
 

Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 1

 

Specifying and Verifying Real-Time 
Reactive Systems in TTM/RTTL

 

Jonathan S. Ostroff

 

Department Of Computer Science, York University

 

1

 

,

4700 Keele Street, North York Ontario, Canada, M3J 1P3.

Email: jonathan@cs.yorku.ca    Tel: 416-736-5053   Fax: 416-736-5872

 

Technical Report Number: CS-ETR-94-08

 

from: ftp.cs.yorku.ca:/pub/TECH-REPORTS

 

Abstract

 

: TTM/RTTL is a comprehensive framework for the specification,
development and verification of real-time reactive programs and devices found in
embedded, safety critical, or concurrent systems. The framework consists of a
generic computational model called timed transition systems (TTMs), an abstract
specification language called real-time temporal logic (RTTL), and a sound and
relatively complete proof system and proof methodology. The framework has
heuristics, which have been mechanized using constraint logic, for aiding the
designer in the systematic development of infinite state systems, and decision
procedures for automatic verification of finite state systems. A toolset called
StateTime provides automated support for visual specification, simulation and
verification in the framework.

The original version of RTTL was based on the floating version of temporal
logic for fair transition systems. In this paper, we recast RTTL in the anchored
framework of Manna and Pnueli [21], which is simpler and more concise than the
floating version. To this we add the real-time semantics and proof rules for deal-
ing with hard time systems. A decomposition theorem for modular reasoning is
provided. Hierarchical modular development of systems using the heuristics and
the toolset is illustrated with examples, including a mutual exclusion algorithm
based on time bounds and real-time resource allocation. Timing constraints need
not be known a priori. The heuristics are used to derive the timing constraints that
will guarantee various properties such as mutual exclusion and real-time
response. The development paradigms proposed in this paper including compo-
sitional reasoning, heuristics for verifying modules or decision procedures, and
the support of a graphical toolset provides a feasible approach to the systematic
development of real-time reactive systems.
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1.0  Introduction

 

Software that controls safety critical systems can endanger the environment
and life itself. In a recent case for example, errors in the code of computerized
radiation therapy machines resulted in serious injuries and deaths [19]. Coding
errors are one source of concern, but omissions in the software requirements or
mishandled environmental conditions may also contribute to dangerous behav-
iour of critical equipment (e.g. nuclear reactors, robots, planes, and traffic sys-
tems). Extensive testing and software quality assurance is obviously crucial if
systems are to be deployed safely. 

One of the best methods we know of for software quality assurance, is the use
of formal methods for the specification and verification at the module and sys-
tems level. 

 

Real-time reactive modules

 

 are the crucial elements in safety critical,
embedded and concurrent systems. Transformational programs produce a final
result on termination. In contrast, 

 

reactive

 

 programs maintain ongoing non-termi-
nating interaction with their environments. Embedded software must interact
with an environment of machinery, sensors and actuators that are not completely
under the programmer’s control. The difficulty of specifying such systems is com-
pounded when 

 

hard real-time

 

 constraints on the system behaviour must be satis-
fied. 

Logical formalisms and techniques have been invaluable for proving proper-
ties of complex computing systems. The idea of representing concurrent pro-
grams and their specifications as formulas in a temporal logic was first proposed
by Pnueli [33]. However, untimed temporal logic admits only the treatment of
qualitative timing properties such as the demand that an event occur “eventu-
ally”. Hard real-time systems depend crucially on the actual times at which
events occur. 

Semantic extensions to temporal logic for hard real-time systems were origi-
nally proposed in [4,17]. The TTM/RTTL framework was introduced a few years
later, and included a proof methodology and the first decision procedures for
fragments of the real-time logic [22,23,32]. Real-time extensions to Petri nets, pro-
cess algebras and various real-time logics have been proposed over the last
decade. A detailed discussion and comparison of other real-time formalisms and
TTM/RTTL is presented in [26].

The TTM/RTTL framework provides a formal methodology for the specifica-
tion, development and verification of real-time reactive systems. This methodol-
ogy consists of several elements listed below:

 

•

 

A 

 

generic computational model

 

 called timed transition systems (TTMs) provides a
uniform representation for various real-time programming languages (e.g.
Ada, Occam and timed Petri nets) and diverse mechanisms for timing, syn-
chronization and communication constructs [21,22]. A TTM is a guarded transi-
tion system with lower and upper bounds on the transitions that relate to the
occurrence of a special transition 

 

tick

 

. The computational model assigns a

 

semantics

 

 to each real-time reactive system represented as a TTM. The seman-
tics associates with each TTM a 

 

behaviour

 

, i.e. a set of computations of the sys-
tem called 

 

legal trajectories

 

. A legal trajectory is an infinite sequence of states
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and events that represents a single execution of the program or system. An
interleaving representation of concurrency is used, which is adequate for repre-
senting true concurrency if the system is modelled at a sufficiently fine grain of
atomicity, and with the appropriate real-time and fairness requirements on
legal trajectories.

 

•

 

An 

 

abstract specification language

 

 called real-time temporal logic (RTTL), which
is a timed extension of temporal logic, augmented with some program specific
predicates and verification conditions needed to describe the state in a trajec-
tory of a reactive program. The legal trajectories of TTMs serve as 

 

models

 

 (in the
logical sense) for the formulas of RTTL. The linear semantics of RTTL allows us
to associate with a formula a set of trajectories that are models of the formula. A
program 

 

satisfies

 

 an RTTL formula if all the legal trajectories of the program are
models of . A TTM and an associated RTTL formula are thus two ways of
looking at a reactive system; in each case they are associated with a set of legal
trajectories that characterize the behaviour of the program. TTMs constitute
our link to low-level “real world” procedural implementations, while an RTTL
formula is a declarative higher-level abstract specification of the system behav-
iour. This is in contrast to single language frameworks such as the temporal
logic of actions [1] in which both low level programs and their high-level
requirements are specified in the same temporal language.

 

•

 

A 

 

proof system

 

 which allows us to prove that a program (i.e. a TTM) satisfies a
given RTTL specification. The proof system is partitioned into two parts. The
state reasoning part is for proving validities of 

 

state-formulas

 

 (predicates in the
program variables with no temporal operators occurring in them that can be
evaluated in a single state). State-formulas make assertions about relationships
between the program variables which range over various domains such as inte-
gers, rationals, arrays, sets and lists. The temporal logic part of the proof sys-
tem is itself divided into parts. A general part allows for the derivation of
generally valid theorems (satisfied in any program). A program part allows for
the derivation of those properties that are specific to a particular program (but
are not necessarily generally valid). The separation between state reasoning
and temporal logic reasoning is advantageous. Most of the work in proving
important properties involves mainly state reasoning with very little actual
temporal logic needed. Hence, off the shelf theorem provers can go a long way
towards mechanizing proofs.

 

•

 

Decision procedures

 

 and 

 

visual tools

 

 for automated specification and verification
take the burden off the human verifier and allow for larger systems to be
treated than can be hand verified. Tools that have graphical specification meth-
ods [12,16,35] have been developed because engineers like to work with pic-
tures. StateTime [27] is a prototype toolset for the TTM/RTTL framework. The
BUILD tool allows the designer to enter systems as TTMcharts (similar to state-
charts). Any partial or complete model is immediately executable, which
allows for rapid prototyping and validation. The VERIFY tool is used to model-
check finite state TTMs. The DEVELOP tool is used for verifying infinite state
systems using the proof system. The DEVELOP tool uses constraint logic pro-

p
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gramming for state reasoning, and proof diagram heuristics for temporal rea-
soning. StateTime was used for checking part of the shutdown procedure for
the Candu reactor [30]. The tool automatically discovered that the pseudocode
for the trip delay did not satisfy its requirements.

Model-checking was first introduced by the authors of [8], and extended to
real-time systems in [22,23], which is the basis of the VERIFY tool. Time cannot
just be modelled by a concurrent process that continuously increments some time
variable, for then the reachability graph would be infinite state. A more sophisti-
cated approach must be used to keep the reachability graph finite state, but this
results in an additional complexity over untimed systems that depends on the
product of the upper time bounds of the timed transitions or clocks [2,5]. 

Techniques for efficient model-checking for real-time temporal logics have
steadily improved since the earlier work, especially with the use of binary deci-
sion diagrams and efficient state space exploration [3,6,13,34]. Not all of these
techniques are suitable for the general systems that VERIFY must deal with. For
example, binary decision diagrams do not always deal with data variables effi-
ciently. The intention is to incorporate some of these techniques into the VERIFY
tool.

A proper method for constructing real-time reactive systems cannot wait until
a full implementation is constructed followed by 

 

a posteriori

 

 hand verification of
the complete system. Real systems are just too big and complex for such an
approach. A more constructive approach is needed for gradually transforming a
specification into a correct implementation. Two major transformations of impor-
tance are 

 

decomposition

 

 and 

 

refinement

 

. 

In refinement, we replace a moderately sized action that is atomic at one level
of abstraction, by a more detailed implementation that necessarily makes the orig-
inal action non-atomic at this lower level. At the module level, we would like to
replace a high-level module  by  (with lower level constructs that are
directly available on the considered machine). To do this, we define the 

 

observable
subset

 

 of the module variables (usually the external input and output variables),
and consider the corresponding reduced behaviour projected onto the observable
set, taking due care that the modules agree on when to take clock ticks.  refines
(or implements)  if the reduced behaviour of  is a subset of the reduced
behaviour of . Such a refinement relation can be checked efficiently in polyno-
mial time for finite state TTMs [18]. We may reverse the process and consider 
an 

 

abstraction

 

 of . Instead of verifying the detailed module , we may instead
verify the simpler abstraction . At the logical level, refinement is just entail-
ment, i.e.  where  are the RTTL reactive behaviours of modules

 respectively.

Decomposition involves breaking a process  into modules  so that
 (parallel composition). To properly handle decomposition, we need

a compositional proof system, in which the temporal properties of a composite
process can be deduced from the properties of its components.

Mh M l

M l
Mh M l

Mh
Mh

M l M l
Mh

Rl Rh→ Rh Rl,
Mh M l,

M M1 M2,
M M1 M2

||=
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Contribution and outline of this paper

 

The original version of RTTL was based on the floating version of temporal
logic for fair transition systems. In this paper, we recast RTTL in the anchored
framework of Manna and Pnueli [21], in which the validity of a temporal formula
is anchored to the initial state of a trajectory (computation). The anchored version
is simpler and more concise than the floating version, and past temporal opera-
tors are introduced without increasing the complexity of decision procedures for
the propositional fragment of the logic [20]. 

Since RTTL is a conservative extension of the logic of [21], any theorem or rule
in [21] holds in RTTL, and we may immediately use its compositional apparatus.
RTTL extends the untimed logic with various axioms and rules specific to timing
properties. A decomposition theorem for real-time modular reasoning is provided
in Section 5. The theorem is applicable to all real-time reactive systems that map
into TTMs and not just to a specific language. This may be contrasted to the com-
positional proof systems (one in temporal logic and one in an extended Hoare
logic) provided in [15] for an Occam-like language. In our proof system, Hoare-
like constructs are subsumed in the temporal proof system.

The DEVELOP tool uses the constraint logic programming language PrologIII
[9] for automating state reasoning about infinite state modules. Using proof dia-
gram heuristics in the tool, modular development and verification of systems can
be performed. Weakest preconditions are used to characterize the effects of taking
a transition rather than the transition relation of [21]. The weakest precondition
characterization is useful for developing heuristics for proof strategies akin to the
sequential program derivations of [10,11]. Timing constraints need not be known
a priori. The heuristics are used to derive the timing constraints that will guaran-
tee various properties such as mutual exclusion and response. 

The development paradigms proposed in this paper include compositional
reasoning, heuristics or decision procedures for verifying modules, and the sup-
port of a graphical toolset. These methods together with the decision procedures
of the VERIFY tool, and the theory of refinement proposed in [18], provide a feasi-
ble approach to the systematic hierarchical development of real-time reactive sys-
tems.

An outline of the rest of this paper is as follows. In Section 2, the computa-
tional model of timed transition systems is defined. In Section 3, RTTL is pre-
sented in the anchored framework together with its proof system. The proof
heuristics using proof diagrams and weakest preconditions are discussed in Sec-
tion 4. The heuristics are applied to a mutual exclusion algorithm that depends
upon timing constraints. In Section 5, modules and modular reasoning are dis-
cussed. A comprehensive example of modular reasoning is presented using a real-
time resource allocator. In Section 6 the various tools for computer aided specifi-
cation and verification in the framework are discussed.
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2.0  TTMs 

 

—

 

 Timed Transition Models

 

State transitions graphs are often used by computing scientists, communica-
tion engineers, control theorists and circuit designers to describe physical sys-
tems. However, the basic transition as an event leading from one state to the next
is much too “low-level” for the adequate representation of programming con-
structs. Therefore, we generalize transitions by allowing multiple simultaneous
assignments to several variables where each variable may itself be a complex
structure. The transitions of TTMs are timed versions of the fair transition systems
of Manna and Pnueli [21], and related to the UNITY notion of a transition in the
work of Chandy and Misra [7].

A TTM 

 

M

 

 is defined as a 5-tuple  consisting of a finite set of
typed variables , an initial condition , a finite set of transitions , and justice
and fairness sets  (subsets of ). The variables set is subscripted with the TTM
name when more than one TTM is involved, e.g.  refers to the variables set of

 

M

 

 (likewise the other component of a TTM will be subscripted where necessary).

Usually, in any given real-time system, three very different types of timing
constraints may need to be asserted on system transitions. In order of increasing
stringency they are:

 

•

 

Spontaneous transitions

 

 may occur at any point in time that they are enabled, or
they may never occur. An example is the event of a device failure. In the sequel,
spontaneous transitions are indicated by the fact that their upper time bound is
infinity (

 

∞

 

).

 

•

 

Just transitions

 

 must eventually occur if they are continually enabled. Fairness is
a stronger version of justice which requires a transition to be taken if it becomes
eligible infinitely often. Fairness too is a qualitative property.

 

•

 

Timed transitions

 

 must occur within an exact interval specified by a lower and
an upper time bound. For example, it may take between 3 and 6 ticks of the
clock for a message to reach the recipient.

