MediaMath

An Interactive System for
Image and Audio Analysis

Introduction to MediaMath
programming language

Part 1.

Introduction to MediaMath programming language

1. A Gentle Introduction

MediaMath is designed to be easy to use and to look familiar to the user from the first
encounterSo it ises the familiar syntax of C (with some omissions and extensions). It is an
interpreted language, like Basic and Lisp. This means that you can give it an expression and get
the answer right awayhis is invaluable for incremental debugging. It is extensible in more than
one ways: one can define functions that can be called seamlessly from the interpreter and the
other is to include new primitives in C.

The fact that it is an interactive language means that one can execute statements interac-
tively by just typing them in
a=3.14;
b=a*2;
c=sin(b);
b=to_integer(b);
The result of every statement is printed. Any executable statement can be executed interactively
And when we load a file, MediaMath pretends that it was typed in. If an error occurs then a help-
ful message is printed and we go back to the top level interpidégamn see the history of func-
tion evaluations that led to the error by typing
BackTraceOld;

The variableBackTraceOld holds the backtrace of the previous ertoiis a ist of all the
function invocations.

1.1. Asimple example

The best way to learn a language is by using &.9&ft with a few examples. Lstwrite a
routine that adds three to a number.
function plus3(x)
"Adds 3 to x\n\
no matter what is the type of x\n"

{
h

We will take every piece of code one by one. First a function definition begins with the word
function . The name and argument list followhere are no type declarations for thguar

ments, because it is a soft typed language. The next two lines contain the documentation string.
This string doubles as internal documentation and on line help. After you define this function,
this string will be available as help. Just ty3@us3; and this string will appeaAlso notice

X+3;

that the strings in MediaMath are like C strings.

Now we enter the body of the function. There is only one expression \Wiren the func-
tion is called this statement is executed and the result is returned as the value of the function. In
general, if there are many expressions in the body then the value of the last one is returned as the
value of the function (much like the progn and let of Lisp).

1.2. Anotherexample

Now we can go into a more serious example. A function that computes the exponential of a
floating point numbeiM/e rame ithewexp to avoid redefinition of the built iexp .
function newexp(x)
"New version of exp written in MediaMath;\n\
Under Development\n”

{

local temp, prev, res, i;

res = 1.0;
x = t o_float(x); /* if it is not float make it float */
i=0;
prev = -1.0;
temp = 1.0;
while (res-prev != 0.0)
{
prev = res;
i++;
temp *= x/i;
res += temp;
3
printf(“iterations: %d\n",i);
res;
3
There are a few new features here. The first isoited keyword. It defines a few variables as
local so that we doh'get conflicts with other routines. The local variables are accessible only
from within the functionand the functions that are called by ithis is what we calDynamic
Binding. The formal parameters in the function definition are also local variables in this sense.
But bear in mind that dynamic binding is too powerful to be used oftes better to write pro-
grams that do not care what is the binding.

The other feature is thehile statement. Its behavior is the same as in C except that it
returns a value: the value of the last executed statement. There idalsst@mtement for which
the same things applin the end of the function there is a debugging statement that prints the
number of iterations with a call frintf | which is modeled after the C standard library func-
tion printf

2. Syntaxof the language

The syntax is the same as C with few exceptions, to accommodatef¢nendifeatures of

the languages. These features are:

Functional programming. MediaMath is a purely functional language so everything returns
something, so we can have statements3ike while (a>0) a-5 . Even the definition
of a function returns something (the symbol of the function).

Soft typing. Variables are not bound to types. So we can have statements like
a=3;a=3.1; . And of course there are no type declarations for variables. But we can
define new types with theruct keyword.

Objects. MediaMath has some object oriented features like multi argument dispatch meth-
ods, so it has the syntax to deal with them.

Variable number of arguments. We can define functions with variable number ajanents
and keywords. One can use make_complex(3.1,4.2); or
make_complex(:im=3.1,:re=4.2);

Image and matrix operators. There is a variety of operators to use for image and matrix
manipulations likeal (*) s_templ; or m1<->mz2; to convolve an image with a tem-
plate and concatenate two matrices.

No inherited mistakes. There was no reason to repeat some of the mistakes that happened
with C, like the use of caret fotOR the lack of a power operator to do things likead
the funny way to access 2-d arrays WA{3][4]

Other than that the two languages have the same syntax.

2.1. Expressions
The expressions are composed from operators and operanaslike b+c->val

2.1.1. Operators

The operators are of three kinds: binary and unary pre and post opefédtensinary oper
ators in increasing order of precedence are:

= += -= *= /= %

I

&&

L

&

== === 1= == |l===

< > < = >=

>> <<

+ -

* / % (G () Q) <> <>

The associativity of all the above operators is from left to right with the exception of the power

operator and the assignment operators. The assignment expressions are a little different than the
rest and we deal with them in the next sectidil.the unary pre-operators have the same prece-
dence (it does not make sense otherwise) and the same for post operators. The precedence though
of the post operators is higher than the pre operators. The pre operators are:

[- + + -- - + ’

and the post operators are:
++ -- T

Some of these operators are new and perform functions specific to MediaMath.

N

The power operatofhe type of the operands can be any number: intagsigned integer
characterunsigned character or float. Depending on the type the interpreter will call the
appropriate library function to do the job.

(*) The 2-D convolution operato®ne operand must be an image or a scan line and the other a
template or both templates.

(D \Vertical convolution. When the template is one dimensional it is treated as a column. This is
useful for separable convolutions.

(-) Horizontal convolution. As above but the template is treated as a row.

<|> Vertical concatenation. Two objects like matrices images etc are stacked one on top of the
other.

<-> Horizontal concatenation. As above, but the concatenation is sideways.
“T Transpose. Matrix transpose operator.

' Quote. Protects its gmment from evaluation. It returns the expression unevaluated. This is
an advanced feature.

Range. It returns a data type that indicates range. It is used for subarray access and some
other functions that understand it.

As in most languages precedence and associativity can be changed with the use of parentheses.

2.1.2. Operands

Anything can be an operand in this language (there are some restrictions if the operation is
assignment and we deal with it lateBnything from variables to type definitions to function
calls, because everything returns something. More specificly:

» Variables: The symbols play the role of the variables. A symbol is an entity with several
attributes and not just the name of a place in menitwy attributes of a symbol are: name,
value and property list. When we type in the name of a variable the interpreter looks it up
in the hash table and finds the symbol that corresponds to the name (if this is the first time it
sees the name creates a new symbol with funattern). Then depending on whether it
is on the left or right side of an assignment retrieves or modifies the value field of the sym-
bol. Soif we type
a=s;
a+3;
then in the first case we modify the value fieldaadnd in the second we just accesslfit.

the second expression was evaluated we would have a galu® with 5 and3 as agu-
ments.

