

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 1

StateTime — a Visual Toolset for the Design
and Verification of Real-Time Systems.

Jonathan S. Ostroff

Department Of Computer Science, York University

1

,

4700 Keele Street, North York Ontario, Canada, M3J 1P3.

Email: jonathan@cs.yorku.ca Tel: 416-736-2100 X77882 Fax: 416-736-5872

Electronic Technical Report Number: CS-ETR-94-07

ftp.cs.yorku.ca:/pub/TECH-REPORTS/General-CS/CS-ETR-94-07/text.ps2.Z

Abstract

: StateTime is a prototype toolset that uses visual specifications and
temporal logic for design and verification. The toolset is especially useful for
designing real-time safety critical systems. A design methodology is described
that can be used together with the tools. The methodology and the tools are illus-
trated with a nontrivial example taken from the actual requirements document of
the Candu nuclear reactor. The specification of part of the reactor shutdown
mechanism is shown to be incorrect. A revised design is proposed and verified.

StateTime consists of three tools: BUILD, VERIFY and DEVELOP. The BUILD
tool allows the designer to model the system using a graphical language based on
timed transition models (TTMs). Concurrency, nondeterminism, hierarchy, syn-
chronous interaction, time bounds and integer data variables are supported.

The VERIFY tool automatically checks finite state systems for various proper-
ties specified in real-time linear temporal logic (RTTL). Safety properties such as
freedom from deadlock and mutual exclusion, liveness properties such as termi-
nation and accessibility, and bounded response times can be specified and veri-
fied. DEVELOP supports a semi-automated disciplined approach to software
development for infinite state systems.

Keywords

: formal methods, verification, CASE tools, real-time temporal logic,
timed transition models.

1. This work is supported in part by the National Science and Engineering Council of Canada.

This document was created with FrameMaker 4.0.4

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 2

Table of Contents

1.0 Overview 3

1.1 CASE tools for design automation ..3

1.2 Design Methodology..6

1.3 StateTime Terminology..10

2.0 Example 1: The real-time dining philosophers 12

2.1 Building a model of the college...14
2.1.1 Root activities, ordinary activities and basic activities15
2.1.2 AND-composition, XOR composition and Activity Variables............................16
2.1.3 States, computations, state-formulas and RTTL formulas...................................17
2.1.4 Local Events, Shared Events and Transitions..18
2.1.5 Spontaneous events ...20
2.1.6 Grouped Events ...20
2.1.7 Data variables, Assignments and Guards ..22

2.2 Using BUILD to validate the model by executing it ...22

2.3 Specify the RTTL plant requirements..24

2.4 Design a controller — the porter ...24
2.4.1 Control Interface Specifications ..25
2.4.2 Designing the controller ..25

2.5 VERIFY — submit the design for verification ..25

2.6 DEVELOP — synthesizing controllers ...28

3.0 Example 2: The delayed reactor trip (DRT) problem. 29

3.1 Modelling the plant ..31

3.2 The software controller ..35

3.3 DRT requirements expressed in Temporal Logic...36

3.4 Using the VERIFY tool..39

4.0 Conclusions 39

5.0 Acknowledgments 41

6.0 REFERENCES 42

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 3

1.0 Overview

Computers are increasingly used to monitor and control safety critical sys-
tems. Real-time software controls aircraft, shuts down nuclear power reactors in
emergencies, keeps telephone networks running, and monitors hospital patients.
The use of computers in such systems offers considerable benefits, but also poses
serious risks to life and the environment [24].

There is general consensus in the software and control systems literature that
real-time systems are difficult to model, specify and design. In addition, experi-
ence has shown that software components of systems are problematic, perhaps
even more so than mechanical or other hardware components. Software is com-
plex; consider the documentation needed for even simple modules. Software is
not usually robust as small errors have major consequences, and software is noto-
riously difficult to test; the number of test cases that must be checked becomes
unmanageably large even in small systems [27].

Formal methods [8] have been proposed for verifying the correctness of safety
critical systems. It is clear, however, that the application of formal methods to
realistic systems will require suitable automatic tools for model execution (simu-
lation), code generation and verification.

This paper presents a methodology and a toolset (

StateTime

) for designing
(possibly nondeterministic concurrent) real-time systems using a formal method.
The formal method uses timed transition models (

TTMs

) for representing complex
systems, and real-time temporal logic (

RTTL

) for specifying their requirements.
The methodology is a set of recommended design steps for applying the formal
methods to the design of actual systems. The StateTime tool automates many of
the design steps including modelling complex systems, executing the model, and
the verification of their correctness.

TTMs are computational models that specify concurrent processes, non-deter-
ministic behaviour, communication between modules, structured programs, and
real-time constraints. The transitions of a (conceptual) discrete external clock, that
ticks infinitely, is interleaved with other system transitions to model the progress
of time.

The temporal logic RTTL is a useful specification language for expressing a
variety of properties including: freedom from deadlock, mutual exclusion of criti-
cal regions, liveness properties (e.g. access to critical regions and process fairness),
and real-time response.

The underlying formal method (TTMs/RTTL) used in the sequel for verifying
system correctness has been presented elsewhere [

19,18,17,24

]. This paper will
therefore concentrate on the StateTime toolset and the proposed design methodol-
ogy.

The rest of this overview will survey some of the tools reported in the litera-
ture and compare them to StateTime.

1.1 CASE tools for design automation

Two directions have been pursued in recent years to deal with the problems of
real-time software design [6]:

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 4

1. Commercial tools have been developed incorporating structured methods for
specifying real-time systems requirements [32,9,33,29]. These tools are in
actual use, and have been successful on the whole in removing ambiguities in
the requirements. However, these methods are at best semi-formal. They lack
a precise semantics and rigorous verification methods (e.g. through model
checking, proof calculi or algebraic bisimulations). Two notable tools are
ObjectTime and Statemate. The main feature of ObjectTime [28] is its use of
classes and inheritance allowing for the re-use of processes, data structures
and communication protocols between processes. The Statemate tool [7] is
unique amongst commercial tools as it has a formal semantics (statecharts).
The semantics is used for simulation, code generation, and the verification of
deadlock freedom and reachability analysis. A more detailed comparison
between Statemate and StateTime is provided later in this section.

2. In academia, formal, mathematically precise methods have been proposed for
the design of real-time systems [24]. Many practically-oriented software engi-
neers will probably consider that formal methods cannot be applied to realistic
real-time systems. However, software safety has become a vital public policy
issue. It has been proposed that safety-critical software be certified by licensed
software engineers, in part by the use of formal validation methods [5]. These
academic methods will therefore have to be taken out of the realm of theory
into practice [8].

In response to the need for practical verification of structured systems, tools have
been developed recently that combine visual representation methods with (semi)
automatic verification of real-time systems. For example, the modechart tool
[10,13] uses statechart like visual formalisms and real-time logic (RTL). The
ExSpect tool in [31] uses Petri Nets for visualization.

The tool reported in [10] was found to be a “significant advance in the state-of-
the-art of specification and verification” despite some of its limitations (it does not
allow for modelling data values, has a limited repertoire of specification formulas,
and does not allow proofs of a combination of modechart and logical RTL formu-
las). The authors of [10] state that many existing CASE tools are ill-thought out
and inadequately tested; research in interface design is much needed.

The following general features are needed for such tools:

•

Hide the complexity of the formal method from the designer where feasible.
For example, use a visual language to model the system. Concurrency, non-
determinism, communication between modules, real-time constraints, and
hierarchies should be presented in an appealing graphical fashion. Top down
(decomposition of an abstract system into subsystems) and bottom up devel-
opment (composing subsystems into larger systems) must be supported.

•

Allow the user to execute the model. This will allow the designer to validate
the model as it is developed. Animated simulation is also useful.

•

Automate verification methods, whenever this can be done, e.g. implement
finite state model checking or synthesis procedures. Semi-automated proce-
dures should be implemented where total automation cannot be achieved,
for example in the case of very large or infinite state systems.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 5

•

Generate code into an appropriate real-time language such as Ada or Occam.

•

Provide a well thought out user interface.

•

The toolset should be portable to as many computing platforms as possible in
order to encourage its use and acceptance.

Statemate is one of the few commercially available tools that meets most of the
above goals (although it is costly to purchase). It is based on a formal model (stat-
echarts), allows for dynamic execution in which triggers can be provided interac-
tively on the fly, and which can formally verify various properties including
reachability of conditions, deadlock, nondeterminism, usage of elements and rac-
ing.

The StateTime tool discussed in this paper is a prototype and thus does not
compare to Statemate in some important respects. The most important deficiency
in StateTime is that presently only integer types are available for data variables,
whereas Statemate has the full range of types available in normal programming
languages. A future object-oriented version of StateTime is under development
that will make available to the user all the basic Smalltalk

2

 classes.
In other respects StateTime is more expressive than Statemate. While retaining

the hierarchical and concurrent constructs of statecharts, State

Time

 has facilities
for expressing and verifying certain kinds of real-time properties that Statemate is
unable to deal with directly.

Statemate has time-out and scheduled

transitions

. These transitions allow for
an exact delay of a specified period after which the transition occurs. By contrast,
StateTime has a much richer hierarchy of timing properties that can constrain the
behaviour of a transition (with lower time bound clock ticks and upper
time bound). In order of increasing stringency of timing these transition are:
spontaneous, just and timed transitions.

Spontaneous transitions

 may occur at any point in time (after they are enabled
via a “guard”), or they may never occur. An example is a transition that represents
the event of a device failure. In the sequel, spontaneous transitions are indicated
by the fact that their upper time bound is infinity (

∞

).

Just transitions

 must eventually occur if they are continually enabled. For
example, a process that is continuously enabled to enter its critical region should
eventually be allowed in. The external clock must always eventually tick (i.e.

tick

transitions must be taken infinitely). Justice is qualitative in the sense that
although a just transition must occur, no finite bound on the time of occurrence is
given.

Timed transitions

 must occur within an interval specified by a lower and an
upper time bound. For example, sending a message may take between 5 and 8
ticks of the clock. This type of nondeterminism, that is caused by inexact knowl-
edge of precise times, is commonly found in many real-time systems.

Statemate cannot distinguish between just or spontaneous transitions (a
Statemate transition must be generated somewhere in the system for it to be

2. The StateTime BUILD tool is already implemented in ParcPlace’s Smalltalk V4.1. The object-oriented
nature of Smalltalk has been useful as a prototyping language for BUILD as the requirements continue to
change rapidly. Smalltalk provides suitable support for the pictorial nature of BUILD, and the tool is auto-
matically available on a wide variety of platforms (e.g. Sun, Dec, HP, IBM Apple Macintosh and Windows)
without any need to port the software.