The TTM/RTTL framework can treat all the different type of transitions [21,22].
This paper focuses on real-time properties, and we therefore restrict our attention
to the 3-tuple  without a justice of fairness constraints, and our
examples will involve spontaneous and timed transitions. For completeness, the
semantic definition of justice and its resulting proof rule are provided.

 

2.1  Definition of a Timed Transition Model

 

The basic components of a TTM  are defined below:

 

•

 

The 

 

variable set

 

  is a finite set of typed variables that always has two distin-
guished variables: 

 

t

 

 (the current clock time) and  (the event variable). The
event variable is useful for specifying the occurrence of a transition from a par-
ticular state. Besides the two distinguished variables, there may also be 

 

data
variables

 

 that range over data domains used in the TTM, such as integers, lists

M V I T J F, , , ,( )=
V I T

J F, T

VM

M V I T, ,( )=

M V I T, ,( )=

V

ε
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or sets. 

 

Activity variables

 

 (also called control variables) may be used to indicate
progress in the execution of the various concurrent threads or processes of the
TTM. Activity variables range over locations in the TTM called 

 

activities

 

.

Each variable  has an associated range of values . For example,
for the clock variable 

 

t

 

 we usually set . The type of the
event variable  is just the set of transitions (as will be illustrated later), i.e.

.
A 

 

state

 

 

 

s

 

 of the TTM is a mapping that assigns to each variable  a value
 in . The set of all states is denoted by . 

The 

 

restricted state

 

  is the restriction of the state  to all variables except for
the event variable  (an example of a restricted state is given later in (EQ 3)).

The set of all restricted states is denoted by .

 

• The initial condition  is a boolean valued expression in the variables set that
characterizes the states at which the execution of the TTM can begin. A state
satisfying  is called an initial state.

• The transition set  is a finite set of transitions  where  is the
enabling condition of the transition,  is the transformation function,  is the
lower time bound and  is the upper time bound, where .
Every transition set has a distinguished transitions  (the clock tick). In the
sequel, a precise definition of a transition will be given. A transition is guarded
by its enabling transition, its lower and upper time bounds determine its
moment of occurrence with relation to the number of ticks from its moment of
enablement, and its transformation function determines the successor state.

The enabling condition is a boolean valued expression in the variables set that
asserts under what condition a state s may have successor states via the transi-

tion . The transformation function  is a partial function  that maps

the restricted state  in  to a set of successor states that are obtained when  is

taken. The transformation function is defined for all restricted states  in
which the enabling condition  evaluates to true.

An expression of a TTM is constructed from the variables in , from constants such
as  (the number zero) and  (the empty set), to which functions such as + (inte-
ger addition) or ∪ (set union), and relations such as ≥ (greater than) or ⊃ (subset)
are applied. For example,  and  are expressions. Expressions also
have a type depending on the types of the constants, variables, functions and rela-
tions. For example, the type of  is the integers.

A boolean expression has a type . For example 

is a boolean expression. 

A state-formula (or predicate) of a TTM is constructed out of boolean expres-
sions, boolean connectives and quantification over dummy variables. For exam-
ple

(EQ 1)

v V∈ type v( )
type v( ) 0 1 2 …, , ,{ }=

ε
typeε( ) T=

v V∈
s v( ) type v( ) S

ŝ s
ε

Ŝ

I

I

T τ eτ hτ lτ uτ, , ,( )= eτ
hτ lτ

uτ lτ uτ, type t( ) ∞{ }∪∈
tick

τ hτ hτ:Ŝ 2Ŝ→

ŝ Ŝ τ
ŝ Ŝ∈

eτ

V

0 ∅

v1 5v2+ v3 v4∪

v1 5v2+

true false,{ }

v1 0=( ) v2 1 2 3, ,{ }⊆( )∨( )¬

d∀ d:integer v1 d≥( )⋅ v2 0=( )→
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is a state-formula that is universally quantified over the dummy integer variable
. Type declarations such as  are left out if its is clear from the context

what they the type of the dummy is. The free variables in the formula are usually
variables in the variable set V (which are called flexible variables as they assume
different values in different states). By contrast, we may add to the variables set a
set of rigid variables, which have the same value in all states of a sequence (compu-
tation).

An example of a state s of a TTM with  is given by

(EQ 2)

i.e. s maps the event variable  to the transition push, the clock variable t to 10,
and the variables  and  are mapped to 5 and 7 respectively. The restricted
state  corresponding to  is 

(EQ 3)

(i.e.  is the same as  except that the event variable  is left out).

The assignment of values to variables, by a state, can be uniquely extended in
the usual way to expressions and state-formulas. For example, 
where  and . The state-formula in (EQ 1) evaluates to false in the
state s given above. If a state-formula  evaluates to true in a state s, then we write

            (  state-satisfies the formula )

A state provides values for all the free variables in a state-formula and hence
also provides sufficient information to determine whether the satisfaction relation
holds. Quantification over dummy variables does not effect the determination of
satisfaction because it is irrelevant how the state interprets the dummy variables.
Thus a state-formula is fully interpreted by a state. This is in contrast to formulas
of temporal logic (see later) which cannot be interpreted in a single state but must
be interpreted over an infinite sequence of states.

Consider a state  over the variables set  given by

.

Then the satisfaction of the state-formula

 

in the state  is computed as follows:

i.e. the state does not satisfy the state-formula.

d d:integer

V ε t v1 v2, , ,{ }=

sr ε:push t:10 v1:5 v2:7, , ,〈 〉

ε
v1 v2

ŝ s

ŝ t:10 v1:5 v2:7, ,〈 〉=

ŝ s ε

s v1 5v2+( ) 40=
s v1( ) 5= s v2( ) 7=

p

ssp s p

s V ε t x y z, , , ,{ }=

s ε:push t:3 x:0 y:1 z:2, , , ,〈 〉=

x z+ 2y=( )( y z>( ) )→ ε(∧ push)=

s

ss x z+ 2y= y z>→( ) ε( rpush)∧

≡ s( x( ) s z( )r2+ y( ) s y( ) s z( )> ) s ε( )(∧→ push)=

≡ 0( 2+( ) 2 1 ) 1 2>( ) ) push(∧→× push)= =

≡ true( false) true∧→

≡ false
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2.2  An example of a TTMchart
In this paper, TTMcharts are used as concrete representations of real-time reac-

tive systems. Petri nets, programming languages or communicating processes
could also have been used, and transformed into TTMs. However, the hierarchical
visual constructs of TTMcharts are convenient in systems that are combinations of
hardware devices (e.g. sensors, valves pumps) and software. TTMcharts have the
visual hierarchical and compositional constructs of statecharts [12] such as nested
boxes and arrows to arbitrary depth for state decomposition via products (i.e.
AND-composition for concurrency) or disjoint union (i.e. XOR-composition for
sequential operations). Communication is via the blocking rendezvous rather
than the broadcast mechanism of statecharts, which is more convenient for repre-
senting real-time code in Ada or Occam.

A tool called StateTime automatically transforms TTMcharts into generic TTMs
which can then be automatically verified [27]. The tool will be discussed in more
detail in Section 6.0. We now provide an example of a TTMchart and its transfor-
mation into a TTM.

The TTMchart InSensor in Fig. 1 represents a sensor some distance from a level
crossing gate that is situated at the point where a railway track crosses a road. The
sensor detects trains that are about to enter the crossing area. The sensor informa-
tion can be used to lower or raise the gate to ensure that the gate is down when-
ever there are trains in the area. The trains move only in one direction from
InSensor at the entrance to the crossing to another sensor OutSensor at the exit to
the crossing area.

Any number of trains can be in or near the crossing area (for example, a num-
ber of single engines without accompanying cars). A count c is kept of the number
of trains in the area (the count is incremented by entering trains and decremented
by exiting trains).

In Fig. 1, the TTMchart InSensor is the XOR-composition (XOR stands for
exclusive or) of the subactivities ok and bad. To be in InSensor is to be in ok or bad
but not both at the same time. The activity ok is annotated with a little arrow with
no source to indicate that it is the default start activity of InSensor. 

In Section 2.5, AND-composition of charts is used to model concurrency. A
TTMchart which is AND-decomposed into subactivities must be in all of its sub-

TABLE 1. TTM transitions corresponding to the TTMchart  InSensor (see Fig. 1)

Name Enabling Condition Transformation Function Lower Upper

first 0 ∞
add 4 ∞
reset 1 2

fail 0 ∞
fix 2 150

tick — —

x( rok ) z(∧ 0 )= z:1 c:1,[ ]

x ok=( ) z(∧ 1 )= c( 10 )≤∧ c:c 1+[ ]

x ok=( ) z(∧ 1 )= c(∧ 0 )= z:0[ ]

x ok=( ) x:bad[ ]

x bad=( ) x:ok z:0 c:0, ,[ ]

true t:t 1+[ ]
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activities simultaneously. Thus, , and both sensors
have the train count c as a shared variable.

We use the terms activities or subactivities for the states (substates) of state-
charts. The word “state” is reserved in the sequel for references to the global
assignment of values to all variables (e.g. see the state s in (EQ 2)). The top most
activity InSensor together with all of its sub-activities is called a TTMchart.

The activity bad has no further internal structure, and is therefore called a basic
activity, while ok is a structured activity as it is itself XOR-decomposed into the
activities 0 and 1. The basic activity bad is called a sibling of ok. InSensor is the root
activity, and the root activity together with all its siblings, descendants and transi-
tions is called a TTMchart. 

The default activity of ok is 0 as shown by the little arrow. Activity names may
start with a letter (e.g bad, ok, InSensor) or a number (e.g. 0 and 1).

The structured activity ok is an abstraction of its subactivities 0 and 1. This
abstraction allows for the expression of properties common to its components,
thus facilitating hierarchical constructions. For example, an event originating at
the boundary of a structured activity applies to all its subactivities. Thus the sin-
gle event fail is used to describe the common property that no matter what the
current subactivity in ok is, the sensor may fail at any point in time. Without the
abstracting activity ok, two events (edges) would be needed to model sensor fail-
ure (one transition from 0 to bad and one from 1 to bad). So too, the event fix ends
at the outer contour of ok, thus indicating that its destination is the default activity
of ok (in this case 0).

The real-time behaviour of the TTMchart InSensor is described by the time
bounds of its events. There is a conceptual global clock that ticks infinitely often.

FIGURE 1. The TTMchart InSensor— detects trains entering a crossing area

fix [2,150]

[c:0]

first[0,∞]:

[c:1]

bad

1

add[4,∞1:

cl9 c 

[c:c+1]

fail[0,∞]:

ok(z,c)

InSensor(x)

0

reset[1,2]:

c=0   c [ ]

Sensor InSensor OutSensor||=
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An event waits the lower bound number of ticks before it becomes eligible to be
taken. It must be taken or become disabled by the upper time bound number of
ticks. 

The event fail[0,∞] models a spontaneous event which can occur at any
moment (or never), as indicated by the upper time bound of infinity. The time
bounds of the transition fix[2,150] indicates that the transition fix must occur but
only after being in the activity bad for between 2 and 150 ticks inclusive. 

When a transition such as first:[c:1] occurs, it updates the data variable c to the
expression on the right of c (i.e. c is assigned the value 1 indicating that the first
train has arrived). So too, if add:[c:c+1] occurs, it increments the current value of c
by one to indicate one more train has arrived.The interarrival rate of trains is con-
strained by the lower time bound 4 of add.

A guard may be placed on a transition to indicate that the transition may
occur only if the guard is true. For example, since no more than 10 trains can ever
be fitted into the crossing area, the guard on the transition add is . In general,
guards may be any state-formula. If a transition is not annotated with a guard
then the guard is assumed to be true.

The behaviour of the sensor is nondeterministic. For example, if the current
subactivity is 1 (in ok), then it is possible that a new train may arrive (add), or the
sensor may fail at any moment (fail). The TTMchart describes the possible events
only not their probability of occurrence. If the sensor fails then add becomes dis-
abled and fix becomes enabled, but not eligible to occur until the clock has ticked
twice.

2.3  The TTM corresponding to a TTMchart
In order to define the precise behaviour of a TTMchart it is necessary to trans-

form the chart into a TTM with its associated variables set, initial condition and
set of transitions. Each structured activity has its own activity variable ranging over
its subactivities. For the chart in Fig. 1, two activity variables  (for InSensor) and

 (for ok) are required, with types:

(EQ 4)

In order to assert that the sensor is in (atomic) activity 0 of ok, we may write
the state-formula . To assert that the current activity is bad
write . A new activity variable is needed for each atomic activity that is
refined with further internal structure. The StateTime tool supports such hierar-
chical top down development, as well as supporting bottom up construction of
smaller parts into larger systems via OR and AND composition.

The sensor as a TTM is defined as .
The variables set of the sensor with associated types is:

c 9≤

x
y

type x( ) ok bad,{ }=

type z( ) 0 1,{ }=

x ok=( ) z(∧ 0 )=
x bad=( )

InSensor V InSensor I InSensor T InSensor, ,( )=



Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 13

 (EQ 5)

and the types of  and  are given in (EQ 4). The initial condition is given by the
state-formula:

(EQ 6)

The set of transitions  is given in Table 3. Each event (edge) in the
chart is mapped to a corresponding transition of the same name. The enabling
condition of a transition is the conjunction of its guard and a state-formula
describing the activity in which the chart must be for the transition to fire. For
example, the guard of the transition reset is  and the state-formula describ-
ing the activity in which the transition is taken is . Thus the
enabling condition of reset is

 

The transformation function of a transition is provided in simultaneous
assignment format  where each of the variables  is
assigned the value of the expression . The type of the expression  must be the
same as the type of the variable . When the transition is taken, the variables
listed in assignment format are changed, but all other variables are left
unchanged. For example, suppose the sensor is in the state

 

i.e. the sensor is in the sub-activity 0 of the ok activity, the train count is 0 and the
clock indicates that 3 ticks have elapsed since initialization. In this state, the tran-
sition first is taken leading to a new state  where ,
as determined by the transformation function of the transition ,
i.e. the activity variable  and the data variable  change as shown in the succes-
sor state , but all other variables remain the same. The value of the event vari-
able  remains unknown in this successor state until it becomes known what
transition is taken (say tick). The complete successor state is then fully defined by

The transformation function  does not include an assignment to the event
variable as it is unknown at the time that first is taken that it will be followed by
tick. Hence the effect of the transformation function of first must be stated in terms
of restricted states, i.e. .