Function calls. A function call is the same as in C with a few more fancy ways to pass vari-
able number of guments. If the function is defined with fixed number of arguments, all the
arguments have to be present in the correct ottigrhas optional arguments as well then

the required guments come first and all of them have to be present, and then the optional
ones. If there are three optional arguments and we want to specify only the last one we have
to either specify the other two as well or use keywords. If we have the function
make_image_info that accepts one requiredcgament and three optional ones the last

of which isfocal_length then we could use

make_image_info(img1l, :focal_length=28.2);

The keywords can be used also when the function uses a global variable but we want to use
something else for this invocation onkor instance if the functiofix_aspect consults

the global variablaspect_ratio for the default camera but we want for one call to use

the value new_aspect we could write fix_aspect(img1l,
:aspect_ratio=new_aspect);

There is also a mechanism to pass to a function any number of paramékerginction

“sees” a list of values that can be accessed with catigrtcandcdr .

Array references. There are several kinds of arrays already built in and one can add more.

These include the regular arrays, which are heterogeneous arrays, the matrices, the vectors,
the templates, the images, the scan lines and the strings. All of them can be accessed with
square brackets.

het = make_array(5,nil);

het[1]=1;

het[2]="Media";

matl = mk_fmat(1..3,1..2,[[1,2],[2,3],[3,4]]);

1 + matl[3,2];

A very useful feature is that the indices of the arrays can be ranges

vec = matl[1..2,2];

so thatvec gets assigned a vector that contains the first through second elements of the sec-

ond column of matrixnatl .

Structure references. Structures can be referenced with tioperator So he real value of
a omplex number ig->re . The-> operator can be used in other situations as well.

While statements. A while statement abint while (x>=3) x -= 3; returns the
value of the last expression evaluated, in this gasedulo3 so the value of the whole
expression i®+(x %= 3)

For statements. A for statement also returns a value. For indtan@el; i<=10;

i++) arl[i]=i"2; will return 100.

If statements. An if statement like(x>0) x+1 else -x+1; will return the value
of x+1 if x is positive andx+1 if x is negative. If the else statement is missing ten
is returned. Notice that there is ndefore theelse .

Compound statements. A compound statementi{likeocal temp; temp = x; X =

y; y = temp; }; will return as value the value of the last executed statement, in this
case the original value of. Thelocal declaration is optional and can have many vari-
ables. Noticehat there is a after the closing brace.

Lists. A list like[2,2,5,2] is a collection of possibly heterogeneous items. It is used for
advanced programming or for passing arguments to some functionsklikeec .

Prefix statements. MediaMath provides the means to write everything in Lisp-like prefix
notation. For examplex = 3*x +1 can be written asb(set $(quote x)

$(gplus $(gmult 3 x) 1)) . The prefix syntax is much more powerful but hard to
use. It is intended for advanced programming only.

Constants. There are a few types of constants.nilheandt are built in constantsil
represents the false value (8g=4 evaluates tmil), the empty list, the null pointer and
the default initialization of uninitialized entities and it is a symboflepresents the true
value (e.g.3==3 evaluates td) and it is a symbol. Then are the integers & And
floats like3.14 or 1.2e-3 . And strings liké'MediaMath Version %d.%d\n" that
are exactly like C strings.

Function definitions. A function definition returns the symbol that holds the function. For
example
function my_fun(x, y, &optional z &init 3, &rest rest)
"Just an example"
{
printf("x is %d, y is %d, z is %d", X, Yy, 2);
if (rest)
{
printf(" and the rest are: ");
for (; rest; rest=cdr(rest))
printf(", %d",car(rest));
printf("0);
}
else printf(", and no rest0);
3
The value of this function definition is the symiboy_fun . The syntax of a function defi-
nition is the wordunction , the symbol of the functiomy_fun , a parenthesized list of
the formal arguments, an optional documentation string and a compound statement. The list
of formal aguments has the following structure. All the required parameters, ,ifiesty
The optional parameters, if gmext. We indicate that where the optional parameters start
with the word&optional . If an gptional parameter needs to be initialized then we put the
word &init after the name and then the initialization ag i&init 3 . If there are rest
arguments the woré&rest follows and one symbol (it foes not make sense to declare more
than one rest arguments). The rest argument can be initialized in the saniétivese are
rest arguments we cannot use keywords.

Structure definitions. A structure definition looks like a C structure definition, just simpler
For example

struct complex
"Structure for complex entities."

3

z1 = make_complex(:re=2);

defines a structure with the naw@mmplex , with two fields that are initialized (if we ddn’
want to initialize then we omit thee 0) and a documentation string. After the evaluation of
the structure definition the interpreter defines the funchake_complex automatically.

It also defines the functicwomplex_p and knows how to access the fields of the structure
with the-> operator.

Generic function definitions. A generic function is a function that hdsrdift behavior
depending on the type of thegaments provided at every function call. The function
gmult , that implements operatdr, is uch an example. When the operandsflaag s it
multiplies them as real numbers. When the orftoeg and the othemt first converts
and then multiplies. The same for matrices, imagesletee want to extend the functional-
ity of the* operator to work focomplex structures as well we can define a few functions
to do the job and then teggmult how to call them.
function complex_by complex(x,y)
{

make_complex(:re = x->re * y->re - X->im * y->im,

im = x->re * y->im + x->im * y->re);

I3
function number_by complex(x,y)

{
5

etc
generic gmult

{

make_complex(ire = X * y->re, :im = X * y->im);

complex, complex: '‘complex_by complex;
{ i nt, unint, float, char, unchar }, complex :
'number_by complex;
complex, { int, unint, float, char, unchar } :
‘complex_by number;
I3
When the above statements are evaluated then the multiplication will work seamlessly for
complex numbers. Functiagmult is called generic function, and the functions liiken-
ber_by complex (which are normal functions) are called methods. When several data
types specialize on the same method, {ike nt, unint.. } above, then we can
enclose them in curly brackets and the interpreter will create one entry in the look up table
for each one of them.