τ l u,[] l
u

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 6

sensed). Nor is it able to express timed transitions in a direct manner. For exam-
ple, to represent a transition in Statemate, two time-outs (one for the
lower and one for the upper time bound) and some intermediate actions and
states are needed.

There is also a fundamental between StateTime and Statemate with respect to
program verification. The Statemate reachability test can check whether there is

a
computation

 from the initial state to a specified condition. By contrast, StateTime
generates the complete reachability graph, and can therefore check that a certain
property holds in

all computations

 (also called

trajectories

).
Statemate cannot check timing properties directly. An example of a timing

property is

real-time response

, which in temporal logic is written .
This property asserts that every time the condition becomes true, then the con-
dition must eventually become true in all subsequent computations at a point
in time that is between and ticks inclusive from (such temporal properties
are explained in more detail in the sequel).

To check a real-time response property in Statemate, a

watchdog

 must be
appended to the system to detect the various conditions, and the response prop-
erty must be reformulated as a reachability problem. A watchdog is an observer
that has access to all the system variables without affecting them. However, using
a watchdog increases combinatorially the size of the state space that must be
checked.

In contrast, StateTime checks a small but important subset of temporal logic
properties (such as deadlock, safety, liveness and real-time response) without the
need of a watchdog. Properties not within the core set, however, will also require
the use of a watchdog as in Statemate.

1.2 Design Methodology

The system under design (SUD) is usually divided into two parts, the

plant

(often called the “environment) and the

controller

 (often called the “system”). The
plant and controller interact with each other concurrently as shown in Figure 1,

and we write

FIGURE 1. The closed loop system: SUD = PLANT || OPERATOR

τ 2 5,[]

f 1ie l u,[] f 2
f 1

f 2
l u f 1

PLANTCONTROLLER

measured variables

commands

disturbanceshuman operator

SUD plant controller||=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 7

The

plant

 is that part of SUD that is a given. The designer cannot change the
plant, although the plant may have sensors and actuators through which its state
can be measured and manipulated. For example, in the reactor shutdown system
treated in the sequel, the plant is the nuclear reactor including the sensors for
power and pressure, and the shutdown relay with its actuator to open and close
the relay.

The environment may also involve processes such as the atmosphere and
weather that cause disturbances to the plant. Such disturbances (the uncertainties
due to weather, equipment failure and other unknowns) will often be modelled
by spontaneous transitions in the plant. In the case of the reactor, disturbances are
modelled by the pressure or power going beyond safe levels. Part of the job of the
controller will be to operate the plant safely in the face of disturbances.

The

controller

 is that part of the SUD that is to be designed. In the case of the
reactor shutdown system, it is a computer program implemented on a micropro-
cessor, that continually monitors the pressure and reactor variables of the plant,
and issues appropriate commands to the shutdown relay to open or close depend-
ing on the measurements. In the original reactor design, the controller was imple-
mented in hardware using comparators, timers and other such devices.

In the sequel, the term

model

 is used to denote how a system (e.g. the plant)

actually

 behaves. The term

requirement

 is used to denote how a system

should

behave (the actual behaviour may not match the required behaviour).
The term

specification

 is used for formal languages that represent models or
requirements; the context in which “specification” is used will indicate in which
sense it is being used. Two examples of specification languages are used in this
paper: TTMs and RTTL. Timed transition models (TTMs) are visual languages
(states and events) usually used for modelling systems (plants or controllers).
Real time temporal logic (RTTL) is a high level abstract language usually used for
stating requirements. It is possible to use RTTL for modelling systems and TTMs
for stating requirements, but this is not their usual function. The notions of TTMs
and RTTL will be explained in detail in the sequel.

The reactor might fail to shutdown (in the absence of the controller) when the
power and pressure are above critical values — this type of behaviour is “illegal”;
nevertheless such illegal behaviour must be represented in the model of the plant.
A requirement of the reactor is that when the power and pressure are above criti-
cal values, then the reactor should shutdown within a certain number of ticks of
the clock (i.e. the requirements specify the “legal” behaviour of the plant). It is the
job of the controller to ensure that the requirements are satisfied, i.e. the closed
loop system of plant and controller (SUD) must only execute legal behaviour.

The requirements specify

what

 the controller is to do

to the plant

, not how the
controller itself is to operate. For this reason, the requirements will refer primarily
to entities (variables, states and events) in the plant, and not to entities in the con-
troller. An example of a requirement is: “whenever the

power

 reaches an accept-
able level then the

relay

 should be

closed

 within two ticks of the clock”. Note that
“power”, “relay” and “closed” are plant (not controller) entities.

The job of the designer is: given a model of the

plant

 and given a set of

require-
ments

 for correct behavior, design a

controller

 so that satis-
fies its requirements. The verification problem is: given the

requirements

 and SUD,
check that SUD satisfies the requirements.

SUD plant controller||=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 8

Computer failures are not always a result of coding errors, but are either a
result of omissions in the requirements or mishandled plant and environmental
conditions [15]. What is needed is a design methodology for dealing with safety
critical systems. It is essential to provide a model of the plant and to write down
the requirements before proceeding to the design of the controller. The designer
will therefore typically proceed as follows:

1.

Model of the plant

. An abstract model of the plant must be constructed. A bal-
ance must be sought between abstracting out unnecessary features, while at
the same time providing enough information to indicate illegal behaviour of
the plant in “open loop” (in the absence of the controller). In the reactor exam-
ple, the behaviour of the relay (closing and opening), and the way in which
pressure and power variables change must be modelled.

2.

Specify requirements

. The plant (without a controller) may obviously behave in
an inappropriate fashion (e.g. the relay may not open when the pressure is
high). The required plant behaviour must therefore be specified as formulas of
the temporal logic RTTL. (Since Step 1 enumerated the relevant entities of the
plant and their interactions, these entities are now available for writing the
requirements.) The plant model (Step 1) represents what

is

, whereas the
requirements (Step 2) asserts what

ought

 to be.

3.

Design a controller

, which when composed with the plant will satisfy the
requirements (of Step 2). An example of a requirement for the reactor was
already presented above: “whenever the power reaches an acceptable level
then the relay should be closed within two ticks of the clock”. The desired con-
troller might be a program implemented on a microprocessor that periodically
scans the power, compares it with an acceptable level, and on the basis of the
comparison sends a suitable command to the relay, and then returns to the
scanning phase. The controller could also be implemented directly in hard-
ware using comparators, gates and timers. TTMs may be used to model the
controller, irrespective of whether the controller is software or hardware (or a
combination).

4. V

erify that the design is correct

. Check that SUD satisfies all the requirements
enumerated in Step 2. Better still, use a disciplined method for obtaining the
controller so that the proof of correctness is constructed hand in hand with the
controller. If the development of the controller can be fully automated, then
we have a synthesis procedure.

StateTime supports each of the above steps. StateTime currently consists of three
integrated components BUILD, VERIFY and DEVELOP, as illustrated in Figure 2.

•

BUILD — is a front end for constructing visual models (TTMcharts) of sys-
tems (plants and controllers) in a structured fashion, executing them, and
refining them until a satisfactory design has been achieved. The iterative
modelling/executing/refining cycle is very important as it helps to validate
the model, i.e. to ensure that the model correctly reflects the actual devices of
the real system. TTMcharts use the visual features (hierarchy and concur-
rency) of statecharts, and the communication and process composition fea-
tures of CSP. A TTMchart can be executed at any point in the cycle even

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 9

before it is finally fixed. TTMcharts can be composed together in parallel
(AND composition) or sequentially (XOR composition). BUILD is written in
ParcPlace’s Objectworks/Smalltalk.

•

VERIFY — is a model checker for real-time temporal logic. It computes the
global state reachability graph of any finite state TTM, and then checks that
the TTM satisfies the requirements (specified as formulas of RTTL). The naive
interleaved model for concurrent processes cannot be used to construct the
reachability graph because: (a) some states may no longer be reachable due to
real-time constraints, and (b) since time is a monotonically increasing vari-

FIGURE 2. StateTime = BUILD + VERIFY + DEVELOP

red green

fail

Design and Verification

VERIFY tool
•automatically checks the correctness

of finite state systems by ensuring that

the TTMchart satisfies its require-

ments.

•Requirement: freedom from faults:
henceforth (not fail)

•Requirement: real-time response:

(once the traffic light is amber then
eventually within 2 to 4 ticks of the
clock, green will occur)

amberce 2 4,[] green

amber

TTMchart of traffic light

DEVELOP tool
• Deals with large or infinite

state systems

•Systematic and disciplined
development of software.

•Uses heuristics for guiding
the design process. If the heu-
ristic works, the software is
guaranteed to meet its specifi-
cation.

BUILD tool (models)
• Visual models of the system (plant &

controller), using TTMcharts.

• Executes or simulates the model.

normal

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 10

able the naively constructed reachability graph will always be infinite state.
Special procedures developed for the TTM/RTTL framework must therefore
be used. VERIFY is written in Quintus Prolog.

• DEVELOP — If the model is infinite state, then although a fully automated
verification check cannot be performed, it may still be possible to provide
semi-automated verification heuristics. If the heuristics succeed, then the
model is guaranteed to satisfy its requirements. The heuristics also facilitate
systematic development of the controllers from their specifications.
DEVELOP uses the constraint logic programming language PrologIII [3].
Most of the reasoning can be performed by checking that certain constraints
over the model variables are satisfied, without the need to perform compli-
cated temporal logic manipulations.

StateTime thus helps the designer to obtain a thorough understanding of complex
systems. Partial models can be executed to see how the system, as specified,
would behave if implemented. The designer can then determine if the model
truly describes what is required. Because there is a precise underlying formal
framework, the model can be verified for correctness.

The VERIFY tool has been documented elsewhere [18,25], and has been used
by a team at NASA to study fault-tolerant Transputer communication for flight
controllers [4]. This paper will therefore focus on the design methodology, and
how the BUILD and VERIFY tools support the methodology.

The theory behind the DEVELOP tool has been reported elsewhere [21,20,23].
This paper will briefly describe where this tool will be useful. A future paper is
planned which will document the use of this tool in detail.

Two examples will be used to illustrate the methodology: an extended version
of the real-time dining philosophers (Section 2.0), and the delayed reactor trip
problem which is taken from the actual requirements documents of the Candu
nuclear reactor [14]. The reactor problem describes how a watchdog can be used
to verify arbitrary RTTL properties. The discussion of the delayed trip reactor pre-
sented in Section 3.0 is taken from [26].