When a transformation function  is given in assignment format, then there is
only one (restricted) successor state, i.e.

 with . 

The assignment format is convenient for developing proof heuristics using weak-
est preconditions, and is sufficient in most cases. In general, however, a state may

V InSensor ε t x z c, , , ,{ }=

type ε( ) init tick first add reset fail fix, , , , , ,{ }=

type t( ) type c( ) 0 1 2 …, , ,{ }= =

x z

I InSensory x( ok= z∧ 0 c∧ 0 )= =

T InSensor

c 0=( )
x( ok= z∧ 1 )=

eresety c( 0 )= x(∧ ok= z∧ 1 )=

v1:a1 v2:a2 … vi :ai … v, ,
k
:ak, , ,[ ] vi

ai ai
vi

sir ε: first t:3 x:ok z:0 c:0, , , ,〈 〉

si 1+ si 1+ r ε:? t:3 x:ok z:1 c:1, , , ,〈 〉
h f irstr z:1 c:1,[ ]

z c
si 1+

ε

si 1+ r ε:tick t:3 x:ok z:1 c:1, , , ,〈 〉

h f irst

ŝi 1+ rh f irst ŝi( )

h

h:Ŝ Ŝ→ ŝi 1+ h ŝi( )=
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have many successor states, in which case . The transition choose(x)
(Section 5.3.3.) allows for nondeterministic choice of the value of the variable x in
the successor state, and hence cannot be given in assignment format. This pre-
sents no problem as its weakest precondition is well-defined.

An execution or computation performed by a TTM is called a trajectory. A tra-
jectory  of a TTM is an infinite sequence of states

 , (EQ 7)

or alternatively . (EQ 8)

At each (restricted) state  there is an output transition  to the successor .
The full state consists of the restricted state and the transition taken at that
restricted state, i.e.  where . The tick transition is a diligent
transition that is always ready to be taken even if no other transitions are enabled.

In process algebras transitions (events or actions) are preeminent while in
extended state machine formalisms states are preeminent. In TTM/RTTL both
states and events (using the distinguished event variable ) are directly specified.
For example, the RTTL formula  specifies that if
the TTM is in the “bad” state with the train count at 6, then eventually the “fix”
event will occur (i.e. a state will be reached from which the fix event must be
taken).

The first nine states of a possible trajectory  of InSensor
are shown in Table 2. The first state  must satisfy the initial condition, i.e.

. The prefix shown in the table can be extended by showing what

transition (e.g. tick or first) occurs in , and using the transformation function to
compute the successor. The trajectory in Table 2 may be displayed graphically as:

2.4  Semantics of TTMs — legal trajectories
We saw in the sensor example that a trajectory is a sequence of states whose

initial state satisfies the initial condition, whose successor states are obtained by
applying enabled transitions according to the transformation functions, and

TABLE 2. A trajectory  of the sensor.

sensor 

variables

tick tick first fail tick tick tick fix ?

0 1 2 2 2 3 4 5 5

ok ok ok ok bad bad bad bad ok

0 0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1 0

ŝi 1+ h si( )∈

σ

σ s0s1s2…sisi 1+ …=

σ ŝ0 ŝ1 … ŝi ŝi 1+ …
τ0 τ1 τi τi 1+→ → → → →=

ŝi τi ŝi 1+

si ŝi τi,( )= si ε( ) τi=

ε
x( bad= cr6 )∧ e ε(→ fix)=

σ s0s1s2s3s4s5s6s7s8…=
s0

s0mI InSensor

σ

s0 s1 s2 s3 s4 s5 s6 s7 s8 …

ε …

t …

x …

z …

c …

s8

s6 s7 s8s0 s2s1
s3 s4 s5

tick tick first fail tick tick tick fix …
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whose occurrence of transitions in any state must satisfy the lower and upper
time bound requirements. Such a sequence of states will be called a legal trajectory
of the TTM, and its precise definition is provided below. First a few definitions are
required. 

A transition  is said to be enabled in a state  if  (i.e. if  satisfies the
enabling condition of ). Similarly, a transition  is disabled in a state  if .
A transition  is taken (or occurs) in a state  if .

Given a state  of a trajectory , we define the number of ticks until  as fol-
lows:

(where #j  is the counting quantifier [Gries 1985, #59] that denotes the number of
times that the expression  is true in the range ). For exam-
ple, for the trajectory in Table 2, . When it is clear which trajectory the
state  refers to then the trajectory can be left out and we write  instead of

. Where no confusion will occur, we may also abbreviate  to its position
number in the trajectory . Note that  (the number of ticks until the initial
state is zero).

Fig. 2 displays the three important moments needed for defining the time
bounds: the moments of enablement, eligibility and occurrence. A transition  is con-
strained not to occur between its moments of enablement and eligibility (despite
being enabled) due to its lower time bound. At its moment of eligibility the transi-
tion  may be taken. By the time the upper time bound number of ticks has
elapsed,  must either have been taken or become disabled (by being preempted
by some transition that disables ). The formal definition of these various
moments will now be given.

A state  (of a trajectory ) is a moment of enablement  for a transition
 if the transition is reenabled at , i.e.

(EQ 10)

the number of ticks from the initial state of the trajectory  to the 
state 

(EQ 9)

FIGURE 2. Moments of enablement, eligibility and occurrence

τ s sseτ s
τ τ s ss e¬ τ

τ s ss ε( τ )=

si σ si

si σ, y σ
si

≡ # j 0 j i   s j s ε(•<≤•  tick ) =

  s j s ε( tick ) = 0 j i<≤
s6 σ, 4=

si si
si σ, si

i s0 0=

τ

τ
τ

τ

…si 1– si……            …… s j ……           …… s k … 

Moment of 
enablement

Moment of 
eligibility

Moment of 
occurrence

 

l

 

τ  ticks 
ε τ≠( )

 

u

 

τ   ticks

si σ moe si τ,( )
τ si

moe si τ,( )y si[ seτ ] si 1–[( s eτ¬ ε(∨∧ τ ) ]= i(∨ 0 ) )=
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Thus  is a moment of enablement if  is enabled in , and in the previous state
either  is disabled or  occurred (and after occurring remains enabled

 

2

 

), or there
is no previous state and the current state  is an initial state. (By convention

 is false if ).

A state  is a 

 

moment of eligibility

 

  for a transition  if the lower time
bound number of clock ticks has occurred since its moment of enablement , i.e.

 

(EQ 11)

 

If  is the moment of enablement for , then the lower time bound condition
states that  may not occur up to and including its moment of eligibility, i.e. 

 

(EQ 12)

 

The upper time bound constraint of  states that either  occurs or becomes
disabled by the time  ticks have elapsed from the moment of enablement , i.e.

 

(EQ 13)

 

Definition of a Legal Trajectory :

 

A legal trajectory  of a TTM  is defined to be an infinite
sequence of states  satisfying the following requirements:

 

•

 

Initialization

 

: The first state of the trajectory satisfies the initial condition, i.e.
. 

 

•

 

Succession

 

: For each state ,  (i.e. if the transition  is taken at
 then  must be enabled in ), and . (If the transformation func-

tion is in assignment format then  has a single successor state  with
.)

 

•

 

Ticking

 

: The clock ticks infinitely often, i.e. for each state  in the trajectory
there is always a later state  (where ) such that .

 

•

 

Justice

 

: If a justice set  is defined (as explained in the beginning of this section),
then for each , if  is continually enabled beyond some state  then 
must be taken infinitely often beyond .

 
•

 
Real-Time

 
: For each moment of enablement of each transition in the trajectory,

the relevant lower and upper time bound constraints must apply, i.e.

where .

The set of all legal trajectories of a TTM  is denoted by . The initialization,
succession and real-time requirements are 

 

finitary

 

 constraints, because they only
constrain the finite prefixes of a legal trajectory. There is always a finite prefix of
the trajectory in which a violation of the constraint can be detected. No extension
of the faulty prefix can therefore be a legal trajectory.

 

2.  e.g. a periodically occurring selfloop.

si τ si
τ τ

si
sjsp j 0<

sj mel sj τ si, ,( ) τ
si

mel sj τ si, ,( )y j i≥( ) amoe si τ,( )a sj 1– s ε([ tick ) ]= sj[∧ si lτ ]+=

si τ
τ

lower si τ,( )y lτ 0>( ) j i m≥∃ el sj τ si, ,( ) m i m j sms ε τ )≠(⋅ )<≤∀(∧→

τ τ
uτ si

upper si τ,( )y uτ ∞<( )c k i sks ε(≥∃ τ eτ ) sk si uτ ]+≤[∧¬∨=

σ Σ
M

∈
σ M V I T, ,( )=

σ s0s1s2…sisi 1+ …=

s0sI

si sis ε( τ )= eτ→ τ
si τ si ŝi 1+ hτ ŝi( )∈

si si 1+
ŝi 1+ hτ ŝi( )=

si
sj j i≥ sjs ε( tick )=

J

τ J∈ τ si τ
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τ T̂∈ i 0≥∀⋅ moe si τ,( )clower si τ,( ) upper si τ,( )∧∀

T̂ T M tick{ }–=

M ΣM



Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 17

The infinitary requirements of ticking and justice, constrain the entire infinite
sequence. Violation of the infinitary requirements can never be detected in a finite
prefix. Every finite sequence that satisfies the finitary requirements can be
extended into an infinite sequence that satisfies all five requirements. The need for
the justice requirement will be explained more fully in Section 2.6.

Refinements
Consider a TTM  having an observable (usually an input or output) variable

. A reduced trajectory  of the TTM (relative to ), corresponding to the trajectory
, is obtained from  by (a) replacing each state  of  with a reduced state

which is the restriction of  to , and (b) omitting from the trajectory any reduced
state that is identical to its predecessor, but not identical to all its successors (so as
not to delete suffixes which are infinite repetitions of the same state). An example
of such a reduced trajectory is: . The set of all reduced trajectories
of  is called its reduced behaviour.

A reduced trajectory can also be obtained with respect to an observable subset
 of the TTM variables. We require that  where  is time variable. A lower

level TTM  is a refinement of  relative to  if the reduced behaviour of  is a
subset of the reduced behaviour of . Since  it follows that  agrees with

 on when to take the clock ticks so that real-time behaviour is preserved in any
refinement.

2.5  AND–composition of TTMs
In the level crossing example (Fig. 1), the sensor at the entrance to the train

crossing area works in parallel with the sensor at the exit. This is represented by
the AND-composition of InSensor and OutSensor in Fig. 3, for which we have

. To be in the root activity Sensors is to be in both
subactivities InSensor and OutSensor simultaneously (there are two separate
threads of execution).

AND-composition of two charts can be represented by parallel composition of
the two corresponding TTMs. Given

    and    

the parallel composition

 

is defined as follows:

M
y σr

y
σ σ si σ

si y
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where  is defined as  if there are no shared transitions (i.e. all transi-
tions are local). A shared transition models a situation in which there is an inter-
lock or rendezvous between two parallel processes that prevents either one from
making progress until they are both able to take the shared transition (as in CSP
[14]).

The transition  is an example of a shared transition which involves the
simultaneous execution of InSensor and OutSensor in Fig. 3. Thus, the InSensor
“arms” the OutSensor via  so that the latter decrements the counter  by one
every time a train exits. Either sensor is blocked at subactivity 0 in ok until both
are enabled to be taken simultaneously.

The shared transition  is the composite of the two components  in
InSensor and  in OutSensor. By convention, the composite and component
transitions all bear the same name. For explanatory convenience, we have labelled
the composites as . 

The enabling condition of the composite is given by , i.e.
, where  are the activity variables

of InSensor and  the corresponding activity variables of OutSensor. The com-
posite transformation function is the combination of assignment updates, i.e.

.

The composite lower and upper time bounds are defined by

FIGURE 3. AND-composition — Sensors = InSensor || OutSensor
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    and    

which in this case are trivially zero and infinity respectively. In general, however,
a component transition in one process can “force” its corresponding component
in the other process to execute within the first component’s upper time constraint.

The transition  is also shared (Table 3). The transitions  and  are
examples of local transitions. These transitions do not occur in lockstep with any
other transitions, but are each taken independently subject only to their own time
bound constraints. A shared transition may have components in finitely many
parallel TTMs. In such a case, all components must be taken in lockstep together.

If there are shared transitions, then  is defined as the union of the two
transition sets, but with the components of the shared transitions replaced by the
corresponding composite transitions. The transition set of Sensors is shown in
Table 3.

Since the parallel composition of two TTMs is itself a TTM, the behaviour of
the resulting composite TTM is also subject to the requirements for legal trajecto-
ries enumerated in Section 2.4. In order to develop a compositional proof system.
it will be necessary to define an interface specification for a TTM (Section 5.1).

In the chart of Fig. 3, events in different TTMs having the same name are con-
sidered shared. In the StateTime tool, an event must be declared shared. If not, it is
local and does not synchronize with any external transition. Hence both fail1, fail2
can be called fail in StateTime. Which variables and events are exported is a matter
that must ideally be described in the interface specification of a TTM.

2.6  Interleaving and Concurrency
An essential element of the generic TTM model is that concurrency is repre-

sented by interleaving. Two transitions in parallel processes are never taken at pre-
cisely the same instant, but take turns in executing transitions, which are thus
treated as atomic. The interleaving approach reduces concurrency to nondeter-

TABLE 3. Transition Set of the TTMchart “Sensors” (see Fig. 3)

Name Enabling Condition Transformation 

Function

Lower Upper

first 0 ∞
add 4 ∞
sub 4 ∞
reset 1 2

fail1 0 ∞
fail2 0 ∞
fix1 2 150

fix2 2 150

tick true — —

l f irst max lf irst I
l f irstO

,( )= u f irst min uf irst I
u f irsto

,( )=

reset add sub

T
1
zT

2

x( rok z∧ 0 ) y(∧ ok= = w∧ 0 )= z:1 c:1 w:1, ,[ ]

x( ok= z∧ 1= c 10 )≤∧ c:c 1+[ ]

y ok= w∧ 1= c 0>∧( ) c:c 1–[ ]

x ok= z∧ 1= c∧ 0=( ) a y ok=( w∧ 1 )= z:0 w:0,[ ]

x ok=( ) x:bad[ ]

x ok=( ) x:bad[ ]

x bad=( ) x:ok z:0,[ ]

y( bad )= y:ok w:0,[ ]

t:t 1+[ ]
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minism. This is similar to the expansion law for process algebras such as CSP for
which  where  stands for nondeterministic choice between the
events  and . Either event is eligible to be taken but may be ignored forever. 