2.2. Assignmenexpressions

An assignment is an expression that returns the new value of the variable, the array position
or the structure field. It has the side effect that it modifies this place in meif@yassignment

operators are the same as incC+=, -=, *=, /= , %= All the following are valid statements
a = 3;

a=>b = 3+1,;

matl[3,3] = 1.1;

cm->re = 0;

a += 1;

matl[3,3] += 2;

cm->re += 1;

One can assign to anything that represents a position in memory: a symbol, an array and a struc-
ture. There are a few more cases that an assignment can take placedigytbat the scope of
this manual.

3. Miscellaneous

No interpreted language is complete without a few more things. First comes on line help.
There are two ways to get information about the system. The @prapos . If we want to
find all functions or variables that deal with images and templates we type interactively
?2?"[lijmage","[Ttlemplate";
and all the symbols that satisfy both regular expressions will show up along with one line of doc-
umentation.

The other is thalescribe function. It gives the full available documentation for this
function or variable.
?gconvolve;
Both apropos anddescribe can be called as functions but the us@dfand? save us typ-
ing. We an find more information about the regular expressions in the Unix comradraid

grep .
The comments in MediaMath are like C comments but are not allowed to span two lines. A
comment must end in the line it started.

4. Library functions

There are several libraries that are accessible through MediaMath. First all the functions in
the Unix math library are accessible with the same names. Then there is an extensive Lisp style
list processing librarya snall string library and miscellaneous utilities and the most important
library, the image and matrix library.

4.1. Imageand matrix library

This library introduces a set of types to operate upon, that can represent images and matri-
ces. Therd8 such types but a bit of taxonomy makes them look fewer and easy to understand.

These types are of two kinds. One dimensional and two dimensional. The 1-D ones are
vectorsvec , scan linesscin and 1-D templatesnpl . The 2-D ones are matricesat, images
img and 2-D templatesnpl2 . So far six. Each one of them can be either ffoaintegeri or

unsigned characterc. The names of all of them are composed by the initials of the underlying
type and the short name of the type:

fvec fscln ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscin uctmpl ucmat ucimg uctmpl2

4.2. Creating and destroying images and matrices

For every one of these types there is a routine to create an instanjest YWefix the name
of the type withmk_as inmk_fvec . All of them accept the dimension (or dimensions) of the
object as argument(s) and an optional initialization.

The indices of matrix and vector objects of sizenge froml..n . The range can be spec-
ified using the range operator or just the size. All the following statements are valid:
mk_fvec(4);
mk_fvec(1..4,[1,2,3.3,4]);
mk_ucmat(2,3,[[1,2],[3,4],[5,6]]);
mk_ucmat(1..2,1..3,[[1,2],[3,4],[-5,-6]]);
mk_imat(1..2,4);

Notice that if we choose to write.3 we do not give any more information. It is justfeiient
style. Itis an error to writ..4 for matrix creation.

Images and scan lines are pretty similar to matrices and vectors but Staftllathe fol-
lowing statements are valid:
mk_fimg(128,128);
mk_fimg(0..127,0..127);
mk_fimg(0..1,0..1,[[1,2],[1,2]]);
mk_ucsciIn(0..255);

Notice that the first two statements do exactly the same thing.

The range of templates can be anything, so they are not constrained to start from zero or
one. And we can use either a range or the bounds of the range like:
mk_ftmpl(-2,2);
mk_ftmpl(-2..2);
mk_ftmpl2(-1..1,-2..2);
mk_ftmpl(-3,3,[1,1,1,0,2,2,2)]);

We dhould not be particularly concerned with deallocation of these data structures, although
they are big, because there is an efficient garbage collector to do that. The garbage collector
scans the memory every now and then and finds data that are inaccessible and deallocates them.
But if we feel the we to deallocate something there is a set of routines to do that. All of them
arefree_ followed by the name of the data type lfkee_fimg

4.3. Accessingmages and matrices

We @n access the elements in any of the above data structures using the same syntax as
with arrays.
al[3];

10

a2[3,3];

whereal has one dimension ara® has two. Nothing would be differentafl anda2 where

vector and matrix or scan line and image or one and two dimension template. The result will be
of the same type as the underlying type of the structure (float if it is a matrix of floats, integer if it
is a matrix of integers etc). Also we can write

al[2..4];

a2[2..5,4];

az2[2,2.4];

a2[2..4,2..4];

to get part ol or a2. The type of the result of the above operations is of the same or the next
smaller type that would fit it. E.g. #1 anda2 where vector and matrix the first three lines
above would return a vector and the forth a matrix. If they were scan line and image the first
three should return scan line and the last an image. bounds of the result might be shifted to
follow the conventions. The above expressions can appear to the left of the right of an assign-
ment statement. For more information lookgaairef andgraset

In many cases during a computation we might need the size of a matrix or a template. W
can use the> operator to access them but not to modify the e.g.
al->vmin;
al->vmax;
al->vsize;
a2->hmin;
a2->hmakx;
a2->hsize;
az->vmin;
az2->vmax;
a2->vsize;
The initial v indicates vertical dimension and the initraindicates horizontal. A vectpa san
line or a template are assumed, by convention to be vértical

4.4. Buildingimages and matrices

We @n concatenate two images or two matrices together to make a bigger matrix or image.
If the underlying types are di#rent the one is upgraded to the other (an unsigned character to
integer and an integer to floating point)e\8n concatenate an image and a scan line or a scan
line and a numbeiThe same goes for matrices vectors and numbers. The concatenation opera-
tions cannot be used for templates.
al = mk_fvec(1..2,[10,20]);
a2 =mk_fmat(1..2,1..2,[[1,2],[3,4]]);

al<->al,; I* 2x2 matrix */
al<|>al, I* 2X2 matrix */
al<->az; I* 2x3 matrix */
al<|>az; I* 3x2 matrix */

T Since the vertical index is written first they) point of an imagém isim[y,x]

11

az<|>az; I* 4x2 matrix */
az2<->az; I* 2x4 matrix */
al<|>3; I* 3x1 vector */
We would get similar results if we had scan lines and images instead of vectors and matrices.