1.3 StateTime Terminology
Here is a brief review of the terms that are used in the sequel:

1. The TTM/RTTL framework — the underlying mathematical theory that the
StateTime toolset is based on. TTMs are Timed Transition Models. RTTL is
Real-Time Temporal Logic. TTMs are mathematical models of interacting dis-
tributed processes. RTTL is a rigorous specification language for stating how
the models ought to behave. Without an underlying mathematical theory, the
Statetime toolset would not be able to execute systems and verify their correct-
ness.

2. TTMchart — a visual representation of a system that can easily be converted
into a timed transition model (TTM). Graphical notions are provided for repre-
senting states (called activities), transitions, concurrent processes, hierarchy,

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 11

timing and program statements (assignments). A TTM is a mathematical
entity. A TTMchart is a concrete visual representation of that mathematical
entity.

The terms “TTM”, “TTMchart”, and “chart” are often used interchangeably
where it is clear from the context what is meant.

 A TTMchart is one type of visual front end to TTMs. Other front ends (e.g.
Petri Nets) could also have been used. The TTM computational model is gen-
eral enough to support statecharts, Petri Nets, CSP and other programming
languages (e.g. Ada or Occam) [16,17].

3. The StateTime toolset consists of three tools:
The BUILD tool — a tool that provides automated support for drawing and
executing TTMcharts.
The VERIFY tool — a tool that automatically verifies that a finite state TTM
satisfies an RTTL requirement.
The DEVELOP tool — a tool that semi-automates the verification of infinite
state TTMs. It also helps the designer to synthesize TTMs from RTTL
specifications.

State-formulas are boolean valued expressions in the system variables. RTTL for-
mulas are constructed from state-formulas together with special temporal logic
operators such as (henceforth) and (eventually). Let stand for state-
formulas in the table below. The table documents some of the RTTL properties
that the VERIFY tool can check.

For the real-time response property, the verifier is given and it returns
the time bounds and . If it returns , then the property is false.

How the property is read Property Definition of the property

Invariance:

 entails henceforth .

In any reachable state in
which the state-formula
holds, the formula must
also hold in and in all fol-
lowing states.

Real-time response:

 entails eventually
within to ticks

In any reachable state in
which holds, must also
hold in some following state
which is at least ticks but no
more than ticks after .

Unless or waiting-for:

 entails waiting for
.

If holds in any reachable
state , then in and all fol-
lowing states the formula
holds continuously or until
the next occurrence of .

h e f f 1 f 2…, ,

f 1 f 2

f 1ih f 2 s
f 1

f 2
s

f 1 f 2
l u

f 1ie l u,[] f 2 s
f 1 f 2

s'
l

u s

f 1 f 2
f 3

f 1i f(2W f 3) f 1
s s

f 2

f 3

f 1 f 2,
l u u ∞=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 12

2.0 Example 1: The real-time dining philosophers
In this section we use our methodology for designing a controller for the din-

ing philosophers. This example can also be used to illustrate the StateTime tools,
especially its facilities for representing sequential composition, concurrency, hier-
archy, time bounds, data variables and synchronous interaction. In the next sec-
tion, we apply the methodology to the shutdown logic taken from the actual
requirements document of a nuclear reactor.

The first step in the design process is to discover and describe as much as pos-
sible about the problem domain. Informal descriptions of the system to be devel-
oped must be translated into suitable TTMcharts. The problem of the dining
philosophers illustrates instances of system deadlock and process starvation
resulting from the interaction of distributed processes as they attempt to access
shared resources. We add to these standard problems real-time (bounded)
response, and the use of data variables for controlling the behaviour of a system.

The well-known tale of the dining philosophers is due to Edsger W. Dijkstra,
as retold by C.A.R Hoare [11, p75]. In ancient times, a wealthy philanthropist
endowed a College to accommodate three eminent philosophers. Each philoso-
pher had a room in which he could engage in his professional activity of thinking.
There was also a common dining room, furnished with a circular table, sur-
rounded by three chairs, each labelled with the name of the philosopher who was
to sit on it. The names of the philosophers were philo_x where x is {a,b or c} dis-
posed in this order anticlockwise around the table. To the left of each philosopher
was laid a golden fork, and in the center of the table was placed a large bowl of
spaghetti that was constantly replenished.

A philosopher was expected to spend most of his time thinking; but when he
felt hungry, he went to the dining room, sat down in his designated chair, and
picked up his left fork and plunged it into the spaghetti (it would be bad manners
to pick up the right fork first, hence this was never done). The philosopher then
picked up the fork to his right to help carry the spaghetti to his mouth. When he
was finished eating, he would put down both forks, and continue thinking. Of
course, a fork could be used by only one philosopher at a time. If the other philos-
opher wanted it, he just had to wait for it. The forks are called forkn where n is {1,2
or 3}.

In the above folktale, the forks represent shared resources, such as a printer or
disk drive that can only be used by one process at a time. The philosophers repre-
sent the various processes in a system, e.g. the users of a computer system. The
users cannot all access a shared resource at the same time. Hence there can be var-
ious problems of deadlock, and accessibility.

The top-level TTMchart in the hierarchy is college, which is the parallel compo-
sition of philosophers and forks:

college = philosophers || forks
philosophers = philo_a || philo_b || philo_c
forks = fork1 || fork2 || fork3

In the case of the dining philosophers, the plant is the college. The plant can
behave in unsatisfactory ways; for example, it is possible for it to deadlock. There-
fore, there is a need for a controller, which in this case will be called the porter. The
job of the porter will be to control the seating arrangements of the college so that
deadlock and other such problems are avoided.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 13

The following design steps will be followed using the StateTime toolset:

1. Use the BUILD tool to model the college (the plant) as a TTMchart. See
Section 2.1.

2. Validate the model of the plant by executing its chart. BUILD uses the formal
semantics of TTMs to help the designer check that the model indeed captures
the essential behaviour of the plant. The designer may have to iteratively
return to the previous step so as to bring the model in conformance with the
real world. Simulating the model may also help the designer discover unsatis-
factory plant behaviour. See Section 2.2.

3. Once the designer is satisfied with the model of the plant, the next step is to
write down the RTTL requirements of how the plant ought to behave. At this
point, the plant will not satisfy its requirements, e.g. it may deadlock. See
Section 2.3.

The TTMchart college and the RTTL requirements together provide for a complete
description of the problem to be solved: “develop a controller (the porter) that
when composed with the plant (the college) satisfies the RTTL requirements”. The
design may thus continue as follows:

4. The porter (the controller) must satisfy its RTTL specifications. The designer
must provide the “interface specifications”, i.e. which variables of the plant
are observable by the controller, and which plant events are controllable. The
controller is itself a TTMchart constructed with the help of BUILD. The con-
troller may only access those plant variables that are observable, and control
the plant only through those plant events that are controllable. See Section 2.4.

5. BUILD can then be used to compose the porter in parallel with the college to
obtain: newcollege = college || porter.

6. Finally, the VERIFY tool is invoked to check that newcollege satisfies the RTTL
requirements provided in Step 3 above. If the requirements are not satisfied,
then the porter must be modified until all the requirements are met. To help
with this step, VERIFY returns diagnostic information as to where the specifi-
cation failed (e.g. in which state the specification failed to hold true). See
Section 2.5.

The execution and simulation facility of BUILD is useful throughout the design
cycle. Simulation may be useful in detecting problems in the plant as well as in
the controller.

The temporal logic language allows requirements to be expressed in an
abstract fashion for specifying the dynamic behaviour of real-time systems. The
special temporal operators allow for natural and succinct expression of frequently
occurring system properties. The desired behaviour is described while avoiding
references to the method or the details of the implementation of the controller.

The TTMchart description of the college captures the detailed operational
information of the philosophers and forks. Both TTMcharts and RTTL may be
viewed as generators of executions or computations of the system, thus providing
alternative characterizations of the system. Hence, RTTL could also have been
used to describe the plant. However, the already existing operational nature of the

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 14

plant is more easily expressed as a TTMchart. By contrast, the as yet to be imple-
mented controller tasks are more easily described by the less operational and
more abstract RTTL requirements.

In the next subsection, the BUILD tool is used to construct a pictorial model of
the college as a TTMchart. The meaning of these TTMcharts will be explained
informally by example. For a complete formal treatment of TTM semantics see
[19,18].

2.1 Building a model of the college

The BUILD tool is used to draw and execute TTMcharts. When the tool is first
invoked, the main window shown in Figure 3 is displayed showing a list of all the
available TTMcharts. Various operations on charts can be invoked by clicking the
buttons towards the bottom of the main window. For example, the FileAccess oper-
ation is used to load in previously stored TTMcharts, or to store new ones to disk.

The CopyTTM and AddTTM operations may be invoked to generate new charts.
The CopyTTM operation allows the designer to reuse an already existing chart (e.g.

Figure 3. Main Window of the BUILD tool — list of TTMcharts and chart variables

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 15

once philo_a is created, it may be used as a template for creating the other philoso-
phers). The AddTTM operation is used for creating a new chart.

The college chart is created by invoking the AddTTM operation. The user is
prompted for the name of the chart (i.e. college), after which the user invokes the
EditTTM operation, which produces an edit view of the college chart, as shown in
Figure 4.

Initially the edit view is empty. If a bottom-up approach is followed, the philos-
ophers and forks charts would already have been created, and the AND-TTMs opera-
tion in the edit view may then be invoked to compose philosopher and forks in
parallel with each other to obtain college = philosophers || forks.

Alternatively, a top-down approach may be used in which the philosopher
and fork charts have not yet been created. The Add-Activity operation in Figure 4
may be invoked to insert the new sub-charts philosophers and forks. The user may
then ZoomIn to these sub-charts to refine them further.

2.1.1 Root activities, ordinary activities and basic activities
All available TTMcharts are listed in the main window (Figure 3). These charts

at their highest level are also called root activities that can be further refined into
ordinary activities, and those activities can themselves be further refined into sub-
activities. Activities with no further internal structure are called basic activities.

At any level of refinement, a chart can be imported from the chart list in the
main window either by AND-composition (parallel composition) or by XOR-com-
position (sequential composition). The imported chart then becomes a sub-activ-
ity at that level.

Figure 4. Edit view of college = philosophers || fork

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 16

The activity hierarchy of the primary chart college is shown in Figure 5. The
user may navigate within the chart using the ZoomIn, ZoomOut and Hierarchy buttons
of the edit view.

Zooming in to philosophers produces the edit view shown in Figure 6, in which
philo_a and philo_b are shown in expanded format, whereas philo_c@ is collapsed.
The @ sign indicates that philo_c has further internal structure, which can be
explored either by expanding it in its place (if there is room) or by zooming in.
Zooming in to forks and then into fork1 produces the edit view shown in Figure 7.