The interleaving model of computation simplifies analysis but must be used
carefully to model truly concurrent systems which have overlapped execution (in
which the execution of statements on different processors usually overlap with
each other rather than interleave).

Two problems must be resolved to ensure that the interleaved model ade-
quately represents true concurrency. These two problems revolve around the
issues of independent progress and interference. 

Independent Progress
In a truly concurrent system in which each process may reside on different

processors, each processor is independently responsible for its own progress (as
opposed to the multiprogramming case in which a single CPU is shared by multi-
ple processes). Thus some action in each process is always eventually executed.

In an interleaved computation (that is not subject to the justice or real-time
constraints), the only requirement is that the tick of the clock happen infinitely
often. There is nothing to disallow a trajectory in which transitions from one pro-
cess only are always chosen. Thus, interleaved trajectories may manifest behav-
iours that will never be observed in truly concurrent executions.

The justice requirement imposes restrictions on the basic model, guaranteeing
progress for all processes in the interleaved model. The justice requirement tells
the scheduler that builds up a trajectory that it cannot forever ignore a transition
that is continually enabled beyond some point. There are higher levels of atten-
tion that can be paid to processes (e.g. fairness), but justice is the main require-
ment needed so that the interleaving model represents true concurrency. The
justice constraint is imposed on  by setting the justice set to .

The real-time requirements ensure that even more attention must be paid to
transitions to ensure the overall progress of the system. The justice set imposes a
qualitative liveness constraint, whereas the real-time bounds can be used impose
a hard time response.

Interference
Consider a process with shared variable y executing the statement when y=y

do S. The guard y=y is tested in one atomic step in an interleaved computation
and so always yields the value true. By comparison, overlapped execution of this
statement will reference y twice (under naive implementation with no optimiza-
tion). If a statement in some other concurrent process interferes with y by chang-
ing y between these two references, then the guard may evaluate to false.

The issue of interference is potentially problematic because the set of all inter-
leaved trajectories may miss certain behaviours present in overlapped executions.
The dual issue of independent progress is potentially problematic because the set
of all interleaved trajectories may exhibit behaviours that are not manifested in
actual concurrent execution.

αzβ α β+= α β+
α β

α β|| J α β,{ }=
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There are two solutions to the interference problem. One possibility is to admit
more interference in the interleaved computation (by refining a statement into
more substeps of finer granularity). An assignment statement has distinct fetch,
compute and store steps. The fewer such critical references in a transition the finer
the grain of atomicity. 

A second possibility requires more protection against overlapped executions.
This can be achieved by enclosing the critical sections within release-request pairs
of semaphore statements or by other constructs such as monitors [21].

3.0  RTTL — Real-Time Temporal Logic
The view of a TTM as a generator of legal trajectories is an operational descrip-

tion of the ongoing behaviour of the system modelled by the TTM. Real-Time
Temporal Logic is a specification language that provides an alternative character-
ization of TTM behaviour that is more descriptive.

The language of temporal logic is constructed from state-formulas to which
we apply temporal operators, boolean connectives and quantification. While
state-formulas can be checked for satisfiability over a single state, temporal for-
mulas must be checked for satisfiability over infinite sequences of states (trajecto-
ries). Thus, in general, temporal formulas are satisfied in some trajectories and
falsified in other trajectories. 

A set of temporal formulas (a specification) specifies any TTM whose legal tra-
jectories satisfy all the formulas in the specification. A temporal specification
rarely specifies a unique TTM — any TTM with the appropriate legal trajectories
will do. If after developing a specification, we suddenly realize that the specifica-
tion is incomplete, the situation can be rectified by adding the missing property to
the specification as additional conjuncts in an incremental fashion.

The original version of RTTL was based on a future fragment of the floating
interpretation of linear time temporal logic [22]. In the floating version, satisfiabil-
ity is defined with respect to all positions of a trajectory (there is no special signif-
icance to the initial state of a trajectory). The anchored version introduced various
difficulties such as invalidating the deduction rule and requiring suffix closure of
legal trajectories. The anchored version was found to be simpler and more concise
[20]. In the anchored version, satisfaction is defined with respect to position zero
of a trajectory. Suffix closure is not required, and the deduction rule is valid.

In this section, we pose RTTL on the basis of the anchored version of untimed
temporal logic [21]. RTTL inherits the proof system of the standard logic. In addi-
tion, RTTL has additional proof rules for dealing with real-time properties.

3.1  RTTL semantics
For each of the operators and subformulas allowed in RTTL, we present below

a definition of its interpretation in a trajectory. This definition is based on the
notion of a formula  holding at a position ,  in a trajectory . These defini-
tions of satisfaction are:

p j j 0≥ σ
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  — trajectory  satisfies  at position , and

  — trajectory  satisfies  (  holds at the initial state), and we write .

The symbol  is used for holding over trajectories while the symbol  is used
for holding over states. 

1. State-formulas. If  is a state-formula then it is also an RTTL formula. For a
state-formula ,

    iff    

2. Boolean operators. If  and  are RTTL formulas then so are  and . 

 For a negation , we define

    iff    not [ ].

 For a disjunction , we define

    iff    [ ] or [ ]

 It is easy to extend these definitions to the other boolean connectives 
and  using their definitions in terms of negation and disjunction.

3. The next operator . If  is an RTTL formula then so is , and we define

    iff    .

4. The waiting-for (or unless) operator  (the formula  is read as:  waiting
for ). If  and  are RTTL formulas, then so is , and we define

 Thus,  holds at position  iff  holds continually from position  and
onwards either until the next occurrence of  or throughout the rest of the tra-
jectory. 

The future operators  and  defined above, are a basic set that may be used to
derive all the other future operators, as shown below:

iff there exists a , such that 
, and for every 

,

or

for all .

Operator Name Definition

 — Henceforth

 — Eventually

 — Until
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All the operators defined thus far are part of the standard linear time temporal
logic. To capture real-time properties we define the real-time until operator

, which is defined as:

The notation  was defined in (EQ 9) as the number of ticks from the initial posi-
tion of the trajectory to the position .

The ordinary until operator (a) predicts the eventual occurrence of  at some
position subsequent to , and (b) asserts that  holds continuously until (at least
the first) occurrence of . The real-time operator adds the assertion that there
must be an occurrence of  between  and  ticks from position  (with  holding
continuously true until then).

The following derived operators may be obtained using the real-time until
operator:

The real-time operators are called bounded operators.

Past operators may also be defined. For example, the once formula  is
defined by

Thus  holds at position  if iff  holds at position  or some preceding posi-
tion. Bounded versions of the past operators can also be defined. Similarly, the
previous formula  is true at a position (which is not the first position) if  is true
in the previous position, i.e.

The previous operator can be used to define a state-formula  that asserts
that there is no previous position. Since all positions (states) in a trajectory satisfy

, we have that

. (EQ 14)

The reader is referred to [21] for a complete treatment of the past operators.

iff there exits a , such that  and 
, and for every 

.

bounded response 

(e.g  must become true 
within  ticks from now).

bounded invariance —  must 
remain true until  ticks of 
the clock have been taken).

exact time —  is true in 
exactly  ticks from now.

iff  for some 
.

iff  and 
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3.2  Simple examples of RTTL specifications
The following are some frequently used formulas and their verbal interpreta-

tions. The verbal interpretation characterizes the trajectories  such that  for
the considered formula , i.e. that  holds at position 0 of . For simplicity,
assume that the subformulas  and  below are state-formulas.

•
If initially  then henceforth .
This formula states that if the trajectory satisfies , then it also satisfies . A

trajectory  satisfies  if  is true in state  (recall that  is a state-formula).

The trajectory satisfies , if for all positions ,  holds at . Consequently,

this formula expresses the following property that the trajectory  satisfies: “if
initially  then henceforth ”.

•  

Every position satisfying  coincides with or is followed by a position satisfy-
ing  (there is no cause without effect).

The subformula , interpreted with respect to a position  of a trajec-
tory, states the property: “if  holds at position  then  holds at some position
after (or coinciding with) ”. Adding the henceforth operator in front of the
subformula states that this property holds for all positions . Conse-
quently, the complete formula expresses the following property about the tra-
jectory : every position that satisfies  coincides with or is followed with a
position satisfying . (Without the henceforth operator, the property would
only apply to the initial position of the trajectory).

•  

If  initially, then eventually between 3 and 7 ticks , and  must hold contin-
uously until then. This property is asserted only at the initial state.

•
Every position satisfying  is followed within 4 ticks by , and  holds con-

tinuously until then.
Unlike the immediately preceding property, this property is asserted at all

states (because of the henceforth operator at the beginning of the formula).

•
Eventually permanently .

•
The property  cannot become true sooner than 3 ticks after any occurrence of

the property .
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3.3  Validity, entailment and congruences
The table below summarizes the definitions needed for satisfaction, validity

and entailment of temporal logic formulas.

Consider a TTM  whose only data variable is  and whose only reduced trajec-
tory is given by

 . (EQ 15)

The state-formula  is not M-state-valid as there are reachable states in
which it evaluates to false. However,  is -valid (i.e.  holds at every initial
position of every legal trajectory). The state-formula  is M-state-valid, and
hence trivially  is -valid.

The relationship GEN below enables a two-way transformation between state
and temporal validities for any state-formula  [21, p247]:

GEN:             iff            and            iff    (EQ 16)

Also, every general validity implies a TTM validity, i.e. 

Abbrevia-
tion:

Abbreviation is read as: Definition of 

abbreviation

State  state-satisfies the state-for-
mula .

Already defined.

State-formula  is state-valid.  holds in every state. 

State-formula  is M-state-valid 
(  is a TTM).

 holds on every state 
that appears in a legal tra-
jectory of .

Trajectory  satisfies RTTL for-
mula .

Already defined

RTTL formula  is valid.

RTTL formula  is M-valid.

The set of RTTL formulas  
semantically-entails the formula .

The set of RTTL formulas  M-
semantically-entails the formula .

RTTL formula  entails formula 

RTTL formula  is congruent with 
formula .

The transition  leads from RTTL 
formula  to formula . The Hoare-
like triple  is called the 
leads-to relation.

The set of transitions  
leads from RTTL formula  to 
formula .
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for any state-formula  and TTM , if  then , and (EQ 17)

for any RTTL formula  and TTM , if  then . (EQ 18)

3.4  The RTTL proof system
The general verification problem is: given a TTM  and a specification  (a set

of RTTL formulas), prove that  holds (i.e prove that each formula in  is M-
valid). The RTTL deductive system of axioms and rules is used to prove M-validi-
ties. The RTTL proof system is divided into three parts:

• The state reasoning (SR) part of RTTL proof system consists of only one axiom
that allows us to introduce at any step of a proof the line  if  is state-valid,
e.g.  may be introduced at any line of a proof with justifi-
cation SR. We may then use the interface rule GEN (EQ 16) to derive, on the
next line, . The above two step proof may be written
more concisely in one step with the justification SR+GEN. In this paper, we use
the justification SR (state reasoning) to justify any distinctly non-temporal rea-
soning involving the use of SR or any other propositional, predicate or domain
reasoning (e.g. for integers, lists and sets).

• The temporal logic reasoning (TLR) part of the RTTL proof system provides those
axioms and rules that preserve validities over arbitrary (uninterpreted) trajec-
tories. The Manna-Pnueli axiom FX5

 (EQ 19)

is an example of an axiom of the TLR part. The rule MP given by  is
an example of a rule. Instead of reproducing the TLR part in this paper, we will
justify any reasoning performed with this part by writing TLR, which means
that the proof step so justified can be obtained by using the axioms, basic rules,
theorems and derived rules of the Manna-Pnueli deductive system [21].

• The TTM reasoning (MR) part of the RTTL proof system provides the extra rules
needed to reason about validities with respect to reachable states and legal tra-
jectories of TTMs. For example, the formula  is generally valid
whereas the formula  is not. However,  is valid for the partic-
ular TTM whose only reduced trajectory is given in (EQ 15).

The introduction of the rule SR makes the RTTL proof system nonrecursive, i.e. it
can no longer be effectively (algorithmically) checked that each step of a proof is
fully justified. To counter this problem, we could introduce a deductive system for
proving state-validities, and restrict axiom SR to only those formulas that can be
proved in the state deductive system. Such a system could be any of the ones
found in texts on the predicate calculus (and the Peano axioms for integers or
whatever other data domain is required). 

However, it is preferable make a separation between the process of establish-
ing state-validity and temporal-validity. In many proofs of temporal properties of
a particular TTM, much of the work involves establishing -state-validities in the
particular data domain treated by the TTM being verified (e.g. integers, sets or
lists). This is then followed by a few applications of the interface rules (e.g GEN)
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between the state and temporal systems, and a small amount of actual temporal
reasoning. 

The StateTime tool (Section 6.0) uses PrologIII [9] for establishing state-valid-
ity. PrologIII effectively and efficiently solves constraints on boolean, linear inte-
ger and rational data domains. We do not want to commit ourselves
unnecessarily to a particular state deductive system when that is really dependent
on the nature of the data domains (and its theorem provers) for the given TTM.
We therefore maintain a strict separation between state and temporal reasoning,
and summarize all the different possible ways of effectively obtaining state-valid-
ities by the single rule SR.

The general part of the RTTL proof system is described in detail in [21]. In this
paper, we will therefore only need to describe the TTM part of the proof system in
detail.

Entailment and Congruence.
The notions of entailment ( ) and congruence ( ) are stronger types

of implication than the standard conditional  and biconditional  respec-
tively. The formula  states only that  holds at the first position of a tra-
jectory . The stronger entailment  states that  holds at all
positions of . If  is valid, then  and  have the same truth value in all
positions of every model.

Let  be a formula schema with one or more occurrences of the subformula
. Then

(EQ 20)

The substitutively property described by (EQ 20) allows us to derive the validity of 

from the validity of .