4.5. Convolutions

There are three convolution operators. The general convolution op@jatevhich applies
to images and templates (you cannot convolve two images though) when there is no ambiguity of
the orientation of these data structures. The horizé¢ntalthat means that the template is hori-
zontal and the verticd]) that means that the template is vertical.
im1 = mk_fimg(4,4,[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]});
t1 = mk_ftmpl2(-1,1,-1,1,[[0,1,0],[1,0,-1],[0,-1,0]]);
im1(*t1;
t1(*)t1;
t4 = mk_ftmpl(0..2,[-1,0,1]);
t1(-)t4;
t1(|)t4;
im1(-)t4;
im1(|)t4;
t4(-)t4;
t4(|)t4;
There is one more convention regarding convolutions. The templates are considered zero outside
their bounds (this does notfedt array access, if we request the value of a template outside its
bounds we get aArrayOutOfBounds error signal). The images are periodic so the whole
plane is tiled with the same image. So when we convolve an image (or a scan line) with a tem-
plate the size of the resulting image is the same as the original. When we convolve two templates
the resulting template is bigger that the originals.

4.6. Arithmetic operations

Most of the operations that apply to numbers apply to images, matrices and templates as
well. The above convention (that templates are considered zero outside their bounds and images
are periodic) applies here also. These operations on matrices and vectors are the linear algebra
operations. Dot product is done using transposition.
v1°'T *v2;

These operations work between images, matrices etc and numbers the way one would expect. All
operations are done in floating point (it is faster on most modern machines).

There is an important dérence between arithmetic with images and numbers. The opera-
tions
a = b;
a += 2;
have different effects whemis a number or an image. If it is a number the operaiorn= 2;
creates a new object to store the numlbdris an image then it modifies the object that contains
the image by adding 2 to every element. This is a mechanism to avoid allocating new images or

12

matrices under the programmers control. It can be a way to optimize the code for speed or a way
to introduce bugs.

5. Math library

The whole math library can be accessed through MediaMath using the same names. There
is some minor loss of accuracy because MediaMath uses single floating point arithmetic. All of
them have a short line of documentatiérar more information look at the Unix man pages. The
functions are:

Trigonometric

acos asin atan

atan2 cos hypot

sin tan

Exponential

acosh asinh atanh

cosh exp expl0

exp2 expml log

log10 loglp log2

sinh tanh

Bessel

jo i1 jn

y0 yl yn
Miscellaneous

cbrt erf erfc

fabs remainder sgrt

Limits

finite infinity isinf

isnan isnormal issubnormal
iszero max_normal max_subnormal
min_normal min_subnormal signbit

6. List processing library

The internal representation of MediaMath is influenced by Lisp. As a result it comes with
an extensive list processing librafhis library is usefull for implementing serious extensions to
the system, but the typical user does not need to be aware of its existence, save a couple of func-
tions to handlé&rest arguments.

append assoc assq

atom boundp car

cdr compose_symbol compose_symbol_soft
cons consp copy

copy_alist delqg eq

13

fboundp fmakunbound fset

get getenv getenvlist
intern intern_soft length

list listp make_array
make_list make_string make_symbol
makunbound memq nconc

nlistp not nreverse

nth nthedr null

put range_car range_cdr
range_cons rassoc rassq
reverse rplaca rplacd

set setplist setq
symbol_function symbol_name symbol_plist
symbol_value symbolp time

For each one of them there is on line documentation, examples etc. It is a fairly complete list pro-
cessing system, that could support symbolic computation etc.

14

MediaMath

An Interactive System for
Image and Audio Analysis

Run time linking of C modules.

15

Part 2.

Run time linking of C modules

1. Overviewof the C modules

The MediaMath system provides a simple mechanism to extend its functionality by adding
functions written in C. The mechanism is fundamental to the system and not an extra feature. It
is used by the developers to write everything except the central part of the inteAwateh it
is extensively debugged and tested during the development. It does not incur any speed penalty
and it is intended to be simple and flexible, and easy to master for somebody familiar with the
UNIX ™ system.

Modules written in C can be linked and unlinked to the executable at rup time by a simple
command, e.g. if the module is named “hough.so” you can load it with the command
dlopen("hough.so");

If for some reason you want to unlink “hough.so” then

diclose("hough.so");

is enough. You rarely need this howeuérvhile using “hough.so” you discover a bug you can
go back to the C code of “hough.so” correct the bug and link it again in the same.rii&ener
old version is automaticly unlinked and you will notice no sidecef This comes in handy when
you discover a bug and you already have a couple of hours useful work in the memaory.

The C routines have to be written in a certain style in order to be linked. The interpreter has
to be informed of the name of the function the number gifiraents, the type of function (for
most of the things you would like to do the type “function” is enough; the others are macro and
special form, people familiar with Lisp should recognize thelt)en the documentation has to
be provided. All this seems quite an overhead for the prograrbatdevo mechanisms are pro-
vided to make this task trivial. First there is an emacs function to insert a header template for all
this information. The user has just to fill it ufihe rest are done automaticly by the second
mechanism that uses the awk language: The C source file is scanned by an awk program that
extracts this information from the headers and writes the appropriate code to inform the inter
preter Again, this mechanism is very well tested because this is how all the functions of the sys-
tem are written. As a result a substantial part of the code and the declarations are produced by the
awk program.

All the aiguments to your C functions that are going to be called by the interpreter are of
type L_Ptr which stands for “lisp pointer”. This is a pointer to a union that can accommodate

T Users familiar with SunOs will realize that the name is borrowed from there. The actual futhofien_lisp that is called in re-
sponse does little more than set up the arguments for calling Slo@s when working on a Sun

A programmer that always puts headers at the beginning of his functions should not have any problem with that (assuming such a pro-
grammer exists)

16

all the types used by the system including the ones you are going to define in your modules. It is
the responsibility of the programmer to check if the types wrapped in the union are acceptable. A
wide variety of cpp macros are provided to make this.daskie types of the arguments are
deemed acceptable then you can use them directly if they are lisp types (like cons cells, lisp
arrays, nil etc). Otherwise they are C types and you have to extract them. Another set of cpp
macros is provided for this purpose.

The last issue is the garbage collectarckily for the most part you should not worry about
it. The garbage collector is called only from within teal function and in general only
advanced system utilities normally cellal . But in case you dohhave a choice you can use
one of two mechanisms: Either suspend garbage collection for the duration of thisgall to
a gmple but wasteful technique, or protect thguements and variables of your function. The
reason you have to do one of these is that the garbage collector will mess up anything that he
thinks is inaccessible and thus useless. So your function has to notify the garbage collector that
its local variables are accessible.

