of the algorithm in Section 4.1. In thebeginning, we put vertices of high degree into the initial multisector When small domainsare absorbed and the separator made minimal, we make an e�ort to keep the nodes ofhigh degree from being absorbed into a domain. This process pays o� as we see in thebottom plot of Figure 13. Here we forced nodes with degree four times the median into themultisector. There is very little repetition of partitions in the 100 runs and the bisectorsare much better.BCSSTK08 appears to give the multilevel method di�culties. The imbalance is muchlarger than for the other two matrices, and the separators worse than those found by DDSEP.We conjecture that the nodes of high degree are the problem.7.4 E�ect of Input ParametersWe now discuss the inuence of the four input parameters to the DDSEP code.� The bounds !min and !max control the minimum and maximum domain sizes. Asthese values decrease together, the time to generate the domain/segment partitiondrops, the block Kernighan-Lin time increases and the partition quality declines.As the values increase, the time to generate the domain/segment partition grows, theblock Kernighan-Lin time decreases to almost nothing and again the partition qualitydeclines. The required CPU time and the partition quality are concave up functions of!min and !max, but fortunately, the curves are fairly at near their minimum. Setting
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Fig. 12. BCSSTK35, jV j = 30237, jEj = 1450163
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Fig. 13. BCSSTK08, jV j = 1074, jEj = 12960

50 75 100 125 150
1.0

1.05

1.1

1.15

1.2

1.25

separator
im

ba
la

nc
e

median CPU = 0.11

Separator

Imbalance

Cost     

1-median

97

1.053

204

2-median

80

1.043

163

3-median

79

1.043

159

METIS(SHEM,BGKLR,GGPKL)

50 75 100 125 150
1.0

1.05

1.1

1.15

1.2

1.25

separator

im
ba

la
nc

e

median CPU = 0.13

Separator

Imbalance

Cost     

1-median

81

1.031

167

2-median

77

1.012

159

3-median

74

1.008

152

freeze = 4, DDSEP(40,80,1)

50 75 100 125 150
1.0

1.05

1.1

1.15

1.2

1.25

separator

im
ba

la
nc

e

median CPU = 0.11

Separator

Imbalance

Cost     

1-median

136

1.024

273

2-median

96

1.008

193

3-median

94

1.004

190

no freeze, DDSEP(40,80,1)



24(!min; !max) to (40,80) has worked well for graphs with 1000 to 30000 vertices; largergraphs will require larger (!min; !max) settings to keep the domain/segment graphmoderate in size.� Forcing nodes of high degree to lie in the multisector is extremely important for somematrices, e.g., BCSSTK08. This operation cost very little, all that is required is theexternal degree of each node, and that is needed elsewhere. By default we force nodesinto the multisector that have degree four times the median degree. In the future weintend to automate the selection of this parameter by sorting the external degrees inascending order, then search for a jump to locate the vertices of high degree to beplaced in the multisector.� The � parameter de�nes the behavior of the penalty function. Recall the distributionof the data points in the bottom plot of Figure 13 that corresponds to � = 1.This cloud of data points changes little for � 2 [0:5; 5]. For � < 0:5 the cloud isshifted slightly to the left (smaller separators) but expands greatly in the verticaldirection (larger imbalance). For � � 10 the cloud is shifted slightly to the right(larger separators) but compressed in the vertical direction (better balance). Thetransition as a function of � is rather smooth, unlike the 2-norm evaluation functionsof Section 2.2 that are very sensitive to the � parameter.At present, DDSEP spends 60%-85% of its time creating the domain/decomposition, 5%-15%to construct the initial bisector using block Kernighan-Lin, and 20%-40% to improve theseparator using graph matching.8 Concluding Remarks and Future WorkIn this paper, we have presented a new three-step graph partitioning method. It �rst usesdomain decomposition to de�ne a coarse graph, from which a good partition is obtainedby a block variant of the Kernighan-Lin scheme. The partition and its bisector are thenprojected back to the original graph where bipartite graph matching is used to improve theprojected bisector and partition. The method has proved to be e�ective and it comparesfavorably with existing partitioning schemes.Most of the time is spent constructing the domain decomposition of the graph. This isunderstandable for the other two steps work with graphs that are much smaller in size thanthe original. Nonetheless, we feel there are improvements to be made, both to reduce theexecution time as well as to construct a decomposition that recognizes non-homogeneitiesof the graph. Forcing nodes of high degree into the multisector is only a �rst simple step.The bisector smoothing can also be improved. Our graph matching technique currentlyuses the \coarse" Dulmage-Mendelsohn decomposition to locate movable sets. If in additionwe were to use the \�ne" decomposition [20], the bisector weight would not decrease furtherbut the partition's balance would improve. We intend to implement these changes in oursoftware and report on the results in a future paper.Finding a graph bisector is useful in a recursive bisection algorithm to partition a graph.The cost of such a partition is roughly linear in the number of levels of the recursion.Methods that �nd \quadri-sectors", \octa-sectors" and higher separators can �nd goodpartitions at less cost [13]. Here domain decomposition can be pro�tably used. We arepresently extending our software to �nd \multisectors".
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