An occurrence of  in  is said to be positive if  is embedded in an even
(explicit or implicit) number of negations, and it does not occur in a subformula of
the form  (which contains an implicit negative occurrence of  and ). If all
occurrences of  in  are positive, then we have the Manna-Pnueli rule that

(EQ 21)

For example, taking , we can show from (EQ 21) that

Soundness and Semantic Justification
From the basic Manna-Pnueli axioms and rules, we can deduce theorems and

derived rules. An example of a derived rule is:

Rule E-TRNS (entailment transitivity)

For any RTTL formulas 
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Rules (such as E-TRNS) from the general part of the proof system, hold in the set
of all possible trajectories, as well as in subsets of trajectories. One such subset is
the legal set corresponding to a TTM . In the axioms and rules presented below
for the MR part of the proof system, we assume that we are dealing with -valid-
ity, i.e. with a subset of legal trajectories.

With regards to the MR part of the proof system, the soundness of the RTTL
proof system requires that each new axiom that is introduced must be shown to
be M-valid, and each new rule that is introduced must be shown to preserve M-
validity. 

One way to show validity is via the use of semantic justification — using the
semantic definition of the temporal operators, we can show that the axiom is true
in all legal trajectories. Consider the rule L-TRNS given below.

The state-formula  is called the link formula. The soundness of the rule can be
demonstrated by semantic justification. The first premise of the rule means that
for any position  of a legal trajectory  we have that , i.e.

 implies . We may then argue that:

Thus, for any position  of a legal trajectory  we have that  implies
, which is the conclusion of MR1 as required. 

In a similar fashion we may prove the soundness of T-TRNS rule below which
is more general than the formulation of L-TRNS (L-TRNS may be derived from T-
TRNS). Using semantic justification we can show that the bounded operators can
be used to characterize the unbounded operators, i.e.

(EQ 22)

Rule L-TRNS (less than transitivity)

For any RTTL formulas 
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where  are rigid variables having the same value in each state of a trajectory. It
then follows that

 

(EQ 23)

 

which means that the quantitative “until” operator entails the qualitative version.
A complete characterization of the bounded operators can be provided in an anal-
ogous way to the fixed point characterizations of the unbounded temporal opera-
tors. There are 3 cases that must be considered: (a) , (b)  and

, and (c) . For example, the fixpoint characterization for case (c) is

 

(EQ 24)

 

The TCHAIN rule may be derived from L-TRNS and induction on .

The TCHAIN rule considers a ranked sequence of state formulas .
The premise asserts that for each state formula , we can prove that once 
becomes true it remains true until within  ticks of the clock progress is made
towards an element of the sequence with lower ranking. The conclusion is that
from any  it is possible to reach the lowest ranked goal state  in a time no less
than the sum of the individual steps. The TCHAIN rule also implies the weaker
consequence .

 

3.4.1  The temporal semantics axiom and relative completeness

 

From a theoretical point of view there is a single axiom, denoted by , that is
adequate for proving all the temporal properties of the TTM . This axiom con-
sists of several conjuncts corresponding to the requirements of legal trajectories.

1. The initial condition is represented by the axiom:
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 and (EQ 25)

 (The right conjunct  is not strictly speaking necessary, but
allows us to relate  in specifications to the initial condition.)

2. For the succession requirement, we have:

for any TTM transition ,  for any state-formula  not 

containing any occurrences of the event variable . (EQ 26)

 The left conjunct of (EQ 26) represents that part of the succession requirement
that specifies that if a transition is taken it must be enabled. The right conjunct
represents the fact that a (restricted) state must be related to its successor via
the transformation function. This follows by the same type of reasoning used
to justify the assignment axiom in Hoare logic. 

3. The ticking requirement for legal trajectories may be written:

(EQ 27)

4. The justice requirement for legal trajectories may be written as

(EQ 28)

5. The real-time requirement for legal trajectories may be written:

For any transition  with lower and upper time bounds  respectively 

, where 

. (EQ 29)

A single adequate axiom
The single assertion , that is adequate for proving all RTTL properties of a

TTM , can now be defined as

(EQ 25) & (EQ 26) & (EQ 27) & (EQ 28) & (EQ 29) (EQ 30)

where we can show by semantic justification that each of the five conjuncts
ensures that one of the five requirements for the legal trajectories of  is satisfied.
This means that  is relatively complete for proving -validities, i.e. if we are
equipped with an omniscient oracle that is guaranteed to provide confirmation of
each valid temporal formula of the SR and TLR parts of the proof system, then
instead of proving  (for some specification ), we need only seek confirma-
tion from the oracle for the general temporal logic validity of .

Since each of the five conjuncts is -valid, the axiom  is also -valid, and
we can therefore introduce  as an axiom of the proof system without compro-
mising the soundness of the proof system (i.e. only -validities can be proved). We
therefore have the following:

Proposition 1 (Soundness and Completeness): 

The proof system constructed from SR (state reasoning), TLR (temporal logic rea-
soning) and the additional axiom  is sound and relatively complete for proving

-validities.
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While the use of  is theoretically adequate it is not very practical. We there-
fore introduce special rules into the MR reasoning part of the proof system that
allow us to deduce those specifications commonly encountered in practice. 

 

3.4.2  Rules for the MR part of the proof system

 

The additional rules discussed below have the advantage that their premises
are state-validities rather than (general) temporal logic validities. Thus, familiar
first order reasoning may be employed rather than general temporal reasoning,
while preserving the succinctness of temporal logic as a specification language.

Since the special rules use mainly predicate reasoning, we can also provide a
disciplined approach to proving the correctness of specifications using weakest
preconditions. This methodology is amenable to semi-automation.

Each rule that is introduced for MR reasoning is either a 

 

basic rule

 

 (which must
be semantically justified) or a 

 

derived rule

 

 (which can be deduced from the axioms
and basic rules of the proof system). 

One of the basic rules of the TTM part of the RTTL proof system is the INIT
rule (below). The INIT rule allows us to establish the temporal validity of  given

the state validity of . The first state of any legal trajectory satisfies the initial
condition (by the initiality requirement for legal trajectories), and hence by the
premise of INIT the first state also satisfies the state-formula . Hence  is -
valid.

 

The leads-to relation

 

For , the 

 

leads-to

 

 relation was defined earlier as the triple ,
which is an abbreviation for . If all transitions of a TTM lead
from  to , then we have , with its obvious consequence, the STEP
rule (below). The STEP rule together with axiom FX5 (see (EQ 19)), may be used

to prove the rule INV, using the principle of computational induction based on
the invariance . 

Rule  
INIT

  (initiality)

 For a TTM  with initial condition 
, and state-formula 

Rule 

 

STEP

 

 (single step)

 For a TTM  with transition set , and 
state-formulas 

AM

p

M
I p

sIcp

m
M

p

Icp

p p M

τ T∈ p{ } τ q{ }
ε( τ ) a= pinq

p q p{ } T q{ }

M T

p q,

p{ } T q{ }

pinq

p



 

Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 32

 

The proof of INV from STEP is as follows:

 

1. Premise

 

2. Premise
3. STEP 2
4. TL R (axiom FX5)
5. TLR (MP) 3,4
6. TLR (see (EQ 21))
7. MP 1,6
8. TLR 5,7 (see derived rule E-TRNS)
Since all the axioms of RTTL deductive system are -valid, and all the proof

rules preserve -validities, the derived proof rule INV also preserves -validity.
There are two ways to show validity when introducing a new rule: (a) through
semantic justification, and (b) by using the RTTL deductive system to derive the
new rule from already existing ones. In the above rules, the basic rules INIT and
STEP were introduced using (trivial) semantic justifications, whereas INV was
derived using the proof system and the basic rules.

The S-INV rule trivially follows from INIT and INV. The S-INV rule is a good

illustration of the use of (implicit) computational induction on the invariance  to
prove a safety property ( ). One chooses an invariant  at least as strong as .
Then show that  holds initially and is preserved by any transition of the TTM.
Based on induction on the position of a computation, it follows that  (and hence

) hold on all positions.The rule M-INV may also be deduced from INIT and INV.

In contrast to safety properties, liveness properties such as , usually
have several important intermediate stages that the computation usually must go
through on the way from a -state to a -state. Thus a chain rule such as
TCHAIN, or some well founded argument must be made to prove the property.
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Verification Conditions
To prove temporal properties using rules such as STEP and INV, we will need

to prove the validity of the leads-to relation  (for each transition ). In
the Manna-Pnueli deductive system, this is done by using a transition relation
that relates the values of the variables in the current state with their values in the
next state. The disadvantage of this approach is that an auxiliary requirement
must be asserted that those variables not referenced in the transformation func-
tion of the transition are left unmodified.

In this paper, we use the notion of a verification condition similar to that of the
Hoare assignment axiom for sequential programs. The rule VC (see below) is
added to the TTM part of the RTTL deductive system. VC allows us to establish
the leads-to relation by establishing the state validity of the verification condition

 for each transition  in the transition set. If  is the

transformation function in assignment format of transition , then for any state-
formula 

  (EQ 31)

i.e.  is the formula obtained from  by simultaneously replacing, for each , all
(free) occurrences of  by the expression .

Using the verification conditions
Consider the infinite state TTMchart sample in Fig. 4 with activity variable ,

and with initial condition

 

Rule M-INV (multiple invariance)

 Let the TTM  have transition set  and initial
condition . Let  be state-formulas with

.

Rule VC (verification condition)

 For a TTM  and a transition set , and state-
formulas  and  contains no occurrences of the 
event variable 

M T

I q p p1 … pn, , , ,
pyp1o…opn

sIcp

i 1 i n s⋅≤ ≤∀ pi q→( )

i 1 i n m pi{ } T p{ }⋅≤ ≤∀

mM hq

p{ } τ q{ } τ

p( aeτcqτ ) τ h v1:a1…vn:an[ ]=

M T 1 T M⊆
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s τ T1 p eτcqτ∧∈∀
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τ
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type x( ) 0 1 2 3 4, , , ,{ }=



Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 34

Suppose we want to prove that the specification  is -valid, i.e. the
TTM never enters the activity 4. In rule S-INV set , and

. The first two premises of S-INV may be immediately derived (see
lines 3 and 4 below) as follows:

1. SR
2. SR
3. 1 and the definition of 
4. 2 and the definition of  

The third premise  of S-INV must now be proved, i.e. we must
show that each transition  of the TTM sample leads from  to . We may use the
verification conditions and rule VC to obtain the desired result.

The verification condition to show that  is given by .
Since , we have that

The verification condition is therefore state-valid irrespective of the antecedent
, and we have

5. SR
6. VC 5

Similarly, for transitions and  we can obtain

7. SR+VC
8. SR+VC
9. SR+VC
10. SR+VC

FIGURE 4. The TTMchart sample
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For the transition , we have that

and hence  is state-valid because . 

For transition , the antecedent of the verification condition is false

i.e.  is disabled from occurring in any state satisfying . Since the antecedent is
false the verification condition  is valid! Recall that the verification con-
dition indicates only partial correctness, i.e. if  is taken from a state  it leads
back to . Since  is never taken from  partial correctness is preserved. We thus
have

11. TLR 6,7,8,9,10
12. S-INV 3,4,11 and the definition of 

as required.

Summarizing the proof
The above proof of the specification  was presented in great detail

only to familiarize the reader with the notation and conventions of the RTTL
proof system. In future, only the general outline need be written, leaving it up to
the reader to check the details. The proof outline for the property , using
the invariance , is written as follows:

13. SR
14. SR
15. SR
16. VC 15
17. S-INV 13,14,16

The -validity symbol is usually left out (as in steps 16 and 17 of the summarized
proof). The state-validity symbol (as in proof steps 13, 14 and 15) is inserted in
order to distinguish between those steps that are derived using state reasoning
(SR) and those that are derived using temporal logic reasoning temporal logic rea-
soning (TLR and MR).

Most of the reasoning in the proof of the temporal logic property 
involved the use of ordinary propositional, predicate and domain reasoning to
prove the verification conditions which are state-validities (hence the use of SR in
proof steps 6–10). Very little actual temporal reasoning was needed. This is the
main reason for distinguishing between state and temporal validity. Automating
the proof of properties such as  to a large part means finding the right
tool for doing ordinary predicate logic in appropriate domains (integers, lists and
sets). 

iff

iff

iff

iff

E
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The state reasoning part including the check on the verification conditions
involves a large amount of detailed (but trivial) reasoning. In Section 6.0, we
describe how the StateTime tool automates this kind of reasoning.

VC and INV are not sufficient for proving all invariances of timed systems
Although rules like VC (together with INV) can be shown to be complete for

proving invariances in the Manna-Pnueli proof system, this is not the case when it
comes to the timed behaviour of TTMs.

Consider the specification . This specification is obviously
-valid because the upper time bound of  is less than the lower time

bound of . Thus  must always occur before  becomes eligible.

If we employ the same type of reasoning that was used previously (for the
proof of the weaker specification ), the proof will break will break down
at the verification condition for . Setting  we
obtain

The antecedent of the verification condition is  (which is true in
some reachable states). Hence the verification condition for  is invalid.

The VC rule is based on the succession requirement of legal trajectories. The
rule does not take into account the real-time requirement of legal trajectories.
From the point of view of the succession requirement, it is possible for  to be
taken and hence for the specification to be falsified. It is the real-time requirement
that prevents  from occurring.

An additional rule DTB, that takes into account timing information, will be
introduced in Section 3.4.3, from which the validity of  can be deduced. 

18. DTB

Taking the transition  preserves the invariance  (because in point of fact the
transition  can never be taken). The proof of the property  can
now be undertaken in a fashion similar to that of the proof of the weaker property

, with the exception that step 18 above uses DTB for proving the leads-to
relation for  instead of VC.

The above methods of proof requires a fair amount of guesswork. For exam-
ple, to use the S-INV rule, the “loop” invariant  must
be discovered. The choice of the right conjunct of  is obvious, as it is just the
specification that is to be proved. The choice of the left conjunct  is more
difficult to obtain in the general case, as it involves already knowing something of
the behaviour of the TTM.

A large amount of detailed but trivial reasoning and guesswork was required
just to prove an invariance property of a simple system. However, a significant
part of the analysis is amenable to computer aided verification. The heuristics pre-
sented in Section 4.0 will help guide proofs with the use of proof diagrams. In

iff

iff

h x( 3≠ ax 4 )≠
sample B

C B C

h x 4≠( )
C py y 25≥( ) a x( 3 )≠ a x( 4 )≠

pC y p3
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Section 6.0, tools for automating the heuristics and completely automated model-
checking are discussed. 