2.1.2 AND-composition, XOR composition and Activity Variables
AND-composition of activities is indicated by dotted rectangles. An activity

which is AND-decomposed into several sub-activities, is simultaneously in all its
sub-activities. Thus college has six separate simultaneously executing threads
(three philosopher threads and three fork threads) as shown in the edit view of
Figure 4.

XOR composition is indicated by rectangles with solid lines. An activity A
which is XOR (exclusive-OR) decomposed into sub-activities A1 and A2 has the
following behaviour: to be in A is to be in either A1 or A2, but not in both. For
example the fork1 activity shown in Figure 7 is XOR-decomposed into sub-activi-
ties in_use and clean.

At any level of the hierarchy in the edit view, the topmost activity name and its
corresponding activity variable is shown on a white background. For example, the
activity fork1 in Figure 7 has activity variable F1.

The type of an activity variable is the range of sub-activities that it decomposes
into, e.g. type(F1) = {in_use,clean} because the activity fork1 is XOR-decomposed

college

AND

philos

AND
forks

AND

clean

(basic)

fork1 fork3philo_c fork2

XOR

philo_b

XOR
philo_a

eating

(basic)

in_use

XOR

thinking

(basic)

down

(basic)

up_r

(basic)

Figure 5. Part of the activity hierarchy for the college TTM

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 17

into in_use and clean. The activity in_use (with its corresponding activity variable
In1) is further XOR-decomposed into the sub-activities down, up_l and up_r, so that
type(In1) = {down,up_l,up_r}.

To assert that the current execution point is somewhere within the activity
in_use, we write . To assert that the system is in the basic activity down
of the in_use chart, we write

 (EQ 1)

(EQ 1) is a state-formula, i.e. it is a boolean valued expression in the chart (activity)
variables. The activity variables are thus used in state-formulas for describing
activity properties.

Every activity that is XOR-decomposed into sub-activities must have a corre-
sponding activity variable. However, activities such as college which are AND-
decomposed into sub-activities do not need activity variables (see Figure 4), as to
be in college is automatically to be in philosophers and forks simultaneously. These in
turn are AND-decomposed into the individual forks and philosophers. The forks
and philosophers (which are further XOR-decomposed into other sub-activities)
have activity variables (F1,F2,F3 for the forks and A,B,C for the philosophers),
which are sufficient for expressing all relevant activity properties of the college
chart.

Every activity that is XOR-decomposed into sub-activities, must have one of
these sub-activities designated as the default activity. When there is a transition
from activity A1 to A2, the destination A2 is assumed to start executing in its
default activity. The default activities are indicated in bold print. For example,
in_use is the default of fork1, and down is the default of in_use (see Figure 7).

2.1.3 States, computations, state-formulas and RTTL formulas
What is called a “state” for statecharts is called an “activity” in TTMcharts.

The word “state” is reserved in TTMs for the global state of the chart, i.e. the
assignment of values to all the variables in a given TTMchart. A state-formula
such as (EQ 1) can be evaluated to true or false in such a global state . A compu-
tation (or trajectory) of a TTMchart is a sequence of states:

A state-formula can be interpreted as either true or false in a state. For exam-
ple, the state-formula evaluates to true in
the state <A:thinking, B:eating, C:eating, F1:clean, F2:clean, F3:clean, In1:down, In2:down, In3:down, D:4, t:10, ε:out>.

As discussed in Section 1.3, RTTL formulas are constructed from state-formu-
las and temporal logic operators. State-formulas are evaluated in a single state of
a computation, whereas RTTL formulas assert properties that hold over many
states of the computation. For example, the RTTL formula given by

 asserts that if the transition
aSD is taken in a state of the computation satisfying the state-formula

, then eventually a state of the computation is reached in which fork1
has been picked up. The distinguished transition variable has as its type the set of
all transitions in the chart. The transition variable is used in state-formulas to refer
to transition occurrences. Thus the RTTL formula asserts that
there are an infinite number of clock ticks in the computation.

F1=in_use()

(F1=in_use) (In1=down)∧

si

s6 s7 s8s0 s2s1
s3 s4 s5

aSD bSD cSD tick aPU1 bPU2 cPU3 tick …

D((3≥) A B)) F1(→≠(∧ clean)=

ε(aSD F1∧ down)ie F1(up_l= = = F1∨ up_r)=

F1 down=()
ε

he ε(tick)=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 18

2.1.4 Local Events, Shared Events and Transitions
An event in a TTMchart is indicated by drawing an arrow from a source activ-

ity to a destination activity. Multi-level events are allowed (the source and desti-
nation activities need not be at the same level in the hierarchy), provided the
source and destination are not in parallel with each other.

Events are declared to be either local or shared. An event which is declared
local, is hidden from all other events in the chart, and does not synchronize with
them. A shared event synchronizes with all other shared events with the same
name. The set of all shared events of the same name, taken together as a simulta-
neous interaction or rendezvous, is called a shared transition.

An event is an edge in the TTMchart. A transition is the corresponding theoreti-
cal entity in a timed transition model (TTM). A TTM is a 3-tuple consisting of

 where is the set of all variables (e.g. activity and data variables), is
the initial condition, and is the set of transitions. Such a TTM can be considered
as a generator of computations.

Figure 6. Edit view of philosophers = philo_a || philo_b || philo_c

philo_c@

 thinking

aSD[2|*]

dotted box — AND (parallel) activity. The @ symbol indicates
you can zoom in to see more structure.

solid box — XOR (sequential) activity. (may also have an @
symbol if there is substructure).

black box — event aSD with lower time bound of 2 ticks and
upper time bound ∞.

V I T, ,() V I
T

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 19

The transition takes into account the fact that two or more events may syn-
chronize with each other. Such a shared transition may have any finite number of
component events. If any one of the components is disabled then the composite is
also disabled from being taken. Some examples will now be provided of local and
shared events. The corresponding transitions together with their enabling condi-
tions and transformation functions will also be described.

Let A1 and A2 be two activities of a chart that are in parallel with each other
(e.g. philo_a and fork_1). Let and be events with sources in A1
and A2 respectively. Let and both be declared shared3. Then and
taken together form the shared transition which may only be taken if both

 and are enabled. The transition must respect the time bounds of all
of its components, i.e. and .

The college events have the meanings indicated in the table below:

The two events aPD1[3,7]# in philo_a and aPD1[0,∞]# in fork_1 are declared shared.
The # symbol after the event name indicates its shared status. These two events
together form a shared transition also denoted aPD1 involving simultaneous
action on the part of the philo_a and fork_1: the first fork is put down and simulta-
neously philosopher a stops eating.

Every transition has an enabling condition, transformation function and time
bounds. This information is displayed by invoking Query-TTM from the main win-
dow (Figure 3). For the transition aPD1 the information displayed is:

The enabling condition is the conjunction of , which is the activity
constraints due to philo_a, and which is the constraint
caused by fork1. Similarly, the transformation function indicates that both philo_a
and fork1 experience a change in their activity variables, when the transition is
taken.

A state is a moment of enablement of transition aPD1 when its enabling condi-
tion becomes true (i.e. philo_a is executing in eating and fork_1 in up_r). From that
moment, aPD1 will not occur until 3 clock ticks have been taken. Thereafter, pro-
vided aPD1 is still enabled, aPD1 must be taken in a subsequent state before the
8th tick of the clock (from its moment of enablement). When aPD1 is taken in

3. and should both be called , as it is intended that they synchronize with each other. For clarity,
they are here given different labels, i.e. and . The detail window of an event may be used to declare an
event to be local or shared (see Figure 9 for an example of a detail window).

Local or Shared Event Label

(also the transition name)

Event Meaning

x ∈ {a,b,c} and n ∈ {1,2,3}

Local events

(these events also happen
to be spontaneous)

xSD philosopher x sits down

xGU philosopher x gets up

Shared events xPUn philosopher x picks up fork n

xPDn philosopher x puts down fork n

Transition
name

Enabling Condition Transformation
Function

Lower
Bound Upper

Bound

aPD1

E1 l1 u1,[] E2 l2 u2,[]
E1 E2 E1 E2

E1 E2 E
E1 E2

E l u,[]
E1 E2 E l u,[]

l max l1 l2,()= u min u1 u2,()=

(A=eating) (F1=in_use In1=up_r)∧ ∧ A:4,In1:down[] 3 7

A = eating()
F1=in_use In1=up_r∧()

s

si
s si

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 20

to its successor state , the successor state is the same as , except for those
variables changed by the transformation function (i.e. A is assigned 4 and In1 is
assigned the value down). Transitions are atomic. Thus, no other transitions
(including tick), can occur between and . Any number of transitions (and at
least 3 tick transitions) may be taken between and .

A transition can only be taken if it is enabled. There are three ways in which it
may become disabled before being taken: (i) because of nondeterminism (e.g. in
Figure 7, the event aPU1 may preempt cPU1); (ii) a transition may have a guard as
will be explained later, and the guard may become disabled by the occurrence of
some other transition that changes the value of the guard; (iii) the transition aPD1
may have component events one of which is disabled from participating in the
transition.

2.1.5 Spontaneous events
The xSD[2,∞] and xGU[0,∞] transitions are spontaneous because their infinite

upper time bounds indicate that they may be taken at any moment or never. This
means that the philosophers are never forced to sit down or get up.

Spontaneous events are useful for modelling device failures and the like in
plants. Initially, all events can start out as spontaneous events. As more timing
information is gathered, either from the physics of the plant devices, or by empir-
ical testing, so the TTMchart can be updated to reflect the new information. This
frees the designer from having to commit to actual execution times prematurely.

It was not necessary to give separate names aSD, bSD and cSD for the event in
which a philosopher is seated. Each event could have been given the same label
SD. Since these events are all local, BUILD distinguishes them from each other (in
the query view they would be called SD_1,SD_2 and SD_3 respectively). This type
of approach is helpful when building a philosopher template chart, which can be
copied and reused with minimal changes.

2.1.6 Grouped Events
The edit view of fork1 which is XOR decomposed into the basic activity clean

and the structured activity in_use@ in Figure 7, illustrates the notion of a grouped
event. Instead of showing three separate out events from each subactivity down, up_r
and up_l to the activity clean, we instead cluster these three activities into the super
activity in_use, and replace the 3 edges with a single out event whose source is the
outer contour of the TTM in_use. Grouping is useful for hierarchically structuring
charts and prevents the proliferation of event edges.

The out transition models a waiter who is able to grab a fork away from a phi-
losopher, no matter what activity the fork is in. The waiter acts in this rude fash-
ion because he wishes to keep the forks clean so as to preserve their golden shine.
The event out# in each fork is shared. Either the waiter takes all three forks out of
service simultaneously, or takes none.