When you start a new module you have to first copy into a fresh directory the contents of
the ModulePrototype that contains a simple example. You can add and remove files with C code
or declarations (*.c and *.h) to write your own moduleu¥ave to edit the makefile to let the
make utility know your SRC files and your local headers. Then you type
make setup
and you are ready to start. Put your C declarations in a .h file and your C code in a .c file. The
first thing you write is routines to generate and destroy instances of the data types you declare.
Before every function that can be called by the interpreter include a hEaesr function first
checks the type of its @mments and extracts the corresponding C values from them. Then most
of them should call a function to do the actual work and use the result to construct a Lisp data
type to be returned. After you have written enough routines that can be tested together type
make -k
to compile and link with the dynamic load¥ou have a module ready to be linked to an already
running MediaMath. Type
dlopen("hough.so");
at the MediaMath prompt and you are ready to call your routines in exactly the same fashion as
any routine in the system.

2. Writing a simple function

Let's write a very simple function that accepts one argument, a float and returns the sine of
it using the standard math librasin . This does not need any new C types other than float so
we dont need a .h file.

The first thing to do is to create a headfeyou are using emacs and have loaded the appro-
priate emacs lisp files just tymatrl-meta-h . A ten line header will be inserted and you
have to fill it out.

/*aWkStaI’t**
Name: mysin

MinArgs: 1

MaxArgs: 1

17

Type: function

Synopsis: mysin(<float>)

Doc: This function computes the sine of <float>.

Doc: It is just an example of how to write simple functions.
Example: mysin(3.14/2);

**awksto p*/

L_Ptr mysin(Lnum)
L_Ptr Lnum,;
{
float f,res;
if '(FLOATP(Lnum))
error_signal(Smysin,SWrongTypeArg,Sfloatp,Lhum);
f = X FLOAT(Lnum);

res = sin(f);

return C_2 L _float(res);
}
This is how your function will look like. If you use one of the files provided you can just copy
your function in and compile by typingeta-x compile . You can load your function in a
running MediaMath by typindlopen("example.so") CTry it

Lets look at these fields one by one. First the name field provides no surprise (so far). The
minaigs and maxas fields are what one would expect too. The type of the function is “function”
which means that the arguments to your function are evaluated. In other words if you have the

sequence
a =1.0;
b = mysin(a);

then your function will see the flodt0O whereas if it waspecialfrm (special form) then
your function would see the symlmoWwhich is not convenient here.

The next field is synopsis. It just gives a synopsis of the syntax of the function. It is up to
the programmer to choose if he wants to wsitileat> or <number>. The next field is doc.
This can be several lines long but each line has to start wille@ “ ”. Thefirst line of these is
kept as a string in the main memory so that the apropos command can read it to try to match
strings. So better have a good summary of the description as a first line. All the lines go to a file
“mysin.doc” to be read by the help commarténally the example field records a few simple
examples to be used by the help command.

The header seems pretty straightforward sdtfdoes not get that much more complicated.
The body of the function is also simple.

Both the arguments and the return value are pointers to this catchall union. The first thing to do is
to check if the argument is indeed a flo@his is done with the cpp macro FLOATP(). If you are
using emacs you can typeeta-x c-macro-expand to see what it is doing. Just checks a
number stored in the first word of the data structure. If the test is negative then the
error_signal function is called to signal the errgrint a message and return to the read
eval loop. The message contains what is in the arguments efrtire signal call. Lets

18

have a look into each one of them. The firgjuatent isSmysin . This is the symbol whose

value is the actual function. You domave to declare and initialize it. This is done by the awk
progran{ Every function that can be invoked by the interprelbas a symbol which has the

same name (there are two exceptions to this) and there is always a variable that points to it. The
name of the variable is the same as the name of the function véthateached before it.

The next field iISWrongTypeArg . This is the error message. Notice the funny capitaliza-
tion. Words that dom’have to be typed in often use it. Error messages are among them. Again we
provide the symbobWrongTypeArg . The user can retrieve the documentation of this symbol
to get more information on this type of error.

The next field is the comment field.eVave Sfloatp to give a hint that floatp would fall
for this type of agument. The programmer should give whatever might help the user find what
kind of error happened. The last argument is the value that did the damage.

If the test is positive then the execution goes on. At this pont we know thagtimeest is
a float. We can extract it using thEFLOATmacro. This returns the float stored in the third word
of the data structure and you can see it by expanding the macro with emacs.

We have the actual value of the float n@® we all sin which returns another float (well
actually double) which we pass ag@ament to the functio®_2 L float (which stands for C
to Lisp float). This function creates a data structure to hold the float that has all the correct tags
etc. This is whaiysin returns.

2.1. Improving our first module

If you were to add this module to the system, you would surprise the-usethe function
sin is calledmysin . Second even in a staticly typed language like ANSI C, one can give an
integer as an argument to a function that needs a float. Lets see how we can fix it.

We @an try to change the name of the functiosito from mysin . That would be an invi-
tation for trouble becausen is the name of the math library functione\@ready saw how this
problem was solved. If you notice the example about dynamic linking above, the name of the
function dlopen is known inside the C code by the nadiepen_lisp . Our function is
mysin both inside the interpreter and inside the C program.

The whole job is done by the awk programs. When a function is declared by a name that
ends with_lisp like dlopen_lisp the awk programs keep two versions of the name: one
with and one withoutlisp in the end. The one without is what appears in the run time hash
table of the system and the one wilisp is what the C compiler and the linker see. So they
are not confused by the names.

The other problem can also be easily solved. One can replace the check
if {FLOATP(Lnum))
error_signal(Smysin,SWrongTypeArg,Sfloatp,Lhum);

T a ymbol is a collection of three things: the name which is a string, the value which can be anything or undefined and the property list
where any combination of key value pairs can be stored. The property list is used mainly by the system to store important information and if you
don't know what your are doing leave it alone. A symbol can be interned in a hash table, in which case it can be retrieved by its name.

19

with

Lnum = to_float(Lnum);
Functionto_float returns a float ithumis convertible to float, or signals an error otherwise.
After the call toto_float we know that.num s a float. The rest of the program proceeds in
the same way\Ve lved a problem but we created another one. If the user praidewith an
invalid type, the error will be issued by float and there is no simple way to trace the origin
of the error If this is a concern then the best thing to do is an error checking sisideYou
can use theaumberp function for that.numberp returns symbal if the argument is a number
andnil otherwise. The program then would look like
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 1
Type: function
Synopsis: sin(<number>)
Doc: This function computes the sine of <number>.
Doc: It is just an example of how to write simple functions.
Example: sin(3);

**awksto p*/

L_Ptr sin_lisp(Lnum)
L_Ptr Lnum,;
{
float f,res;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
res = sin(f);
return C_2 L _float(res);
}
Notice the use of the macMlULLPthat checks if the function returhdL . You could write
NIL == numberp(Lnum)
or
St = numberP(Lnum);
whereSt andNIL are the andnil in the C environment.