The rule S-INV was used above in conjunction with DTB to isolate the real-
time part of the reasoning. Thus, ordinary temporal reasoning (and most of that
using SR) was used for the most part. The heuristics will work in a similar fash-
ion, only requiring the use of real-time reasoning where necessary.

3.4.3  Some additional proof rules
The rule DTB below uses transition time bounds to deduce that an eligible

transition  will not occur from a state satisfying  because there is some other
transition  that will always occur first. The transition  can be thought of as a
“progress edge” that guarantees that the TTM will exit any state satisfying 
before  can be taken. All the hypotheses of the DTB rule are established by state
reasoning either directly or indirectly via the verification conditions.

The intuition behind the rule is displayed graphically in the form of a proof dia-
gram in Fig. 5. A box with label  represents all the states satisfying the state-for-
mula . The edges leaving a box (also called a node) indicate all the possible
transitions which the TTM can take while in the box. If the edge  is taken from a
state satisfying , then it leads either to a state satisfying  or to . An unla-
belled edge indicates that zero or more transitions may satisfy the leads-to rela-
tion. Any edge  leading from a node  to a node  must satisfy .

Since hypothesis H2 of the DTB rule requires that , the three boxes
do not intersect with or subsume each other (although it is possible in general
proof diagrams for one box to be a subset or to intersect with a second box3).
Hence we also have that .

3.  If , then the box  is a subset of . If , then the two boxes intersect.

Rule DTB — Disablement by time bounds

Let  and  be transitions of any TTM  with enabling condi-
tions  and  respectively. Let  where  is the lower finite 
time bound of  and  is the upper time bound of . Let 

. Then for any state-formu-
las 
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H5.

H6.
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Proof of the soundness of DTB: An outline of the proof of the soundness of
DTT is as follows. Assume that the -th position of any legal trajectory  satisfies

, i.e. . We must show that . From the
assumption we are either in  or in  at position . The third premise H3 of
DTB asserts that the only way to get from  to  is via . Thus we need only
consider the case in which at some position no earlier than  we reach . Hypoth-
esis H4 guarantees that a -state must be followed by a -state that is a moment
of enablement for the transition , i.e. the lower time bound requirement applies
constraining  not to occur for  ticks of the clock. H5 asserts that the edge 
must be enabled everywhere in . Since  must satisfy its upper time bound
requirement, it is a progress edge that must occur by  ticks of the clock, or be dis-
abled. But by H5 it cannot be disabled while in a -state. The last premise asserts
that when  is taken, it “exits” from , i.e. it leads to somewhere outside of . By
H1, , and hence  cannot be taken before . Thus there is no position subse-
quent to  in which  holds and where  can be taken. (end of proof).

The antecedent  is needed in the conclusion of DTB, because the moment of
enablement  is needed to start the count for the lower time bound. If  is
reached some time after  becomes enabled, it may be possible for  to be taken
prior to .

It was claimed earlier (see Step 18. on page 36) that the rule DTB could be used
to obtain  for the TTM “sample” of
Fig. 4. In DTB, set

The first hypothesis of DTB is trivially true as . By the MR succession axiom
(EQ 26) it follows that . Thus the second
hypothesis of DTB holds. The hypothesis H3 of DTB is obtained as follows. Let

. Then

1. SR

FIGURE 5. Proof Diagram for the rule DTT
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2. VC 1 and rewriting 
3. TLR ( )
4. TLR 2, 3

Using the MR succession axiom (EQ 26) we can easily prove 
which trivially entails H4. The hypothesis H5 of DTB is also trivially valid. The
last hypothesis is obtained using the verification condition for transition B, i.e.
since

we have

5. SR
6. VC 5

Since all the hypotheses of DTB are valid, it therefore follows that

7. DTB
8. SR+GEN
9. TLR 7,8

But (EQ 26) applied to  yields . Hence for any invariant  for the
TTM of Fig. 4 it follows that , because in point of fact . We
have thus validated Step 18. on page 36 required for the proof of the stronger
invariance property.

In the RR rule (real-time response) below, the set of transitions of a TTM is
divided into three disjoint sets: those transitions that are selfloops (i.e. do not exit
the state formula ), those that do exit  (these transitions have some at least one
successor state outside of ), and the singleton set consisting of the transition 
(called the progress transition). The progress transition  is enabled in all states
satisfying , and has a finite upper time bound . Thus by the upper bound
requirement of legal trajectories, the state-formula  must hold within  ticks,
where  asserts that either  is taken or one of the exiting transitions is taken. The
RR rule is given by:

The RR rule also implies the weaker consequence .

Rule RR—Real-Time Response

Let the set of transitions  of a TTM be divided into the dis-
joint union . The progress edge

 has a finite upper time bound . Then for any state-formula
:
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4.0  Proof heuristics (pragmatics)
A proof system on its own is not sufficient to make a framework useful. There

must be a methodology for using the proof system systematically (the “pragmat-
ics” of the proof system). Furthermore, it is beneficial if parts of the methodology
can be automated. 

We provide heuristics for proving invariances and real-time response proper-
ties. Many other properties can be reduced to these properties with the help of an
observer or watchdog. Many properties that are commonly encountered by the
verifier fall into the class treated by the heuristics. These heuristics can be semi-
automated so as to take care of the tedious but simple verification conditions that
must be checked.

The heuristics (a) help to guide the proof of some important properties, (b)
help with the choice of invariant, and (c) decouple the real-time reasoning (MR)
from the rest of the reasoning (SR+TLR). A further feature of the heuristics is that
they involve relatively little temporal logic reasoning; most of the reasoning is
state reasoning (propositional and predicate logic based on the data types of the
system variables). This makes it possible to use off-the-shelf theorem provers to
do most of the reasoning.

The heuristics use the notion of a proof diagram (e.g. see Fig. 5) to visually dis-
play proofs. Proof diagrams can be seen as a high-level view of the TTM reach-
ability graph. The nodes of the proof diagram are state-formulas rather than
states. A node of a proof diagram can represent an infinite number of states. It is
therefore possible for the proof diagram to be finite while representing the behav-
iour of an infinite state system.

We first define strongest postconditions and weakest preconditions for TTMs
analogous to those of the Dijkstra calculus [10,11] for sequential systems. We then
present and illustrate the use of the heuristics.

Definition [psp — partial strongest postcondition]
Let  be a transition with transformation function . The psp of

 leading from a precondition  (which is a state-formula) is

As an example, consider a transition  with . We then have that

There is no guarantee that  will be taken from state-formula  as we are deal-
ing with concurrent nondeterministic systems (some other transition may equally
well be eligible). Hence there is no total correctness implied but only partial cor-
rectness. A direct consequence of the definition is that .

We refer the reader to [28] for the psp-heuristic for invariance properties such as
. The initial node of the proof diagram is the initial condition  (or a weaker
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state-formula) of the TTM. All successor nodes  are computed using
 for each transition  that exits from . A transition  exits from the

state-formula  if there is at least one -state  in which  is enabled and when
taken leads to a state not in , i.e. .

Each of the successor nodes are then explored in turn for exiting transitions
until all paths lead back to already computed nodes. If all nodes  in the diagram
satisfy , then the invariance  is valid (this is guaranteed by the M-
INV rule). 

Two strategies are used to reduce the size of the proof diagram. (a) Any node
can be replaced by a weaker formula  provided . By weakening a
node the number of exiting transitions can often be reduced. (b) The rule DTB can
be used to eliminate an edge from one node to another despite the fact that the
corresponding transition is eligible to be taken. 

As shown in [28], the psp-heuristic may be helpful in the construction of
invariants. However, in practice, the psp-heuristic is most helpful in conjunction
with the pwp-heuristic described below.

Definition [pwp — partial weakest precondition]
The pwp of the transition  with respect to a postcondition  (which is a state-for-
mula) is .

As an example, consider the same transition  as above with  and
. We then have that

A direct consequence of the definition is that .

4.1  Invariant heuristic
To prove the invariance property  we note that . Set 

and . Then check if there is a way to get to the “bad” part of the state
from some state-formula  (in the “good” part of the state) in one step. If not, then
the invariance is valid, i.e. there is no path from the initial condition to the goal
node . If there is such a node , then work backwards from it in turn, and so
on until the initial condition is reached. The backward node  is computed using
the pwp, i.e.

. (EQ 32)

If , then there is no way to get to the bad part of the state in one step and
no further exploration backward from  is required. If  (i.e. there are
some states that satisfy ), we also require that

 (EQ 33)

(i.e. no -state is an initial state).
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Let all nodes on all backward paths ultimately backtrack to , or cycle
back to an already computed node. Then, since no node intersects with the initial
condition, there is no way to get to the bad part of the state from the good, i.e.

 is valid, and thus .

Only state reasoning SR is required in the heuristic to check (EQ 32) and
(EQ 33). We may again use the two strategies, mentioned earlier with regard to
the invariant-heuristic, to reduce the size of the proof diagram.

Example using the invariant-heuristic
The real-time mutual exclusion protocol shown below (due to M. Fischer) uses

time bounds on its actions to ensure conformance to the protocol. The kernel of
each process  (where ) executes the following code:

0: await <Y=0> {transition a_i}
1: <Y := i> {transition b_i}
2: await <Y=i> {transition c_i}
3: critical section {transition c_i}

where the angle brackets denote atomic actions. Initially the shared variable Y is
set to zero. We may assume that

 (EQ 34)

for each  (e.g. the bounds on a_1  are the same as for a_2) . There
are no other constraints on the bounds.

To actually use the above kernel, c_i  would have to be modified to
2: if <Y # i> then goto 0

and the modified kernel would have to appear in the following loop:
begin loop non-critical section;

kernel;
<Y := 0>

end loop

The TTM  with activity variables  respectively are
shown in Fig. 6 using the BUILD tool. The BUILD tool will be discussed later in
Section 6.0. The invariant heuristic will be used to deduce the mutual exclusion
requirement  given by:

. 

Furthermore, we must derive the constraints on the lower and upper time bounds
to ensure mutual exclusion of the critical sections. We assume that bounds can be
imposed on c_i  and b_i , but not on a_i  and d_i  (as these are determined by when
each process requests entry into the critical section, or release the critical
resource).

The proof diagram using the invariant-heuristic is shown in Fig. 7. There are
only two transitions that can get to  in one step: c_1  and c_2 . We explore c_1 .
The proof diagram for the c_2  path is symmetric to that of c_1 .

The node  is computed as
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FIGURE 6. BUILD display of TTM 

The dotted lines around fish1  and fish2  respectively indicate
that these two TTMs are AND-composed with each other. The
events of each TTM such as a, b, c , etc. are declared local and
hence do not synchronize with each. BUILD refers to these events
as: a_1 , a_2 , b_1 , b_2 , etc. Each TTM  has activity variable 
which ranges over its type . The shared data
variable Y has . 

fish fish1 fish2
||=

fishi Xi
type Xi( ) 0 1 2 3, , ,{ }=

type Y( ) 1 2,{ }=
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FIGURE 7. Proof diagram for mutual exclusion property of fischer process1 process2||=

Bad:    X 1 3= X 2 ∧ 3=

SF1:    X 1 2 X 2 ∧ 3 Y ∧ 1= = = 

c_1 c_2

 
symmetrical to

 
 c_1

 

SF3:    X 1 1 X 2 ∧ 3= = 

b_1

 

X

 

1

 

0

 

X

 

2

 

∧

 

3

 

Y

 

∧

 

0= = =

 

X

 

1

 

1

 

X

 

2

 

∧

 

2

 

Y

 

∧

 

2= = =

 

SF5

 

SF6

 

a_1 c_2

d_1

 

SF9:    X 1 2 X 2 ∧ 3 Y ∧ 0= = = 

e_1

 

FALSE

 

b_2

b_1

d_2

d_2

d_2

d_2

 

Not Bad

 

SF0



 

Specifying and Verifying Real-Time Reactive Systems in TTM/RTTL      September 12, 1994. 45

 

All transitions other than 

 

c_i

 

 cannot get from the good part of the state to  in
one step. For example, consider the 

 

pwp

 

 computation for the transition 

 

b_1

 

:

At node  in the proof diagram, the rule DTB is used to ensure that the tran-
sition 

 

c_2

 

 is never taken from . This is the first node on the backward path
which has both 

 

c

 

 and 

 

b

 

 as exiting transition, and is hence a candidate for the DTB
rule.

The transition 

 

b_1

 

 is a possible progress edge with respect to the node  (i.e.
). Therefore, in the DTB proof rule we set 

The progress edge 

 

b_1

 

 leads to a state-formula  that can be computed using
the 

 

psp

 

, i.e.

 is not in the bad part of the state, which is now redefined as 

 

 

 

because of its incompatible conjunct .

All the hypotheses H2-H6 in DTB are satisfied. Thus the conclusion of DTB
will follow provided that H1 is true. Therefore, if , then 

 

c_2

 

 will never be
taken from , as required. By the bound constraints in (EQ 34), we therefore
have that the mutual exclusion requirement  is valid provided that 

(EQ 35)

 

All the reasoning is state reasoning (SR). There is no temporal logic required.
The mutual exclusion property is verified mechanically by directly following the
rules of the heuristic. The bound constraints are deduced automatically as part of
the proof. The real-time rule DTB was used only at the end where necessary thus
decoupling the real-time component of the reasoning from the rest.

If the initial condition is reached on a backward path, then the invariant prop-
erty is invalid. A legal trajectory from an initial state to the bad part of the state
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along that path is the counterexample. The counterexample provides valuable
diagnostic information for debugging the system.

In some situations it is possible to hit an infinite backward path that neither
hits the initial condition (in which case the invariant is invalid), nor stops at false.
In such a case, the abovementioned strategy of weakening the nodes of the proof
diagram must be used.

When backtracking, it may happen that there is a cycle involving some nodes
with paths that do not backtrack beyond the cycle itself. In such a case, the cycle
of nodes is isolated from the initial states and is thus an unreachable part of the
state. For example, consider the TTM  (Fig. 9 and Table 4) which
is part of a resource allocation system that will be discussed later. Let  be the
state-formulas shown in Fig. 8. The only way to get to  is from  and vice

versa. The initial condition of the TTM  is , which is
inconsistent with that part of the state space , where . Hence it fol-
lows that  because there is no path from an initial state to . In particular, it
follows that

(EQ 36)

4.2  Real-time response heuristic (and liveness)
The real-time response property  can be verified using a heuristic

that builds on the invariant-heuristic. The liveness property  can be veri-
fied using the same principles, but without the need for special real-time consid-
erations. The heuristic is easily modified so as to check the validity of the until
property .

