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ABSTRACT

This paper presents an application of optic flow estimation to image metamorphosis.
It uses a state of the art optical flow algorithm to do image metamorphosis, which is
used in video production. The method presented automates the labor intensive pro-
cess of image animation. It an advanced optic flow algorithm but the rest of it is sim-
ple: most of the code fits in the limited space of this summary.
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1. Intr oduction

Image metamorphosis ormorphingis a very useful technique in computer graphics and

animation. It is routinely used commercially for special effects. In a recent paper Beier and

Neely [2] described how this is done by professional animators at Pacific Data Images and

Wolberg [8] how it is done by their colleagues at Industrial Light and Magic. Despite the dif-

ferences the two methods consist mainly of the following steps.

∗ The operator specifies via a GUI the deformation. The result is a sparse description of

the deformation.

∗ The system computes the complete deformation field from the sparse data.

∗ The system warps the image and interpolates the color.

∗ The cycle is repeated until the result is good.

The procedure can be applied to still images or on individual frames from movies. Major por-

tion of the time is spent on manually specifying the deformation.

2. Usingflow to do morphing

In this paper we present a method to estimate the deformation field using optical flow

algorithms developed for vision. These algorithms compute the amount of deformation (flow)

between successive images in an image sequence. These algorithms are often considered

unstable for the simple reason that when used with structure from motion algorithms the end

result is unstable. If one is concerned only with the deformation field then several flow algo-

rithms work fairly well [1] in the sense that the needle maps look intuitively correct. It is also

relatively straightforward to take two images from the same sequence and transform one into



another. This technique is used by several video compression schemes like MPEG.

Something similar can be done for morphing.Take the images of two people and com-

pute the deformation between them and then use this to morph one into another. The problem

is that although the images are not completely different (e.g. both contain faces) the difference

is large enough to confuse most flow algorithms [5, 6]. As opposed to the flow algorithms

used for structure from motion, algorithms for estimating the deformation for morphing need

not worry that much about the aperture problem (the ambiguity of the deformation field when

examining a small patch of an image as viewed through an aperture) or accurate detection of

discontinuities. But they should work well for pairs of images where the constant intensity

assumption is grossly violated and the displacement is large and varying.We tried several

algorithms and the one that worked best uses affine model for flow with Gabor filtering. The

Gabor filters are particularly good at capturing the motion of shapes without much regard to

slow variations of intensity [4] and the affine model can accommodate the varying flow field

within the large support of the Gabor filters.

3. Affine flow algorithm

Assume that we have a series of filtersgq for q = 1. .qmax. We can try to minimize
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where the superscript (g) denotes convolution of the imageI with the filtergq, u andv are the

components of the flow and the subscripts denote partial derivatives with respect tox, y andt.

This is similar to what is used in [3] which gives very stable results with slow varying flow.

But since we use Gabor filters with quite big support, what we do in effect is blend constraints



from a large area of the image and we cannot assume that the flow remains constant over the

whole area. We can significantly reduce the effects of the the variation in flow by modeling it

with a locally affine expression. In this case we have to minimize

(2)SSE=
q
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We used absolute values because the filters are complex valued Gabor filters. Notice that

some of the convolutions are withgq(x, y) ⋅ x etc. The Euler equations for this minimization

are

(3)
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where the star superscript denotes complex conjugate andI aerr is defined in Eq. (2). We used

the Conjugate Gradient method to solve this linear system.

4. ImageWarping

Warping is an expensive operation because we have to interpolate at every pixel. We

used linear interpolation which proved sufficient for the quality of the input images. The

warping is done in two stages: first we round the displacement vectors and then we correct by

adding the derivatives times the residual of the rounding. The MediaMath [7] code is shown

in Fig. 1.*

*MediaMath syntax is very similar to C



function linwarp_fimg(im,u,v)
"Warps the image using linear interpolation"

{
local im12, im12_x, im12_y, ru, rv, du, dv;

/* Integer warp the image */
im12 = intwarp_fimg(im,ru=round_fimg(u),rv=round_fimg(v));

/* and its derivatives */
im12_x = intwarp_fimg(D_x(im),ru,rv);
im12_y = intwarp_fimg(D_y(im),ru,rv);
du = u - ru;
dv = v - rv;

/* add the derivative times the */
im12 += im12_x*du; /* residual of the rounding */
im12 += im12_y*dv;
im12; /* return im12 */

};

Fig. 1. Mediamath code for warping using linear interpolation.

It is easy to see that this can be extended to second order interpolation if the results are not

satisfactory by computing the second order derivatives and multiplying them by second order

monomials ofdu anddv.

5. Animating the morphing

To produce the morphing we need the displacements from image one to image two and

from image two to image one. Then we calculate the intermediate images deforming both

images towards each other, so that they “meet” in between and we take a weighted average

(cross dissolve). By varying the weights and the amount of deformation we can create a

smooth transition from one image to the next. The MediaMath code is shown in Fig. 2.

6. Results

We used the algorithm to morph the images of various people. The image sequences

could be viewed using MediaMath and xv (about one image every three seconds) or on an

SGI using moviemaker/movieplayer. Nine of the frames are shown on Fig. 3. For comparison



uv=Gb_A_flow(im1,im2,:sig=0.0, :lam=10.0, :maxits=10, :solver=’ConGrad,
:flow_diag_mult=flow_diag_mult,
:scls = 3,
:scl1 = 0.7,
:w_s_prod = 3.0,
:oriens=4,
:wphase=1.0);

uv_i=Gb_A_flow(im2,im1,:sig=0.0, :lam=10.0, :maxits=10, :solver=’ConGrad,
...
:wphase=1.0);

xv = spawn("xv", "morph");

for (i=1; i<=10; i++)
{

local ru, rv, du, dv, uv_s, uv_si, temp;

uv_s = uv*(i/10.0);
uv_si= uv_i*((10-i)/10.0);

im12 = linwarp_fimg(im2,uv_s->u,uv_s->v);
im12 *= (10-i)/10.0;
temp = linwarp_fimg(im1,uv_si->u,uv_si->v);
temp *= i/10.0;
im12 += temp;

write_img(im12, "morph",:rescale=nil);
sleep(1);
kill(xv, SIGQUIT);
sleep(1);

};

Fig. 2.The MediaMath code to animate the morphing usingxv.

we show the result of the fifth frame using Horn and Schunck algorithm [5] in Fig. 4. The

results with the Gabor-affine algorithm are much better.

7. Conclusions

We presented an approach to morphing that does not require a human operator by using

flow techniques from computer vision. We plan to extend the approach to moving images and

introduce a simple way for the operator to guide the flow algorithm in cases that the images

have parts that are extremely different.



Fig. 3. Nine images of one young male morphing into another.



Fig 4. The fifth image using Horn and Schunck algorithm.
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