At this point we know enough to write any simple functiontivthe help of the Reference
Manual we can write any function that does not need new types, varighleeats, garbage
collector protection or list processing.

3. Variable Arguments

First, we have to inform the system that we use variable arguments by decldarendif
minimum and maximum number of them. If the maximum numbergifraents is infinite use
-1.

20

The awk program is going to do all the work to notify the interpreter aboutghmants of
this function. The interpreter will match one by one the minimum number of arguments and will
put the rest in a list and give it as the last argument. So your program has to accept the minimum
plus one number of arguments.

Let's write a function that computes the sine of a numtheit accepts an optionalgar
ment, that when nonil instead of the sine computes the hyperbolic sine. The code should look
like this
/*aWkstart**

Name: sin_lisp

Minargs: 1

Maxargs: 2

Type: function

Synopsis: sin(<number>[,<hyper>])

Doc: Computes the sine of <number>. With optional non nil
Doc: argument computes the hyperbolic sine. It is just

Doc: an example of how to write simple functions with

Doc: variable args

Example: sin(3,t);

**awksto p*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;
{

float f,res;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if '(NULLP(rest))
{
if {NULLP(cdr(rest)))
error_signal(Ssin_lisp,STooManyArgs,NIL,rest);
if 'NULLP(car(rest))) return C_2_L_float(sinh(f));
}
return C_2_L_float(sin(f));
}
The code is easy to followf no second agument is supplied then restns . If a second agu-
ment is supplied it is a list that can be accessedagithandcdr . For those not familiar with
Lisp, car returns the first element of a list andr the rest of the list. The statemaht
('NULLP(cdr(rest))) checks if more than 2 arguments are supplied, in which case an

21

error is signaled. The interpreter does not check forqhat.

3.1. Addinga few more features

This function does a pretty good job, butdetake it a bit fancienf a sscond argument is
supplied it should be eithéyperbolic or periodic . This way the user is forced to include
these words in his function call making the code more readable; youngea to look up the
manual to find out what’going on, it is there.

First of all we have to let the interpreter know about the symivgterbolic and
periodic . This would be automatic inside a running MediaMath system, because the symbols
are interned immediately as they are encountered. But inside the C code you have to intern it
yourself and keep a global variable around to access it. It would be a lot of trouble to do it manu-
ally but the awk program does it for you. The mechanism is very similar to the headers for func-
tions. It would look like this
/*awkvarstart**

Name: hyperbolic

Doc: Flag symbol. If present as the second arg of a trig
Doc: function, it returns the hyperbolic counterpart
Value:

**awkvarsto p*/

/*aw kvarstart**

Name: periodic

Doc: Flag symbol. The opposite of the hyperbolic flag.

Value:

**awkvarsto p*/

A global variable is declared for each headghnyperbolic and Speriodic . You may

notice the same convention. The lead§imeans symbollf the value field is present, a global
variable with the same value is declared that points to this value. We'll see its most common use
when we talk about types. Here we do not use the value field.

Thedoc entry does exactly the same job as in function headevge use the same sym-
bols anywhere in the module then we dawrdefine them. If some other module has declared
them too, then the last doc string and the last value are kept and nothing else changes. If you
want to avoid that then you have to use the import mechanism.

Now that we have seen how to introduce new symbols we are ready to proceed with the
code.
/*awkstart**
Name: sin_lisp
Minargs: 1
Maxargs: 2
Type: function
Synopsis: sin(<number>[,{hyperbolic, periodic}])

O

You might notice that the actual value dBixArgs , is irrelevant. It only matters if it is equal or notMinArgs .

22

Doc: Computes the sine of <number>. If the optional argument
Doc: is hyperbolic then the hyperbolic sine is returned. If

Doc: it is missing or it is periodic the periodic sine is

Doc: returned. It is just an example of how to write simple

Doc: functions with variable args that use new symbols.
Example: sin(3,’hyperbolic);

**awksto p*/

L_Ptr sin_lisp(Lnum,rest)
L_Ptr Lnum, rest;
{
float f,res;
if (NULLP(numberp(Lnum)))
error_signal(Ssin_lisp,SWrongTypeArg,Snumberp,Lnum);
Lnum = to_float(Lnum);
f = X FLOAT(Lnum);
if 'NULLP(rest))
{
L_Ptr temp;

if ('(NULLP(cdr(rest)))
error_signal(Ssin_lisp,STooManyArgs,NIL,rest);
temp = car(rest);
if (temp == Shyperbolic) return C_2_L _float(sinh(f));
if (temp != Speriodic)
error_signal(Ssin_lisp,SUnexpectedArg,NIL,rest);
}
return C_2 L float(sin(f));
}
Again Shyperbolic and Speriodic are the symbols that inside a running MediaMath are
hyperbolic and periodic . Also notice in the example above that we have to quote
hyperbolic to avoid evaluation. If we leave it unquoted then we will trigger an error.

4. Types

Before we explain how to introduce new types we have to describe the type system. In this
section we talk about how to introduce types and operations that handle conventional C struc-
tures, how to make the garbage collector dispose them and the printing routines display them.

4.1. Classification

All the types used in the MediaMath belong in one of two categories: Lisp types and C
types. The Lisp types are further classified as evaled and unevaled, e.g. onezirat thec-
tion of the interpreter evaluates and returns the result or does not evaluate and returns them as
they are.

23

The lisp types that can be evaluated are among others the symbol (the value field of the
symbol is returned) and the function call which is a list of a function and its arguments (the result

of the function call is returned.). The evaluation procedure is complicated and it is described
elsewhere.

The types that are not evaluated are almost all the rest: anaagrature, nil etc. In other
words these types represent themselves. All the C types are also unevaled.