The response-heuristic also uses the backward path computation and weakest
preconditions for checking invariants. The response node is , and we must ensure
that on every backward path, computed via weakest preconditions, that the cause
node  is reached. At every intermediate node we must check the exiting transi-
tions, and must ensure that these exiting nodes lead to intermediate nodes closer

FIGURE 8. An isolated unreachable part of the state space
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to the response node. Each node must have at least one progress edge that will
move it closer to the response node. The RR rule is used to make the appropriate
progress assertion. Finally, we must check that there are no cycles in the proof dia-
gram, which would indicate that there are legal trajectories which are not guaran-
teed to lead to the goal. The T-TRNS rule can then be used to chain all the RR
progress assertions together.

The upper bound  is computed by counting the maximal number of ticks on
any path between the node  and the goal, and the lower bound  is computed by
looking for the minimal number of ticks.

Unlike the invariant-heuristics where the nodes can be replaced with a weaker
property, in the response-heuristic there is often a need to strengthen a node so as
to obtain a progress edge, or to project out part of the state that is unreachable.
These strategies of the heuristic are best illustrated using an example.

Consider the TTM  (Fig. 9) which is used later to illustrate

resource allocation. The  must function in an unconstrained environment
 that can change the value of the grant variable  at any moment. It is clear

that  (grant and request variables range
over . The table of transitions is given in Table 4. 

We must verify the response requirement given by

(EQ 37)

for which  is the response node. Intuitively, it may appear that
the response requirement is invalid. If the client is initially at , and the

FIGURE 9. Client TTM with environment

Initial condition of  is ,
where  is the activity variable of  and .

u
p l
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grant variable is set by  to one, there is no guarantee that eventually ,
because the event rq[0, ∞]  is spontaneous (and hence may never be taken). The
argument for the correctness of (EQ 37) will therefore have to appeal to the fact
that any state satisfying  is not reachable (if  then
the response property is trivially true no matter what the value of  is). 

The response heuristic will naturally guide us to the unreachability argument
mentioned earlier.The proof diagram is provided in Fig. 10.

Working backwards from the response node, there are only two transitions that
can get there in one step: rl  and gzero . Using weakest preconditions, similar to
(EQ 32), to compute the one step backwards node  for rl  we obtain

TABLE 4. Transitions of the client

transition name enabling condition transformation
function

lower
bound

upper
bound

ak (acknowledge) 1 1

gr (grant) 1 1

rl (release) 0 5

rq (request) 1 1

gone (environment) 0 ∞
gzero (environment) 0 ∞

FIGURE 10. Proof diagram for a client
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(EQ 38)

Performing a similar calculation for gzero , we obtain .
However, the only backward path from  is via . Hence  may be strength-
ened to  which is the same as , as shown in the proof dia-
gram.

Next, we must check which transitions, in addition to rl , exit from . Using
(EQ 31), the only other exiting node is gzero  as shown in the proof diagram. But
using strongest postconditions, gzero  leads to . Although gzero  is not
guaranteed to occur, rl[0, ∞]  is a progress edge (i.e.  and its upper time
bound is finite). Thus, from the RR rule we obtain

(EQ 39)

In the proof diagram bold arrows indicate progress edges. Similarly, we obtain
, and using the T-TRNS rule, we obtain

(EQ 40)

There is no need to explore the gone  backward paths in the proof diagram,
because these paths have their origin in states that already satisfy .

At this point we have not yet verified the required response property. How-
ever, the node  has no progress edge, and thus there is no way to weaken the
antecedent of (EQ 40) so as to obtain the cause . This suggests that  is in
fact unreachable. We note that . What
we need is the cause, i.e. the conjunct . We may thus compute as follows:

We know that the disjunct  satisfies the response requirement (EQ 40).
The disjunct  trivially satisfies the response requirement. In fact

(EQ 41)

Our suspicion is therefore that the last disjunct is in an unreachable part of the
space. The procedure for automatically checking such a hypothesis was provided
under the discussion of invariant heuristics. The last disjunct is indeed unreach-
able as shown in (EQ 36). We thus have that

(EQ 42)

The required response property  is a direct con-
sequence of (EQ 40), (EQ 41) and (EQ 42).

As a proof outline for the response property, we need only present the proof
diagram Fig. 10, its conclusion (EQ 40), and the proof diagram Fig. 8 behind
(EQ 42). The reader can then check the details mechanically.
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Experience has shown that the procedure of (a) unwinding backwards using
weakest preconditions, and (b) the elimination of part of the state space using an
unreachability argument is the main idea behind many response and liveness
proofs.

It is straightforward to check the until property . We need only
check that  and that each node  of the proof diagram satisfies .

5.0  Compositional Reasoning
The TTM/RTTL framework is based on the temporal logic for reactive sys-

tems in [21], with the necessary extensions and proof rules for timed transitions.
This means that any valid temporal formula in [21] is also valid in RTTL. We may
therefore use the theory of compositional reasoning presented in [21] within the
TTM/RTTL framework as well. We describe in this section how compositional
reasoning is done in RTTL.

Large systems are built from smaller parts. We want to reduce the verification
of a complex low-level system, to proving properties of a higher-level specifica-
tion of low-level components taken one at a time. Decomposing proofs in this
way will also allow us to apply automated procedures (e.g. model-checking or
heuristics) to components rather than the complete system. The Decomposition
Theorem of Section 5.2 provides the needed proof rule, in which the composition of
TTM modules is reduced to the logical conjunction of their RTTL specifications.

A module is fully specified by its body (a TTM), a well-defined interface specifi-
cation and its reactive behaviour (an RTTL formula in the parameters of the interface
specification). In bottom-up development, the body is supplied and the module
must be checked for modular validity. In top-down development, the interface
specification and reactive behaviour are provided, and it is the task of the
designer to develop a body that satisfies its reactive behaviour requirements.

To deduce useful properties of the module, we must specify how the module
interacts with its (possibly hostile) environment. For example, a digital circuit is
only guaranteed to operate if its input voltages are a clear 0 or 1, but may fail with
an improper voltage level of 1/2. So too, a module specification will specify
behaviour both with respect to a cooperative environment as well as a hostile
environment.

5.1  Interface specifications
A module consists of an interface specification and a body. The purpose of the

interface specification is to list all the shared variables (or channels if message
passing is used) through which the module interacts with its environment. A vari-
able declaration in the interface specification is preceded by one or more of the
modes in, out or external. 

Let  be a variable in the interface specification of module . A statement in
the body may have a reading reference to  only if  is declared to be of mode in,
and a writing reference only if  is declared to be of mode out. A statement in a

p q( U l u,[ ] r )⇒
p q→ f i f 1 q→

y M1
y y

y
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module  parallel to  may have a writing reference to  only if  is declared
in  to be of mode external.

Consider the allocator module  in Fig. 11. The allocator will be discussed in
more detail later. For now, we focus on its interface specification. 

Since the array variable  (with mode out) is not declared as external, no other
module (e.g a client) may change  — at best another module may read the value
of  by declaring its mode as external in. 

The body of a module may start with some internal (or local) variable declara-
tions (e.g. see Fig. 11). These internal variables may not be referenced outside of
its body.

Two concurrent modules are interface compatible if the declarations for any
variable declared in both modules are consistent. The types specified in both dec-
larations must be identical. The initial values assigned must be consistent. Finally,
if one of the declarations specifies an out mode, the other specifies an external
mode.

5.2  Modular validity and the decomposition theorem
We say that an RTTL formula  is modularly valid for a module  if 

 for every module  that is interface compatible with . (EQ 43)

Thus, modular validity ensures that  satisfies  independently of the behav-
iour of its environment, provided that its environment respects the constraints
imposed by the interface specification. Usually, the formula  will refer only to
the variables in the interface specification, and not to any of the local variables. 

An immediate consequence of the definition in (EQ 43) is the following theo-
rem

Proposition 2 (Decomposition Theorem):

Let RTTL formulas  be modularly valid over compatible modules 
respectively. Then:

(a) , and

(b) A program  satisfies RTTL formula  if .

A top-down hierarchical method for developing real-time systems may now
be followed. To develop a program  satisfying , by decomposing  into two
modules , so that , proceed as follows:

• The systems analyst produces an abstract specification  for each module
, where  is the interface specification and  the reactive behaviour of the

module. 

• The systems analyst must check that  are compatible interfaces, and that
.

• Each coding team is given the abstract specification  for the module .
The team must then implement the module by coming up with a body  so
that  is modularly valid for .
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• Finally, the required modules are  for . The
Decomposition Theorem guarantees that  satisfies property .
A team assigned to the implementation of a module  is given its interface

specification  and an RTTL formula  in the variables of the interface specifica-
tion, describing the expected reactive behaviour of the module. The task of the
team is then to find a body  of  so that  is modularly valid for . Many dif-
ferent bodies may satisfy the required constraints.

The verification problem we now wish to consider is: how does the coding team
check that the reactive behaviour  is modularly valid for the module given by

.

(EQ 43) seems to require that modular validity for a module can only be
checked by considering all its infinitely many interface compatible partners.
However, there is a more direct approach to the problem. 

The body  of the module can be mapped into a timed transition model
(TTM). We add to the set of transitions of the TTM, an environmental transition

 representing all possible interferences of the environment with the operation
of the module. This environmental transition is then arbitrarily interleaved with
the transitions of the module, and represents all possible interferences that a (pos-
sibly hostile) environment may inflict upon the module. Transition  pledges to
preserve the values of all internal data variables, but it may arbitrarily change
external data variables in accordance with the constraints imposed by the inter-
face specification. We illustrate modular specification and verification by present-
ing a comprehensive example of real-time resource allocation.

5.3  The real-time resource allocator problem

5.3.1  Description of the problem
We illustrate modular reasoning by considering a real-time version of the

resource allocator discussed in [21]. A resource allocator must manage the alloca-
tion of a shared resource among several competing processes (clients). The need
to share resources is common not only in networked computers (e.g. disks and
printers) or databases (e.g. record locking), but also in real-time devices. 

In a flexible manufacturing system, a job may need to gain exclusive access to
an automated guided vehicle or a forklift. In the real-time version of resource allo-
cation, it is no longer sufficient to guarantee a process eventual use of the
resource. It may be necessary to ensure that the resource is released in a timely
fashion, or a critical job may not be serviced in time. We consider the simple case
where there is one indivisible resource. However, more general cases can be spec-
ified, e.g. simultaneous exclusive access to a forklift, guided vehicle and worksta-
tion stand.

The code for an allocator module  with its client modules , is
provided in Fig. 11. Each module has an interface specification and a body. The
arrays  contain the grant and request variables respectively. We will shorten

 to  respectively.
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In the interface specification for , the grant variables  are assigned a mode
of out (but not external). Thus these variables cannot be written to by any other
process that is interface compatible with A. However, other processes are allowed
to import these variables as read only by declaring them as external in. Similarly
the request variable  of client  may only be written to by .

The timing requirements will be that the non-critical processing parts can take
as long as they like [0,∞]. A request can be made for a resource at any point in
time. The critical region processing takes no more than five clock ticks [0,5].
Assignments to  and guard checking takes exactly one tick. The increment
(modulo 3) of the local variable  takes precisely one tick of the clock.

We first specify the requirements that the total system  must satisfy
including mutual exclusion, conformance with the protocol, and real-time
response. We then use the Composition Theorem to modularize the specifications.
Finally, we show how to verify each module, from which the correctness of the
total system follows.

FIGURE 11. Allocator and clients

 = system under development, where: 

module  {allocator with activity variable }

external in : array[1..3] of integer {array of request variables}

out  : array [1..3] of integer where  {grant variables}

internal  : integer where  { for fair allocation to the three clients}

internal  : integer where  {variable to limit critical references}

loop forever do

0: 

1: if  then 

do ; 2: when  then  od

{count  modulo 3,  ranges between 1..3}

3: 

end module 

module  {Client  with activity variable }

external in  : integer {grant variable is either 0 or 1}

out  : integer where  {request variable is either 0 or 1}

loop forever do

{noncritical processing at activity 0 or a request for the resource}

0: ; {request the resource}

1: await ; {await the allocator to grant the request}

{critical processing at activity 2 and then release of the resource}

2:  ; {release the resource}

3: await  {await an acknowledgement from the allocator}

end module 
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Mutual exclusion:

R1:

The formula R1 states mutual exclusion, i.e. at most one client can be granted
access at any one time. Since the only operations allowed on the  is to set
them to zero or one, it is clear that

 (EQ 44)

is modularly valid for any of the modules in the figure.

Conformance with the protocol:

Both the allocator and the clients must conform to the protocol, i.e. the order of
events should always be:  requests access,  grants access,  releases the
resource, and  acknowledges the release.

We can use the formula

(where  are the release and grant variables respectively for some client ) to
characterize the next change allowed from the state . Thus the
resource is not granted to the client unless the client has previously requested the
resource (there must be no unsolicited granting of the resource).

Using PTL (propositional temporal logic), the above property is actually
equivalent to the simpler formula

R2: .

Once the customer makes a request, the request remains in place waiting for the
allocator to grant the request.

R3: .

The resource will not be prematurely withdrawn (i.e. before the client releases it)

R4: .

The client will not make another request unless until after the allocator acknowl-
edges the release of the resource

R5: .

Real-time response

The safety properties (R1–R5) can be satisfied in a system in which neither the
clients never send a request message and hence the allocator need never in turn
grant a request. The real-time response property will ensure that certain vital
actions are taken.

Only the state satisfying  is stable. Each of the other protocol
states must be exited within a time bound. This is most succinctly specified by

 (EQ 45)
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i.e. the system will always reach a stable state within 30 ticks of the clock. The
actual time will depend on the bounds of the atomic transitions. For illustration
we will assume that evaluating a guard and then doing some assignment takes 1
tick of the clock.

The above response property makes decomposition into modular specifica-
tions difficult. This is because the property constrains at the same time variables
owned by  ( ) and variables owned by  ( ). We must try to break (EQ 45)
into smaller properties that constrain only one variable at a time. 

The property (EQ 45) can be replaced with the next three properties. Every
request for the resource must be granted within two ticks by the allocator, i.e.