The default behaviour of a grouped event can be changed both at its source
activity and destination. The default behaviour of out at source is that it is enabled
no matter where execution in subactivity in_use is (see Figure 7). The source of the
out transition may be restricted (e.g. it may be taken only from the down activity).
Further restrictions can be made should the activity down itself have further subac-
tivities (and so on recursively).

si 1+ si

si si 1+
s si

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 21

When the event reset occurs, its destination is shown as the outer border of the
activity in_use, which means to the default down of in_use. It is possible to change
the default destination of out, and to select some other subactivity of in_use as the
destination. If that subactivity has structure, then its default becomes the new des-
tination unless it too is changed (and so on recursively down the hierarchy).

If an event E is displayed in an edit view with a left angle bracket <E, then the
source behaviour has been changed from the default. The right angle bracket indi-
cates that the destination has been changed from its default. The table below sum-
marizes the visual indicators used in BUILD:

Each event has an associated detail window with all pertinent information,
including time bounds, guards and transformation functions. The detail window
is also used to declare whether the event is shared, and to change the default

Type Symbol Meaning

Structured activity: @ act@ Activity act has internal substructure. Oth-
erwise the activity is basic.

Shared event: # evt# The event evt is a shared event. Otherwise
the event is local.

The default behaviour of
a grouped event is
changed: < and >

<evt The source of evt is changed

evt> The destination of evt is changed

<evt> both source and destination are changed.

Figure 7. Edit view of fork1 (with activity variable F1)

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 22

behaviour at source and destination (see Figure 9 for an example of a detail win-
dow).

2.1.7 Data variables, Assignments and Guards
In addition to the special transition variable (ε) and the activity variables (e.g.

A, F1, In1), a chart may also have any finite number of data variables. The current
version of BUILD allows data variables to have an integer type with all the usual
operators (+, -, *, =, <,>) as well as mod (%) and integer division (/). A data vari-
able is declared in the main window (see Figure 3).

The data variable D for the college counts the cumulative number of times that
all forks have been used. It is incremented by one every time a fork is picked up.
This accounts for the assignment [D:D+1] attached to the transformation function
of the event aPU1 and cPU1 (in Figure 7). In this case, D is a shared variable that
may be accessed by all events in the chart.

It is possible for an event to have simultaneous assignments as in
, where each variable is assigned an integer expression

. Events in the reactor example have simultaneous assignments (see Figure 17).
Events may have guards, which are state-formulas in the activity and data vari-

ables. For example, the event aSD in Figure 9 has a guard . The
enabling condition of a transition corresponding to an event with a guard is just
the conjunction of the guard and the activity constraints. For example, the
enabling condition of aSD is . The
variables are data variables, and are the activity variables of porter
and seat_a respectively (see Figure 9).

Since shared variables are allowed its is possible for unsafe race conditions to
occur. It will be up to the verifier to check that the shared variables are used in a
safe manner by checking the model for the relevant safety and liveness properties.

TTMcharts extend the notion of a finite state machine in four ways: hierarchy
(subactivities and grouped events), concurrency (AND-composition), interaction
(shared events and variables), and timing (lower and upper time bounds).

The data variable D in college can be incremented unboundedly which means
that college has an infinite number of reachable states. The finite state verifier can
therefore not be used to check any property. However, the execution facility may
be used to simulate computations. Once the porter is composed with the college (see
Section 2.4), the system becomes finite state and is amenable to verification.

2.2 Using BUILD to validate the model by executing it
In the previous section, BUILD was used to construct the TTMchart college,

which is a model of the plant. There is no formal way to prove that a model truly
represents the real plant. However, the simulation facility of BUILD can be used
to execute various scenarios, thus allowing the designer to explore the behaviour
of the model. Simulation can thereby increase the confidence of the designer that
the specified model is adequate.

In the main menu of BUILD (see Figure 3), the user can invoke the SimulateTTM
operation on the college chart. Figure 8 illustrates the simulation mode. The user
sets up the starting conditions, the desired stopping conditions, and then starts
the simulation by pressing the Start/Continue button. If the system is deterministic,
then a predetermined number of steps (selected by the user) is executed with each

V1:e1 V2:e2 … V, i :ei, ,[] Vi
ei

J 2 D 10<∧<()

J 2 D 10<∧<() Portr = seat_philos(Sa = 0)∧ ∧
J D, Portr Sa,

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 23

intermediate state (value of all activity and data variables) displayed on the
screen. If there is more than one eligible transition (the nondeterministic case)
then the user is prompted with a pop-up list of all eligible transitions at that step.
The user selects which eligible transition is taken and the successor state is dis-
played. The simulator will only allow those executions that satisfy the semantic
requirements for a legal computation (described informally in Section 2.1 and for-
mally in [19]).

Figure 8 displays a computation in which the philosophers all get hungry at
the same time. They all sit down, pick up the fork to their left, and then reach out
for the other fork — which isn’t there. In this situation, partial deadlock occurs
(the philosophers cannot progress to the eating activity). A tick of the clock or the
out transition may still be taken. Eventually, a point may be reached where all that
can happen is a tick of the clock, in which case there is total deadlock.

Not all variables need necessarily be displayed in the simulate window. The
user may select which variables to display by invoking the Filter operation. This
allows the user to examine reduced behaviours, thereby focussing only on those
entities of direct interest at the time of the simulation.

Figure 8. Simulation: a computation of the chart college showing deadlock
Popup list of
eligible transi-
tions are dis-
played for
selection by
the user.

aSD

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 24

2.3 Specify the RTTL plant requirements
The designer must next specify how the plant ought to behave. For example,

there should be no system deadlock, nor should it be possible for any one philos-
opher to starve forever. The specifications will be written in the real-time tempo-
ral logic specification language RTTL.

The following requirements must be valid, i.e. true in all legal computations of
the TTMchart college:

[R1] Deadlock freedom: .
Henceforth, in every state of every computation of the college, there must be
at least one event (other than tick) which is enabled. The predicate enabled is
a built-in state-formula of the verifier. It is the disjunction of the enabling
conditions of all the college transitions (except for the tick transition).

[R2] Limited cumulative forks usage: .
Henceforth the cumulative total of forks picked up, as represented by the
value of the variable D, must always be 10 or less.

The requirement [R2] can easily be satisfied by preventing the philosophers
from picking up any more forks (i.e. the philosophers can be immobilized), after
the count of ten is reached. However, we ought to ensure that any philosopher
who wants to eat always gets to eat. We therefore further specify that:

[R3] Bounded real-time response: .
Every time a state is reached in any computation of the college, in which
philosopher a is in activity 1, then eventually within 1 to 15 ticks inclusive
from that state, the philosopher must reach a later state in which
philosopher a is eating. Thus, once the philosopher sits down at the table, he
will eventually get to eat within the stated time bounds. Similar
specifications can be provided for the other philosophers.

The requirement specified by will not
be valid, because the transition aSD is a spontaneous event. There is no guarantee
that a philosopher will ever leave the thinking activity. Therefore, there are compu-
tations of the college in which the philosopher may choose to think forever. Con-
sequently, the above specification is invalid.

[R4] Non-interruption: ,
asserts that every time the event aSD occurs in any state of a computation, then
from that state and onwards, the event out will not occur and the count of forks
lifted up will not exceed 12, unless the event aGU occurs.

We may think of the critical region of a philosopher as comprising the activi-
ties: 1, 2, eating, 4 and 5 (see Figure 6). The requirement [R4] asserts that once a phi-
losopher enters this critical region, he is not interrupted by the porter until he gets
up. While execution is in the critical region the fork count will never exceed 12.

2.4 Design a controller — the porter
The porter (the controller) must now be designed so as to ensure that the college

(the plant) behaves according to the specified requirements [R1] to [R4]. The
important issue is not how the porter behaves in isolation, but how the college

enabled()

D 10)≤(

A(1)ie 1 15,[] A(eating)= =

A(thinking)= ie 1 15,[] A(eating)=

ε(aSD)= i ε out≠ D 12)W ε(≤∧(aGU)=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 25

behaves once the porter is in place (the “closed-loop” system”). Hence, the
requirements all focus on plant entities (the fork count D, philosopher transitions
such as aSD and philosopher activities such as).

2.4.1 Control Interface Specifications
In order to design the controller, it is necessary to know the control interface

specifications, i.e. which entities in the plant can be observed and which entities
can be controlled.

For the porter, assume that the variable D (the cumulative fork count) is observ-
able, and can also be reset to zero. This means that the porter has “read-only”
access to the college data variable D (as well as the ability to reset D). All other
plant variables are not accessible to the controller.

The controllable plant events for each philosopher x are: xSD, xGU, and out. This
means that there is an interlock (or some other such mechanism) through which
the porter controls these college events. The controllable events include the seating
arrangements for the philosophers and the event needed for taking the forks out
of service. The controllable events are modelled by considering them to be shared
between the porter and the college. All other plant events are uncontrollable and are
therefore local to college. The controller is allowed to have its own local events and
data variables.

2.4.2 Designing the controller
The chart for the porter is shown in Figure 9. The porter is composed in parallel

with the college to obtain: newcollege = porter || college. The default activity of the por-
ter is seat_philos, which is itself refined into three sub-activities as shown in the fig-
ure.

The behaviour at the source activity of the event out is changed from the
default as shown in the detail window of Figure 9. The out event is constrained to
be taken only when the state-formula

holds. The out event is given an upper time bound of 6 to force its occurrence
when the count D reaches 10. In practice, the upper time bound would have to be
determined by the physics of the interlock mechanism.

A new local data variable J is used by the sub-activities of seat_philos to ensure
that no more than two philosophers are seated at one time. A philosopher may
only sit down if there is no more than one philosopher already at the table (J<2),
and also it is the case that the count of forks used is less than ten (D<10). This pre-
vents the out event from occurring while the porter is in its critical region, as the
out event can only occur after the count reaches 10.

2.5 VERIFY — submit the design for verification
When the verifier is applied to the newcollege of Figure 9, the requirements

[R1], [R3] and [R4] are shown to be correct (see the transcript in Figure 10).

Requirement [R2] fails to hold as shown in the following VERIFY transcript:
%%% Check [R2] - limited cumulative forks usage
| ?- henceForth(newcollege, initial, dle10, Answer, State).

eating

Port = seat_philos() Sa = 0 Sb = 0 Sc = 0∧ ∧()∧

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 26

Answer=false
at State= [A:thinking, B:2, C:eating, F1:in_use, In1:up_l, F2:in_use, In2:up_r,
F3:in_use, In3:up_r, Portr:seat_philos, Sa:0, Sb:1, Sc:1, D:11, J:2]

The value of the fork counter can be greater than 10 (i.e. in the failing state
returned by the verifier, D has the value 11). VERIFY also returns further failed
states with values of 12 for D. The guard D<10 of the xSD events must be changed
to D<8 and the guard on the event out to D>=8 (see Figure 9) in order to meet
requirement [R2].