C types are also classified in two categories. “Small” angyélar “Small” are all the pre-
defined ones and “large” are all the ones defined by theTisename comes from the fact that
most of the predefined ones are “small” (chars, integers, floats, etc) whereas most of the user
defined ones are “large” (images, matrices, etc). (See fig. 1)

4.2. Runtime representation

Every lisp object is an array of words. Every word is the same size as the pointer on the par
ticular machine. The first word of the array is the header which contains the markbit (for the
mark and sweep garbage collector), the type tag which is a number that represents the type and
one more integers for the extension. The extension represents different kinds of information
depending on the type. For all lisp types contains the size of the array even if the size is implicit
in the type (like cons cell which has size 2). For C types the use of this integer varies. Some of
the predefined C types do not use it. Others like the ones that represent C functions use it to store
the minimum number of guments. Theiser defined types use the extension to store the actual
number that represents the type (the type tag contains only the number that corresponds to

All types
Lisp types C types
Evaled Unevaled Predefined| | User defined
Cons Nulltype Unint In_stream
Symbol Regulartype Int Out_stream
Keytype Specialtype Float DI_handle
Selecttype Unchar Fimg
Defaulttype Char Ucimg
Stmg Fmat
Function Fvec
Vfunction etc...
Specialfr
Vspecialfrm
Macro
Vmacro
(Large)

Fig. 1. All the types in the MediaMath system.

24

“large”, a kind of escape tag).

The “lamge” type tag does not correspond to any real type. It is just an extension tag to take
care of the user defined types. In other words the funttfw® of will never returnlarge
All the user defined types are allocated numbers that are then stored in the extension in the
headerThe allocation is done by the system (funciioeate_C_type takes care of this) and
may vary from execution to execution. (See fig. 2)

4.3. Keepingtrack of the types

The functiontype_of will return a symbol which is the name of the type. It is the symbol
int for integer the symbolffloat for a floating numberthe symbolfimg for a floating point
image etc. This we call type name. The value of the type name is initially undefined (and the user
can define it without any interference with the type system).

The next symbol involved in the types is thgoenum symbol. This is symbahtType-
num for integer symbol floatTypenum for a floating numbersymbol fimgTypenum for a
floating point image etc. The rule to generateTgpenum symbol from the name is obvious.
The value of th&'ypenum symbol is theTypenum, an integer unique to this type, at least-dur
ing a session. Théypenum of a predefined type is stored in the type field of every instance of
the type. Thél'ypenum of the user defined C types is stored in the extension of the héher
symbol contains most of the information needed for typechecking etc and its name makes it hard
for the user to use it accidentally as a variable.

The property lists of these symbols contain most of the useful information. The property list
of the name symbol has the propefypenum which is the correspondingypenum symbol.

| | 4 |sym | | 2 |c0ns | | XXXX |integ..
name —1 p» |[car —1 » [Unused

value —~1 p [cdr —1 - [int

rop. list —1 »

prop Cons cell Integer

next — »

Symbol

| | XXXX |string | | n |vfun. | |typenurTFarge
Unused Unused Unused

“char —» (L_Pr()0)) —f— [void —t—
String Vfunction (n args) String

Fig. 2. Internal representation of various types.

" The same is true for thepecial type. It is an escape for all the user defined lisp structures. Again the fugptolf will never re-
turnspecial .

25

This gives a faster way to get thgpenum symbol than constructing the symbol from its string
andintern ing it. It also holds the first line of the documentation in Bree property The
Typenum symbol contains a bit more information. First thec property contains the same
documentation line. Then tiéame property contains the name symbol. Tbestroy prop-

erty, present in user defined C types, contains the function that can be called by the garbage col-
lector to deallocate the type (free the space for an image, close a file etc). It can also contain the
Printer property to print an instance of the type (present in some C types).

Given the name or th€ypenum symbol of a type you can find all the information avail-
able to the system. But given tigpenum integer you cannot do it easilyror this purpose
there is thaype_array = which maps these integers to the corresponding symbols.

4.4. Defininga new C type

After this brief exposition of the type system it is clear that it is not easy to deal all the
details. For this reason there are tools to isolate the user from it. Defining a new type is as easy as
defining theTypenum and at least one function to deallocate it (if deallocation does not make
sense, still this function has to be defined to do nothing and just MiujnAgain the awk pro-
gram does most of the work with the help of a couple of functions, macros and simple conven-
tions.

4.4.1. Example:define floating image types

We @an have a look into a real type ndivis not worth to find a toy example to do the
introduction because it is really simple by itself. The code comes frormtdgeBasics mod-
ule and not the core interpretbut it would be exactly the same if it was from the interpreter.

As most modulesmageBasics defines two levels of functions, one and two. The first
level functions do the actual work and do not deal with headers, data types, error checking etc.
They accept arguments that had their headers removed (gt a is afloat and not an
L_Ptr whose tag i&=LOAT). They are not called directly from the interpreter and they do not
call any high level function including error handlergeneral every effort has to be taken so that
these functions can be used with as little modification as possible in other packages as library
functions. And of course the opposite: any public domain function should easily fit among the
level one functions. The level two functions do all the error checking, type casting etc and then
call one or more level one functions. It is then obvious that level two functions require some
familiarity with MediaMath whereas level one are conventional functions. So we present only
level two code.

All the level two code we need in order to define a floating point image type is listed below
We mght need to do a bit more than that, to have a complete abstract data type, like write func-
tions to access or modify a pixel, add two images, display an image etc.

/*aWkstart**
Name: mksimple_fimg

MinArgs: 2

MaxArgs: 2

Type: function

26

Synopsis: mksimple_fimg(<vdim>,<hdim>)

Doc: Allocates an image with <vdim> rows and <hdim> columns.
SEE: free_fimg, mksimple_fimg

Example:

**aMVkSUJp*/

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;
{
int Cvdim, Chdim,;
ftwo_Dptr fimg;
L_Ptrres;

TO_INT(vdim,Cvdim,Smksimple_fimg);
TO_INT(hdim,Chdim,Smksimple_fimg);

if ((Cvdim <= 0)||(Chdim <=10))
error_signal(Smksimple_fimg,SNonPosSize,NIL,LIST2(vdim,hdim));

fimg = mk_ftwo_D(0,Cvdim-1,0,Chdim-1);

res= C_2 L_large((void*)fimg,XtypenumDefinition(SfimgTypenum));
return res;

The function above allocates an instance of a floating pont ifimage. It accepts as guments

the dimensions of the image. It first extracts the integer values of the dimensions (cpp macro
TO_INT does the extraction and typechecking in a smart way). Some additional error checking
follows. Then space for the image is allocated by funatinftwo D , which allocates space

for two dimensional objects like images and matrices. This function returns a pointer to a newly
allocated C structure. Then functianksimple_fimg returns this pointer encased in a struc-
ture that has a headdihe encasing is done Iy 2 L large that accepts two arguments: the
pointer to the image structure and tAgpenum as a plain integer XtypenumDefini-
tion(SfimgTypenum) can help locate it.