R6: .

Some cooperation from the clients is required. A client that has a resource must
release it within 6 ticks of the clock, i.e.

R7: .

We are assuming that a client uses the resource for no more than 5 ticks of the
clock. We add one tick for resetting the request variable to come up with a 6 tick
total.

Clearly, if a client  appropriates the resource for more than one tick, then the
allocator cannot guarantee service to another customer , without violating
the mutual exclusion requirement.

An equally important allocator responsibility is to ensure that the client’s
release of the resource is duly acknowledged, i.e.

R8: .

Since we have assumed that assignments and guard evaluation take zero time
(relative to resource usage in the critical area), we may require in R8 an immediate
acknowledgment on the part of the allocator when a resource is released. 

Due to the safety requirements, a customer cannot make a next request unless
its previous release was acknowledged by the allocator. R8 outlaws that type of
devious behaviour on the part of the allocator that withholds service from the cli-
ent by not acknowledging a release.

5.3.2  Modular specifications
The global requirements R1–R8 do not directly translate into a set of modular

requirements. This is because a modular specification must hold in an environ-
ment that “misbehaves”, e.g. the allocator cannot always count on clients that
stick to the required protocol. Even if the environment behaves respectably, indi-
vidual requirements may be stated more strongly than required.

There will often be a need to refer to changes in the request and grant vari-
ables. For example, to record the fact that the request variable  goes from zero to
one (flagging a request) we could write  (where  is
the previous operator). The other definitions are given below:
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The global requirement  for  is the conjunction of requirements R1–R8,
which must be decomposed into a modular specification. Thus, we must come up
with modularly valid requirements  for the allocator and clients respec-
tively so that .

A possible methodology is to inspect the global requirements R1–R8 one by
one, and to determine whether the considered module is the one responsible for
that requirement. By the interface specifications, only the clients may write to the
release variables , and only the allocator may write to the grant variables .
Thus, for example, the mutual exclusion requirement R1 must be the responsibil-
ity of the allocator.

Modular specification of a client 

The first global requirement that a client must ensure is R3 given by

.

As explained by Manna-Pnueli (page 368), this property is far to strict. What is
needed is the weaker specification

R9:

i.e. once the client sets  to one, the request variable must remain high at least
until the allocator responds by resetting the grant variable. The complementary
global requirement R5 must be represented by the weaker property

R10:

i.e. the modular version of the property must be stated with respect to a point at
which  is reset.

The only real-time response property that constrains variables owned by  is
R7 given by , which claims that the client must release the
resource within two ticks of having gained access to it. It is impossible to guaran-
tee a response to the grant variable being set if it is not set to 1 sufficiently long. To
obtain a modular specification we therefore require a response to the setting of the
grant variable only if the grant variable remains set at least until the response is
generated, i.e.

R11: .

The above property is satisfied if  holds (before the third tick) in response
to the grant variable being set. Alternately, it will also be satisfied if  is reset
before the third tick. If  is reset after  well and good. If not, then there is
nothing the client can do about it, as the grant variable was reset by the allocator
before the client could respond.

rqiy r i( 1 ) 1 r( i∧ 0 )= =

griy g( i 1 ) 1 g( i∧ 0 )= =

rl iy r i( 0 ) 1 r( i∧ 1 )= =

akiy g( i 0 ) 1 g( i∧ 1 )= =

R SUD

RA RCi
,

RA RC1
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rqi r( ir1 )W r i( 1 gi∧ 1 )= =⇒
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rl i r( ir0 )W r i( 0 gi∧ 0 )= =⇒
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The complete modular specification for the client  is thus given by

: R9 & R10 & R11

Modular specification of the allocator

The mutual exclusion property R1 given by  is clearly the
responsibility of the allocator as it refers to variables owned by .

The two remaining protocol conformance specifications must be stated from
points of change. We therefore obtain

R12: .

The property  cannot be true in the first position of a
legal trajectory. The state-formula  must therefore be inserted into the ante-
cedent in order to obtain the appropriate unsolicited response property. The glo-
bal property R4 becomes:

R13: .

The global response properties R6 and R8 constrain the behaviour of the grant
variable  of the allocator. R8 requires that the grant variable must be reset in
response to the release variables being set. We again require that  remains zero
long enough, so that we obtain:

R14: .

The requirement R6 given by  is more complex to state
modularly. A client  that makes a request to the allocator may not eventually be
granted that request because some other rebellious client may refuse to release the
resource. To release the allocator from the obligation of granting a request when
there is a rebellious client, we may require

R15: .

This property states that if  has made a sustained request, then either the alloca-
tor will grant it the resource, or we can identify a rebellious client that at some-
time holds the resource for at least a tick longer than it is supposed to (i.e. up to
the 7th clock tick rather than up to the 6th tick of the clock as specified by R7). 

It might be thought that the allocator can misuse the leniency specified by the
right disjunct of R15 by leaving  set to one for two ticks of the clock (even after
the client has released the resource). However, by R14, the allocator is obliged to
reset  immediately in response to the resource being released. By R12,  must
remain reset at least until the next request. Hence the leniency in R15 cannot be
misused.

The modular specification for the allocator is thus defined by

: R1 & R12 & R13 & R14 & R15.

It is now tedious but easy to confirm that . A theorem
prover exits for the propositional untimed fragment of RTTL, which is useful for
semi-automating this check [21]. We must now check that each of the conjuncts in
the antecedent is modularly valid.
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5.3.3  Modular verification
The environment of the module can be modelled by attaching to the transition

set of the module an environmental transition , that can arbitrarily vary the
external variables according to the interface specification. For example, the envi-
ronmental transition for the allocator is  (Table 5). Its partial

weakest precondition is defined, analogously to the choose command in [11], as:
. The extension to many variables is defined

in the obvious manner, i.e.  is the simultaneous assignment to 
of some arbitrary values in their respective types. Hence, we have that

.

The BUILD tool does not currently allow for the environment of a module to
be built automatically. The environment must be specified explicitly as shown in
the discussion of the response-heuristic (Fig. 9, Section 4.2). The proof diagram
Fig. 10 demonstrates the modular validity of the response requirement R11 for the
client module.

The mutual exclusion property R1 for the allocator module can be verified
modularly by using the transition set shown in Table 5, and the invariant-heuris-
tic.The bad part of the state is defined as

(EQ 46)

The heuristic may now be used to prove that  as shown in Fig. 12. We use
the functional view of arrays and the notation of [11] for array assignment. Thus,
an assignment  for the array  with index  and data expression , is re-
defined as , i.e. the array  is replaced by an array similar to , except
that the element at index  has the value of the expression .

When the weakest precondition computation of the heuristic was used, node
 was initially computed as the stronger formula . This

stronger formula could also have been used, but it results in a larger proof dia-
gram than necessary. Weakening the node to  as in Fig. 12, produces a simpler
smaller diagram. The other nodes are weakened in the same way.

TABLE 5. Transitions of the allocator module (with its environment)

Name enabling transformation lower upper

a  1 1

b 1 1

c 1 1

d 1 1

e 1 1

environment 0 ∞

τE

choose g1 g2 g3, ,( )

a 0=( ) v:r i a:1,[ ]

a 1= v∧ 0=( ) a:3[ ]

a 1 v∧ 1= =( ) gi :1 a:2,[ ]

a 2 r i∧ 0= =( ) gi ; 0 a: 3,[ ]

a 3=( ) i : i 3⊕( ) a: 0,[ ]

true choose g1 g2 g3, ,( )

pwp choose v( ) p,( )y i type v( )∈ pi
v )∀(

choose v1 v2,( ) v1 v2,

pwp choose v1 v2,( ) p,( )ypwp choose v1( ) p,( ) pwp choose v2( ) p,( )∧

Bad g1 g2 g3+ + 1≤( )¬=

g1 g2 g3+ + 1>=

h Bad¬
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Only connecting edges that are not selfloops are shown in the proof diagram.
The environmental transition is always a selfloop as are the transitions a and b.
State-formula  because the outer assignment is dominant. 
because the value of array elements at indices  are zero. Hence it is impossi-
ble for the summation to be greater than one.

Since none of the nodes are consistent with the initial condition (of the alloca-
tor) given by , the bad part of the state is unreachable, and hence
requirement R1 is modularly valid for the allocator. It is straightforward to extend
this argument to an allocator for an arbitrary number of clients.

FIGURE 12. proof diagram for R1 of allocator
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Observers (watchdogs)
We have shown how to use the heuristics to do modular verification of invari-

ances and real-time response properties. What about those modular requirements
(such as R13 and R15) that are not in the appropriate invariant or response for-
mats.

Although it is worthwhile to provide heuristics for some other commonly
appearing properties (e.g. the waiting-for requirement), there are too many per-
mutations for this to be a general approach. Instead, we use the concept of an
observer to convert other properties either into response or invariant properties.
The heuristics can then be applied in the standard way.

An observer (or “watchdog”) is a non-invasive TTM that observes and reacts
to the module without changing any parameters of the module. The TTM hog2

(with activity variable ) in Fig. 13 is an example of an observer that detects

when client  rebels, i.e. when the subformula  in R15 holds. A
similar TTM hog3  can be constructed to detect rebellion of . To verify R15 it is
sufficient to verify that

(EQ 47)

for the TTM . The property is in a format suitable for the applica-
tion of the response-heuristic.

An observer TTM for the waiting-for property given by  (where
 are state-formulas) is provided in Fig. 14. A transition  has an

enabling condition  and must be taken immediately (within zero ticks of becom-
ing enabled). An observer transition always has precedence over transitions from

FIGURE 13. Watchdog called “hog2” to detect a rebellious client
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the system under observation in case both are eligible to be taken from a node in a
proof diagram. The waiting-for property can then be checked by verifying the
invariance

(EQ 48)

for the composition of the observer and the module it is observing. The property
is in a format to which the invariance-heuristic is applicable.

Consider the waiting-for requirement R13 of the allocator given by

The antecedent  is not a state-formula. However, the transition  in the
observer of Fig. 14 can be replaced by two sequential transitions, the first of which
detects  and the second of which detects . This new observer can
then be composed in parallel with the allocator and the standard invariance-heu-
ristic can be applied to verify R13.

The use of an observer extends the range of properties that can be checked by
the heuristics to almost all RTTL properties. 

6.0  Tools for automated specification and verification
Any framework such as TTM/RTTL will need tools to automate the design

and verification of large systems. Real systems are complex. Systems engineers
will want powerful visual tools for specifying their systems as well as for simulat-
ing and verifying them mechanically where possible. Some tools are already
available for the TTM/RTTL framework and more are being planned. We have
already mentioned that a theorem prover is available [21] for the untimed propo-
sitional fragment of RTTL, which is particularly useful in modular specification.
We also describe below the development of a prototype toolset called StateTime
[27].

StateTime uses visual specifications and temporal logic for automated design
and verification. The BUILD tool allows the designer to model a system using a
graphical language (TTMcharts) which are easily converted into TTMs. This tool
was used to generate the charts shown in Fig. 6 and Fig. 9. The activities of a chart
can be hierachically decomposed (AND or XOR decomposition) in a fashion simi-
lar to statecharts.

FIGURE 14. Observer TTM obsw for the waiting-for property 

Activity variable  and initial activity .

p q( Wr )⇒

0 1 2
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return[0,0]
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mh W 2≠( )
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Any partial or complete model is immediately executable, which allows for
rapid prototyping and validation. The description language is capable of describ-
ing the given behaviour of the environment (which may be unstructured and non-
deterministic) as well as the required behaviour of the computer system (e.g.
written in a structured high level language such as Ada). Thus, concurrency, non-
determinism, hierarchy, synchronization and communication, time bounds and
integer data variables are supported. 

The VERIFY and DEVELOP tools take TTMcharts as their input and allow for
their computer-aided verification against RTTL requirements. The VERIFY tool
[29] is used to model-check finite state TTMs. For an example of the use of BUILD
and VERIFY for checking part of the shutdown procedure for the Candu reactor
see [30]. The VERIFY tool can be used to do automated modular model checking
which is useful for treating large systems [31].

The DEVELOP tool [24] is used for verifying infinite state systems using the
RTTL proof system. Although initially written in CLP( ) [25], it now uses the
constraint logic programming language PrologIII [9]. Constraint logic can solve
verification conditions and compute weakest preconditions in various domains
such as integers, rationals, lists and booleans. 

As an example of the use of the DEVELOP tool, consider verifying the require-
ment  (where ) for the infinite state TTM in Fig. 4. Suppose a sug-
gested proof outline (given in Step 13. to Step 17. on page 35) using the S-INV rule
is proposed. The first step is to use BUILD to construct the equivalent chart and to
enter the state-formulas  required by the rule. The script below, that confirms
the correctness of the proof outline, illustrates the use of the tool:

%%% Check that “initial->p”
?- implies(initial,p).
*** YES ***

%%% Check that “p->q”
?- implies(p,q).
*** YES ***

%%% Check the leads-to relation “{p}Transitions{p}” using the VC-rule
?- leads_all(sample, p, p).
*** YES ***

The DEVELOP tool can also be used to check weakest preconditions and exiting
edges of proof diagrams as required by the invariant and response heuristics.
Proof diagrams such as those in Fig. 7 and Fig. 10 were constructed and checked
in a few minutes with the help of the tool.

The DEVELOP and VERIFICATION tools are currently being experimented
with for verifying large realistic systems that are too complex to verify easily by
hand. The main technique is to use the compositional theorem to break the system
into modules. Where a module is small enough to be model-checked the VERIFY
tool is used. For modules that have very large or infinite timed reachability
graphs, the DEVELOP tool is used.

ℜ

hq qy x 4≠( )

p q,
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7.0  Conclusions
The TTM/RTTL framework has a computational model, specification lan-

guage, proof system and automated procedures and a toolset for treating a wide
variety of real-time reactive systems. The development methods presented in this
paper augment the framework with modular reasoning and automated heuristic
proof methods for modules, and the ability to derive their timing constraints.
These methods together with the use of the finite state verifier on modules [31],
and the theory of refinement proposed in [18], provide a feasible approach to the
systematic hierarchical and modular development of real-time reactive systems.

The toolset will benefit by the addition of interface specifications for modules,
and the support of the decomposition and refinement techniques discussed in this
paper. With these additions, more industrial examples will need to be specified
and verified before an industrial strength tool can be developed.
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