The time performance of the verifier is shown in Table 1 below. The complete
check for all requirements takes less than 12 minutes.

Applying Hoare’s computation [11, p79] for the potential size of the state-
space of newcollege, we have that the number of activities in each philosopher is
6, and the number of activities in each fork is 4. The variable D is unbounded so
that the state-space is also unbounded. However, the effect of the porter is to keep
an upper limit of ten on D. Since there are three philosophers and forks respec-
tively, the size of the college is , or 138,240 states.

Since the events of the porter is a subset of the college events, the newcollege
does not have any more states than the original college. Since in nearly every state
there are two or more possible events, the number of traces that must be exam-
ined will exceed two raised to the power of 138,240, or more than

Figure 9. Design of the porter controller

Detail window
of the event out.

Expanded view of the
controller for seating
philosopher a

63 43 10××

2.4 1041 614,×

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 27

traces. There is no hope that a computer will be able to explore all these possibili-
ties. Hoare therefore concludes that the designer will have to provide a manual
proof of correctness.

However, the above complexity computation is a worst case analysis that does
not apply in this instance to newcollege. In fact, if all the events are given a lower
time bound of zero and an upper time bound of infinity, then there are only 392
reachable states. The actual time bounds have an amplifying effect that increase
the size of the reachability graph to 1890 states (some states have to be redupli-
cated to capture the time constraints). Furthermore, each of the properties [R1] to
[R4] can be checked in time linear in the size of the reachability graph. The system
newcollege can be proven correct by VERIFY in under 12 minutes (and probably
significantly faster with more efficient code).

FIGURE 10. VERIFY transcript for requirements R1, R3, R4 of newcollege2

| ?- rg2(newcollege2) . %%% Generate reachability graph
yes
| ?- statistics(newcollege2).
 Statistics for TTM: newcollege
 Unique States = 392
 Total States = 1890
 Total Edges = 3487
yes
%%% now check requirement [R1] - freedom from deadlock
| ?- henceForth(newcollege, initial, enabled, Answer, State).
 Answer=true at State=All
yes
%%% Now check [R3] - real-time response (A=1) -> <>(A=eating)
| ?- rtrfRG2(newcollege2, 1, eating, Lo, Hi).

 Succeeded with minimum and maximum bounds of:
 Lo = 1,
 Hi = 11
yes
%%% Check [R4] - no interruption
| ?- unless(newcollege2, 1, 2, 3, Answer, State).

 Answer=True at State=All

TABLE 1. Performance of VERIFY on a Sun 10/20

Operation Time (in minutes)

Generate Reachability Graph(1890
states and 3487 edges)

5.03

Requirement [R1] — deadlock detec-
tion

0.29

Requirement [R2] — detect failure 0.26

Requirement [R3] — real-time
response

0.88

Requirement [R4] — no-interruption 4.67

Total 11.13 minutes

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 28

2.6 DEVELOP — synthesizing controllers
The previous section appears to indicate that the correct controller was

obtained in one or two steps. This is not the case. In actual fact, design is an itera-
tive procedure, and the initial design was shown to be incorrect by the verifier.
When the verifier showed that the initial design was incorrect, it also provided
debugging information (e.g. states or computations for which the requirements
failed to hold). With the help of this diagnostic information, it was determined
that the guards of the porter events were incorrect.

In general, whenever VERIFY discovers a problem there are at least four possi-
ble sources of error: (a) the model of the plant may be incorrect, (b) the controller
design may be wrong, (c) the interface specifications may be incorrect, or (d) the
requirements may be incorrectly stated. VERIFY therefore provides diagnostic
information to help the user track down the source of the error. In [22], a model-
ling error in the college (i.e. the plant) is discussed.

It would be nice if there was some way to systematically develop the control-
ler from the specifications [R1] to [R4], that would get the guards right the first
time round.

Such a systematic design procedure is provided in [21]. Procedures are pro-
vided, which if they terminate, are guaranteed to provide a satisfying controller.
For infinite state systems, there can be no guarantee of termination. Hence, at best
this method is semi-automatic and requires human interaction. Nevertheless,
with the help of the human designer, systems with an infinite number of states
can often be treated effectively.

The procedures require the ability to compute weakest preconditions of transi-
tions. A tool called DEVELOP is available for automating the procedures.
DEVELOP is based on the constraint logic notions provided in [20], but has been
updated to use the language PrologIII [3].

The design procedure for developing controllers uses proof diagrams and
weakest preconditions. A proof diagram is an abstract view of a state reachability
graph. It is not confined to finite state systems because a node in the proof dia-
gram is a state-formula that can characterize a possibly infinite set of states. The
proof diagram contains the intuition of system executions without the distracting
proliferation of states. Most of the reasoning takes place in the ordinary predicate
calculus, with temporal or real-time reasoning introduced only where absolutely
needed.

The design procedure uses the constraint satisfaction mechanisms of PrologIII
to compute weakest preconditions. In the finite state case the design procedures
are guaranteed to terminate. However, in the infinite state case, additional heuris-
tics must be applied to obtain a suitable design.

The main advantage of using DEVELOP is that it can be applied to infinite
state systems. However, DEVELOP also requires much greater understanding of
the TTM/RTTL framework in order for it to be used. In contrast, much of the
complexity of the formal methods is hidden from the user in the VERIFY tool.
Although VERIFY can only be applied to systems with finite state spaces, it is
completely automatic.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 29

3.0 Example 2: The delayed reactor trip (DRT) problem.
The delayed reactor trip (DRT) problem was first described by Lawford in [14].

It is small yet non-trivial to formally verify. Lawford developed behaviour pre-
serving transformations for TTMs with which he was able to discover a flaw in
the proposed design. However, his theory cannot be automated as no set of trans-
formations is complete for proving observation equivalence between the actual
implementation and its abstract specification. We will analyze the problem from a
temporal logic perspective (RTTL), and will attempt to use completely automated
verification procedures (VERIFY) to check the correctness of the implementation.
The discussion below is taken from [26].

The delayed reactor trip for the CANDU nuclear reactors is currently imple-
mented in hardware using timers, comparators and logic gates as shown in
Figure 11. The new DRT system is to be implemented in future on a microproces-

sor system. Digital control systems provide cost savings and flexibility over the
hardware implementation. However, the question now is whether the new micro-
processor based software controller satisfies the same specifications as the old
hardware implementation.

The hardware version of the controller implements the following informal
requirements:

[R1] When the power and pressure of the reactor exceed acceptable safety limits,
the comparators which feed in to the first AND gate cause Timer1 to start,
which times out after 3 seconds and sends a message to one of the inputs of
the second AND gate indicating that the time-out has occurred. If after this
first time-out the power is still greater than its safety limit, then the relay is
tripped (opened), and Timer2 starts. The relay must remain open until
Timer2 times out which happens after 2 seconds.

R1 ensures that the relay is opened and remains open for two seconds thus
shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including dan-
ger to life. Conversely, each time the reactor is improperly shut down, the utility
operating the reactor loses money because it must bring additional fossil fuel gen-
erating stations on line to meet demand. The next informal specification R2 states:

FIGURE 11. Analog implementation of the delay relay trip system DRT (the “controller”).

Pressure

Power

AND Timer1 AND Timer2 Relay

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 30

[R2] If the power reaches an acceptable level then the relay should be closed as
soon as possible (thus allowing the reactor to operate once more).

A final requirement that is implicit in the hardware specification, but must be
explicitly stated for the software version is:

[R3] The controller should never deadlock. (For example, if after the power and
pressure have exceeded their critical values, and the system has waited 3
seconds to check the power level again, if the power is below its critical
limit, then the system must reset and go back to monitoring its inputs.)

In the actual DRT, there are three identical systems running in parallel with the
final decision on when to shut down the reactor implemented on a majority rule
basis.

It is possible to try to analyze the complete system of three concurrent micro-
processors using the TTM/RTTL approach. However, it is preferable to start by
first checking that each individual processor on its own achieves proper control. It
is important in general to verify components before proceeding to the larger pic-
ture. In addition to “theoretical correctness”, this has important practical ramifica-
tions. Larger systems have greater state spaces to explore that may be beyond the
current limits of automated verification. If a component can be verified to be cor-
rect in all its detail, then a reduced order model of it may be used when checking
the component in the broader context, thus reducing exponential explosion of
states.

The new DRT software controller is to be implemented on a microprocessor
system with a cycle time of 100ms. The software controller samples the inputs and
passes through a block of control code every 0.1 seconds. It is assumed that the
input signals have been properly filtered and that the sampling rate is sufficiently
fast to ensure adequate control.

FIGURE 12. Relationship between controller, plant and watchdog of SUD

CONTROLLER PLANT

WATCHDOG

Pw (Power)

Pr (Pressure)

R (Relay)

SUD CONTROLLER PLANT WATCHDOG|| ||=

(pseudocode) (reactor & relay)

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 31

The proposed pseudocode taken from the DRT requirements documents is
shown in Figure 13. The code mimics the original analog implementation by
using integer variables c1 and c2 in place of Timer1 and Timer2 respectively. The
program also makes use of the variables Pr (Pressure), Pw (Power) and R (Relay)
for the sampled inputs (Pressure and Power) and output (Relay) of the controller.

The DRT system under design (SUD) consists of the parallel composition of
three components, i.e.

The relationship between plant and controller is shown in Figure 12. The
CONTROLLER is the abovementioned pseudocode for the microprocessor dis-
played in Figure 13. The PLANT is the environment in which the controller oper-
ates, i.e. the nuclear reactor which generates the power and pressure, and the
relay that opens or closes depending on the value of the relay variable R set by the
controller. The WATCHDOG is a non-invasive observer of the plant and control-
ler variables (i.e. it has access to all the system variables but does not in any way
change or control them). The WATCHDOG is used for verification only and is not
part of the actual implementation (this will be explained further in the sequel).

3.1 Modelling the plant
We follow here the design methodology proposed in Section 1.2. The first step

uses the BUILD tool to model the plant.
The power and pressure variables are assumed to be filtered. This will be

modelled by allowing them to be updated every two ticks of the clock, where one
tick of the clock is 100ms. The model of the plant is shown in Figure 14.

The update activity of Figure 14 is described in more detail in Figure 15, from
which it follows that . The default sub-
activity of power_update is 0, i.e. each time power_update is invoked it is assumed to
start in subactivity 0, from which the power variable Pw can be assigned the inte-
ger value 0 (meaning the power is within an acceptable range) or 1 (meaning that
the power is too high).

The event powerHi[0,0] goes from subactivity 0 to subactivity 1, at the same time
assigning the integer value 1 to the variable Pw. The lower and upper time bounds
are both zero indicating that powerHi is taken before the next tick of the clock. Sim-
ilarly, the pressure_update activity describes how the pressure variable Pr is
updated.

The update activity (of Figure 15) is used to build the super activity labelled
sample_power_and_pressure as shown in Figure 14. To be in the XOR activity
sample_power_and_pressure is to be either in wait or update but not both simulta-
neously.

The event updated[0,0] exits from the outer contour of the structured activity
update. The default meaning is that no matter where in the structured activity
update the two threads of control currently resides, the event updated[0,0] is eligible
to occur. However, a special detail view of updated[0,0] can be invoked in which the
default behaviour can be changed. In this case, the event is changed so that it is
eligible to occur only when both power_update and pressure_update are in their sub-
activity 1 as shown in Figure 16 (hence the event updated[0,0] occurs immediately

SUD CONTROLLER PLANT WATCHDOG|| ||=

update power_update pressure_update||=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 32

FIGURE 13. Pseudocode for the DRT taken from Lawford’s report [14].

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 33

after the variables are both sampled). By virtue of its time bounds, the event
pp_delay2 must wait for two clock ticks before it is taken.

The plant is an AND-composition given by

.

The activity signal_update in Figure 14 is really part of the watchdog (it is shown
within the plant for convenience). It is used for writing requirements (see later)
that record when there are still two ticks to the next power and pressure update.
the activity variable of signal_update is , with . To express

FIGURE 14. DTR plant is the AND-composition of the relay, power and pressure updates.

plant relay sample_power_and_pressure signal_update|| ||=

S type S() done wait,{ }=

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 34

the fact that the plant is in the activity done, we may write , which is
true whenever the next update to the power and pressure variables is exactly in
two ticks of the clock.

The two component events updated[0,∞]# in the signal_update activity and
updated[0,0]# in the concurrent activity sample_power_and_pressure are shared. Hence

FIGURE 15. The “update” activity is AND-decomposed into the update for the power
variable Pw and the pressure variable Pr.

FIGURE 16. Changes from the default behaviour for the grouped event updated

0

0

1

1

update

wait

sample_power_and_pressure

updated[0,0]

pp_delay[2,2]

S done=()

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 35

they block until they synchronize with each other. The time bounds of the result-
ing shared transition is [0,0]. The component update event in the activity
sample_power_and_pressure may be thought of as a “forcing event” that constrains
its spontaneous component update event in signal_update to occur immediately.

3.2 The software controller
Having modelled the plant of Figure 12, the next step is to obtain a TTMchart

representation of the controller. The pseudocode of Figure 13 can be represented
by the chart controller shown in Figure 17.

With each pass through the code, the microprocessor picks out one of the
labelled blocks of code. The block chosen is the one whose enabling condition is
satisfied. The program then loops back to the start and re-evaluates all the
enabling conditions in the next cycle. The program structure is that of a large case
statement repeatedly executed. Hence each event has a lower and upper time
bound of one.

Conditions such as (pressure exceeds delayed set point) and
 (power exceeds the power threshold) can be represented by

and respectively (1 represents beyond the critical threshold and 0 repre-
sents normal levels).

FIGURE 17. Faulty controller based on the proposed pseudocode for the microprocessor

Pressure DSP≥
Power PT≥ Pr 1=()

Pw 1=()

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 36

In the guards of events a comma stands for conjunction and a semi-colon for
disjunction. A transformation function such as [C2:C2+1, R:0] in the event mu2[1,1]
of Figure 17 stands for simultaneous assignment (i.e. when the event is taken vari-
able C2 is incremented by one and R is assigned zero).

The final TTMchart sud is obtained by AND-composing plant and controller as
shown in Figure 18. The watchdog will be explained in the next subsection that
deals with the RTTL specifications.

3.3 DRT requirements expressed in Temporal Logic
The informal specifications R1, R2 and R3 must now be translated into RTTL

specifications. Consider requirement R2 which states that:

[R2] If the power reaches an acceptable level then the relay should be closed as
soon as possible.

At first glance, R2 may be written:

FIGURE 18. The complete system under design sud controller plant watchdog|| ||=

P(w 0)ie
l1 R(elay closed)= =

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 37

i.e. if the power level is normal, then within one tick (100ms) the relay must be
closed. The problem with this assertion is that it will not always be true in every
computation of the DTR, because even if the power level is acceptable in a given
state, the level may become critical in the next state and hence the relay should
not be closed. Furthermore, the microprocessor may not be fast enough to detect
such instantaneous changes, even presuming that the above assertion is the cor-
rect one to enforce. Rather, we must assert that whenever the power is normal for
a sufficiently lengthy period of time, then the relay must be closed. R2 should
therefore be written

meaning if any state is reached from which the power is low for at least two ticks
of the clock, then eventually in all subsequent computations from that state, the
relay must be closed within one tick. The above property can be rewritten more
suitably for the verifier as:

(EQ 2)

where . The formula replaces the for-
mula . The activity variable of signal_update has the value
precisely when there are two ticks before the power is sampled. The conjunction

 is required because the microprocessor does not close the relay
while it is simulating the timers (Timer1 and Timer2). Hence, the relay is required
to close only when the counters are zero.

The requirement R1 can be written as

(EQ 3)

where the various formula names are defined as follows:
,

,
,

and .
Since (EQ 3) cannot be directly checked by the VERIFY tool, a watchdog (that

observes but does not affect the plant or controller) must be constructed as shown
in Figure 18. The activity variable of the watchdog is . If , then the watch-
dog detects when holds as can be seen from the guard of w_mu.
Then the watchdog delays for 30 ticks (3 seconds) at which point holds.
At c, the event w_rho1[0,0] is immediately taken if the power is low, and w_alpha[0,0]
is taken if the relay is open (). If w_alpha is taken, then w_spike[0,0] checks that
the relay is not opened for 19 ticks of the clock. After the 20th tick, the watchdog
should be in activity e. Thus (EQ 3) can be checked by verifying that

(EQ 4)

which is in a format suitable for the VERIFY tool.
By using the concept of a watchdog, most properties of interest can be checked

in this way. However, there is a cost associated with adding the watchdog, as the
size of the reachability graph is increased substantially.

h<2 Pw(0)ie
l1 R(elay closed)= =

[R2]: Pw 0 Init∧=()ie
l1 R(elay closed)=

Inity S(done= C1 0 C2= =∧) S done=()
h<2 Pw(0)= S done

C1 0 C2= =()

BothHi Reseti e
r30 PowerHice

l1 RelayOpen h<20RelayOpen)]∧([∧

BothHiy P(w 1 Pr∧ 1 S∧ done)= = =
Resety R(1 C1∧ 0 C2)= = =
PowerHiy P(w 1 S∧ done)= =

RelayOpeny Relay(open)=

W W a=
BothHi Reset∧()

W c=()

R 0=

[R1]: W[c Pwr1 Srdone]i∧ e
r20 W(∧ e)= =

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 38

The informal specification R3 requires that the system as a whole (SUD) not
deadlock. The verifier is able to directly check that

(EQ 5)

which checks that in every reachable state there is at least one event other than
tick that is enabled. (If only a clock tick is enabled in a state, then SUD deadlocks
in that state as all that it can ever do is tick).

Furthermore, it is advisable to check that the watchdog taken by itself never
deadlocks. More specifically it should be the case that

(EQ 6)

Finally, the relay should not be opened unnecessarily, i.e.

(EQ 7)

The waiting-for property ensures that the relay is kept closed until the critical
power and pressure condition is detected.

FIGURE 19. Successful controller

[R3a]: h enabled()

[R3b]: W a≠()i e
l50 W(a)=

R(elay closed Pw∧ 0)i R(elay closed)W P(w 1 Pr∧ 1)= = = = =

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 39

3.4 Using the VERIFY tool
The system (SUD) must now be checked for the requirements R1, R2, and R3. The
VERIFY tool takes its input from the BUILD tool. The performance figures are
provided in Table 2.

The pseudocode suggested for the microprocessor controller (Figure 17) is
shown to be incorrect as the property R1 fails to be satisfied. VERIFY indicates
where the failure takes place. Based on this debugging information, corrections
can be made to the controller. A revised controller is suggested by Lawford in [14]
which is obtained by a set of behaviour preserving transformations. The revised
controller is shown in Figure 19. This revised controller satisfies all four proper-
ties R1,R2,R3a and R3b.

The incorrect controller has a reachability graph consisting of 89,730 states and
edges. The revised controller is much smaller consisting of 17,841 states and
edges.

The current version of VERIFY dumps a compressed version of the reachabil-
ity graph into a results file on disk. Each time a property is checked, the results file
must be compiled in and decompressed by the Prolog verification code. This is
very inefficient as the graph should be kept in the RAM memory. The time to con-
sult and decompress the file for R1 is 22 minutes. Hence, with a slight change in
the program the actual time to check R1 would be substantially less, viz. 39.8–
22=17.2 minutes (rather than 39.8). There are many other inefficiencies in the cur-
rent code.

4.0 Conclusions
By applying the formal methodology illustrated in this paper we are still by no

means guaranteed that the revised controller is correct. However, validation of
the design via execution and verification increase our confidence in the correct-
ness of the design.

In addition, RTTL specifications are incremental. If after developing a set of
requirements, we suddenly realize that the resulting specification is incomplete,
the situation can be rectified by adding the missing property to the requirements
as additional conjuncts. For example, Table 2 leaves out the requirement (EQ 7).

TABLE 2. VERIFY tool performance statistics on a Sun 10/21
Check Suggested Controller (Figure 17) Revised Controller (Figure 19)
Reachability graph gen-
eration:

96.4 minutes

Unique States: 4,448

Unique Histories: 1,103

Total States: 29,369

Total Edges: 60,361

19.2 minutes

Unique States: 3,259

Unique Histories: 602

Total States: 5,902

Total Edges: 11,939
[R1] Open Relay Property fails after 39.8 minutes Succeeds after 2.4 minutes
[R2] Close relay Succeeds after 2.7 minutes
[R3a] No Deadlock Succeeds after 1.9 minutes
[R3b] Watchdog health Succeeds after 3.22 minutes
Total Time 2.3 hours to determine that the

pseudocode is incorrect.
29.4 minutes to check that the
revised controller satisfies its
specifications.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 40

Once the omission of this requirement was detected, it was checked without
regenerating the reachability graph or checking the other requirements again. As
we come to understand the design, additional properties can be added to the
requirements and checked with ease.

StateTime is a prototype toolset for exploring the interplay between formal
methods, suitable visual representations of models and automated verification. It
allows for the treatment of both spontaneous events (such as a device failures) as
well as timed behaviour. A variety of computational notions such as concurrency,
hierarchy, nondeterminism, and process interaction and communication can be
represented. StateTime lets the user design parts of safety critical systems in a
structured visual fashion, while providing automated formal analysis techniques
for a variety of important properties including freedom from deadlock and real-
time response.

In this paper an overview of the StateTime toolset has been provided as well as
a set of pragmatics, i.e. an appropriate methodology for using the tool on safety
critical systems. The main idea is to structure the system under design into two
parts: the plant and the controller. The plant (together with its interface specifica-
tion) represents the fixed environment in which context the computer controller
must be designed. The plant and its requirements must therefore be represented
before design of the controller commences. The closed loop system (plant + con-
troller) must then be checked for correctness.The toolset may however be used in
which ever way is convenient to the designer and is not confined to the pragmat-
ics illustrated in this paper.

While graphical tools such as ObjecTime [28] and Observ [30] all have the abil-
ity to execute or simulate complex real-time systems, they do not incorporate for-
mal verification methods. Statemate [7] incorporates some verification methods,
but these are quite limited as explained in the introduction. None of theses tools
provide the complete real-time modelling facilities of StateTime. Statemate and
Observ provide a delay statement, but no facility to directly distinguish between
spontaneous, just and timed events. ObjecTime cannot deal with “hard” time
bounds, but is intended to model “soft” real-time systems.

As a future proposal, what is needed is a blend of the best techniques from the
commercially available graphical systems together with appropriate formal verifi-
cation methods. The following extensions to StateTime would therefore be
needed.

The current version of StateTime is limited to integer and enumerated data
types. Furthermore, there is no systematic way for re-using TTMs other than
copying an already existing one. Both problems need to be addressed to improve
the range of systems that the tool can address.

It is possible that object-oriented techniques can be used to solve both prob-
lems.

1. Any basic Smalltalk data type should be immediately be available to
StateTime. New data types should be constructed as in Smalltalk. This will
provide the designer with a rich set of modelling objects.

2. TTMs should also be objects. TTMs can then be re-used or further refined as a
sub-class using inheritance. Changing the class will then automatically update
all related sub-TTMs. This should provide for a powerful re-use facility. Real-

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 41

Time Systems in special domains such as communication protocols or flexible
manufacturing systems can then develop special libraries of already verified
TTM classes of use in that domain.

The above changes will require a complete re-write of the software. The VERIFY
and DESIGN units will have to be re-written in Smalltalk to avoid the problem of
translating Smalltalk classes into Prolog. One disadvantage of using Smalltalk is
that we cannot achieve as efficient an execution as can be achieved by using C.

An example of the efficiency of using C can be seen in the Spin tool used for
communication protocols [12]. Spin does not have any real-time features. To
achieve efficiency, its data types are limited to booleans and integers. However,
within these constraints it can analyze large state spaces (millions of states) in a
fraction of the time of the Prolog based VERIFY tool.

Research will need to be done to ensure that TTM objects are theoretically
sound. For example, when the designer creates a sub-class from an already exist-
ing super-class, how must the sub-class behave semantically to ensure consis-
tency with the parent class. A class can inherit from another in two ways [1]. The
descendant class can add a behaviour by including a new service, or by redefining
a parent service. However, care must be taken that a descendant class not treach-
erously change the semantics of the service so that some trajectories of the parent
class do not belong to the descendant class.

Compositional verification techniques must be incorporated into the toolset if
larger systems are to be handled. The compositional techniques discussed at the
end of [16] have been found useful in this regard, and plans are underway to
incorporate these methods into StateTime. New results in temporal logic can also
be used to speed up the verification [1]. Another promising technique, currently
under further development, is the algebraic reduction of a larger TTM into a
smaller reduced order model on the variables of interest [14].

The user interface of the BUILD tool must be improved. The execution facility
should be animated and integrated with the charts. A palette of icons (e.g. for
activities and edges) will make drawing easier. On the whole, the tool will not
allow an illegal chart to be constructed. However, there are still some areas where
more syntactic checking would be useful. The verifier diagnostic facility must be
linked with the charts to make debugging a design easier.

StateTime is not yet an industrial strength tool. Nevertheless, in its current
form it facilitates the design of parts of real systems (e.g. the delay trip reactor),
and it has proved a useful basis for analyzing complex safety requirements.

5.0 Acknowledgments
John Dangov and Olaf van Breman wrote the VERIFY code as an undergradu-

ate project. Tim Field implemented BUILD for his M.Sc thesis. Don Laws has
debugged parts of both BUILD and VERIFY. He is also extending the BUILD pro-
gram. Frank Crane of NASA has provided useful feedback on the VERIFY tool.
Patrick Dymond (Chair, Department of Computer Science, York University) and
Chris Phillips (Departmental Systems Coordinator) have both been extremely
helpful in making facilities available for this work to be done.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 42

6.0 REFERENCES
[1] R. Alur and T.A. Henzinger. A Really Temporal Logic. Journal of the ACM. Vol 41,

No. 1, pp. 181-204, Jan 1994.

[2] D. Coleman, F. Hayes, and S. Bear. Introducing Objectcharts or How to Use State-
charts in Object Oriented Design. IEEE Transactions on Software Engineering, 18(1):
9–18, January 1992.

[3] A. Colmeraurer. An Introduction to PrologIII. Communications of the ACM,
33(7):69–90, July 1990.

[4] Crane, D.F. and P.J. Hamory. Reactive System Verification Case Study — Fault Tol-
erant Transputer Communication. International Conference on Simulation and Hard-
ware Description Language. Tempe, Arizona, January1994.

[5] P.I. Davis. News from the Committee on Public Policy: Certification of Safety-Criti-
cal Software by Licenced Software Engineers. Computer, 72–73, December 1992.

[6] W.-P. de Roever. Foundations of Computer Science: Leaving the Ivory Tower.
EATCS Bulletin, 44, June 1991.

[7] D. Harel, et al. Statemate: a Working Environment for the Development of Complex
Reactive Systems. IEEE Transactions on Software Engineering, 16:403–414, 1990.

[8] A. Hall. Seven Myths of Formal Methods. IEEE Software, pp. 11–19, 1990.

[9] D.J. Hatley, and I.A. Pirbhai. Strategies for Real-Time System Specification, Dorset
House Publishing Co, New York, 1988.

[10] C. Heitmeyer and B. Labaw. Requirements Specification of Hard Real-Time Sys-
tems: Experience with a Language and a Verifier. Foundations of Real-Time Comput-
ing: Formal Specifications and Methods, Kluwer Academic Publishers, 1991.

[11] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, N.J., 1985.

[12] G.J. Holzmann. Design and Validation of Protocols. Prentice Hall. 1990.

[13] F. Jahanian and D. Stuart. A Method for Verifying Properties of Modechart Specifi-
cations. Proceedings 9th Real-time Systems Symposium, IEEE Computer Society, p.
12-21, 1988.

[14] M. Lawford. Transformational Equivalence of Timed Transition Models. Systems
Control Group, Department of Electrical Engineering, University of Toronto, TR#
9202, 1992.

[15] N.G. Leveson and C.S. Turner. An Investigation of the Therac-25 Accidents. Com-
puter. July 1993.

[16] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[17] J.S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press Limited
(distributed by John Wiley and Sons), Advanced Software Development Series, Taun-
ton, England, 1989.

StateTime — a Visual Toolset for the Design and Verification of Real-Time Systems. September 13, 1994. 43

[18] J.S. Ostroff. Deciding Properties of Timed Transition Models. IEEE Transactions
on Parallel and Distributed Systems, 1(2):170–183, April 1990.

[19] J.S. Ostroff and W.M. Wonham. A Framework for Real-Time Discrete Event Con-
trol. IEEE Transactions on Automatic Control, April 1990.

[20] J.S. Ostroff. Constraint Logic Programming for Reasoning about Discrete Event
Processes. The Journal of Logic Programming, II:3&4, October/November 1991.

[21] J.S. Ostroff. Systematic Development of Real-Time Discrete Event Systems. Pro-
ceedings of the ECC91 European Control Conference, 522–533, Hermes Press, Paris
July 1991.

[22] J.S. Ostroff. StateTime — a Diagrammatic Toolset for the Design and Verification
of Real-Time Systems. Technical Report No. TR CS-92-07, Department of Computer
Science, York University, Canada. 1992.

[23] J.S. Ostroff. Verification of safety critical systems using TTM/RTTL. Proceedings
of the REX Workshop “Real-Time: Theory in Practice”, LNCS 600, Springer-Verlag,
1992.

[24] J.S. Ostroff. Design of Real-Time Safety Critical Systems. The Journal of Systems
and Software, 18(1): 33–60, April 1992.

[25] J.S. Ostroff. A Verifier for Real-Time Properties.The Journal of Real-Time Systems,
Volume 4, pages 5–35, 1992.

[26] J. S. Ostroff. Visual Tools for Verifying Real-Time Systems. Theories and Experi-
ences in Real-Time Systems: First AMAST Workshop in Real-Time Systems. University
of Iowa, Iowa City, 1993.

[27] D.L. Parnas, A.J.v. Schouwen, and S.P. Kwan. Evaluation Standards for Safety-Crit-
ical Software. TR 88-220, Department of Computer Science, Queen's University, May
1988.

[28] B. Selic, et al. ROOM: An Object-Oriented Methodology for Developing Real-
Time Systems. CASE’92 Fifth International Workshop on Computer-Aided Software
Engineering, IEEE Computer Society Press, 1992.

[29] Tools Fair: Technical Code Generation. IEEE Software, p. 75, May 1992.

[30] S. Tyszberowicz and A. Yehudai. OBSERV — A Prototyping Language and Envi-
ronment. ACM Transactions on Software Engineering Methodology, 1(3):269-309,
July 1992.

[31] W.M.P. v.d. Aalst. Timed Coloured Petri Nets and their Application to Logistics.
Ph.D Thesis, Eindhoven University of Technology, 1992.

[32] P. Ward, and S. Mellor. Structured Development for Real-Time Systems. Yourdon
Press, New York, 1985.

[33] D.P. Wood, and W.G. Wood. Comparative Evaluations of Four Specification Meth-
ods for Real-Time Systems. CMU/SEI-89-TR-36, Software Engineering Institute,
Carnegie Mellon University, 1989.