* kkkkkkkkkkhkkkkhkkkkhkkkkhkkkhkkkhkkkhkkhkkhkhkkhkkkkhhkkhhkkhhkkkhhkkhhkkk
[*awkstart

Name: free_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: (free_fimg <fimg>)

Doc: Frees the space allocated to <fimg>. It is called

Doc: automatically by GC when <fimg> is no longer accessible.
SEE: mk_fimg

27

Example: free_fimg(mk_fimg(100,100));

**awksto p*/

L_Ptr free_fimg(fimg)
L_Ptr fimg;
{
if {CHK_TYPE(Sfimg,fimg))
error_signal(Sfree_fimg,SWrongTypeArg,NIL,fimg);

if (NULLP((L_Ptr)XLARGE(fimg))) return NIL;
free_ftwo_D(XLARGE(fimg));

XLARGE(fimg) = (void*)NIL;
return NIL;

The only function we need to define to have a descent data tfnee iimg . This function

has to be defined, otherwise the Garbage Collector will not know what to do withganif it

sees one that is inaccessiblEhat’s a $mple routine that first checks the type of thguanent,

then makes sure that the data structure is not freed already (the convention is that the pointer to
the data structure inside the header is replaced with.aif the image is already freed). Then

frees the data structure and sets the no longer valid pointer in the heldtlerttoobey the con-
vention.

* kkkkkkkkkkhkkkkhkkkhkkkkhkkkkhkkkkkhkkhkkhkhkkhkkkhhkkhhkkhkkkhhkkhhkkkk
[*awkstart

Name: print_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: print_fimg(<fimg>)

Doc: Prints <fimg>. Normaly it is invoked by the
Doc: read-eval-print loop.

SEE: prin

Example: print_fimg(a[1..10,5..10]);

**awksto p*/

L_Ptr print_fimg(fimg)
L_Ptr fimg;
{

if {CHK_LIVETYPE(Sfimg,fimg))
error_signal(Sprint_fimg,SWrongTypeArg,NIL,NIL);

print_ftwo_D((ftwo_Dptr)XLARGE(fimg));
return fimg;

28

The functionprint_fimg is optional. If we do not define it the functipnn that is called to
print the result of an operation is going to print something by default which might not always be
useful. Ifwe define it then functioprin is going to look for it and use it.

The function by itself is very simple: Mac@HK_LIVETYPEtells if the type is correct and not
already freed (the user can free an instance of a type sinfreehémg is available to him)
and then calls a function that does the printing. As all functions relaf@thto, it has to return
its argument.

/*aw kvarstart**

Name: fimgTypenum
Doc: Type symbol. The type of an image of floats.
Value: create_C_type(SfimgTypenum,"print_fimg","free_fimg");

**awkvarsto p*/

And in order to inform the world that a new data structure was born we use the good old awk
headers. The conventions are simple. The name has theTsyfenum. The Doc line contains

the stringType symbol to make it easy to search with apropos. The Value part is just a call to
create_C type , with the symbol of the type a firstgament, an optional name (C string) of

the function that can print the data type as a secapdreent and the name of the function that
frees it as the third. The routiceeate C_type() does all the work (which would be pretty
complicated otherwise) like putting the appropriate things in the hash table, initializing the prop-
erty lists of the appropriate symbols and allocating new integer to represent thgpawm.

5. Linking

Most of the details of linking are taken care of by diegen . There is one more though
that dlopen cannot do. When we catllopen the following things happen. The dynamic
linker is called and all the variables in the module that are undefined are linked to the core inter
preter Then the functiomnit that should be present in every module is called and inserts in the
hash table of the interpreter the names of the functions that are available in the module. What is
still needed is to link the function symbols in the new module to functions in other modules
which should be already loaded. In other words take care of the interdependence of the modules.
This is a dificult job to do for every module so there is a simple tool for that: yet another header!
If you use emacs then the sequenmda-m will create an empty header for you to fiAs an
example les e how other modules would use the modimageBasics
/*awkl m po rtstart***
Module: image.so
Symbol: CannotReadimg
Symbol: CannotWritelmg
Symbol: IncopatibleSizes
Symbol: NonConfRange
Symbol: NonPosSize

29

Symbol: fimgTypenum
Symbol: fmatTypenum
Symbol: fsclnTypenum
etc...

Function: free_fimg
Function: free_fmat
Function: free_fscln
Function: free_ftmpl
Function: free_ftmpl2
Function: free_fvec
etc..

kkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkhkkhkkhkkkkkkkkkkkk aWkl m po rtsto p*/

The first line is the module that these functions or symbols come ffbmname is the name of

the shared object that contains the module. If it is not already there it is lihkedest are the

names of the symbols and functions that the new module needs to get from the ImageBasics.
These functions can be used then anywhere in the new module and have to be defined only once.
All the details like C declarations etc are taken care of.

30

MediaMath

An Interactive System for
Image and Audio Analysis

C modules: Reference manual

31

Part 3.

C modules: Reference manual

1. General

The MediaMath interpreter is structured like a Lisp interpréeery data structure has a
header of typainion L_Header . Any argument to any function and any value any function
returns is a pointer tb Header which istypedef ed toL_Ptr . Any function is thus defined
to returnL_Ptr and all the arguments to functions are of typdtr . Any object that is
defined ad._Ptr we call tagged object and it is actually just a pointer.

All the typechecking is done as a result in run time. Facilities are provided to check the type
of an object, extract the actual value of an object and to create an object with a header out of a
conventional C type.

2. Lisptypes

There are two major kinds of types. The lisp types and the C types. The lisp types contain
only other tagged objects. TREONSype for instance contains a pointer to the first element of a
list and the rest of the list. For all these types we provide macros and functions for typechecking,
accessing (and modifying) and creation.

A lisp type can be thought of as an array of tagged int XREGLEN(t_obj)

objects. Thdength of this array can be extracted with the L_Ptr t_obj;
macro XREGLEN(t_obj) where t obj is any lisp
object.

The Lisp types are:
SPECIALTYPE REGULARTYPE CONS
SYMBOL NULLTYPE SELECTTYPE
DEFAULTTYPE KEYTYPE RANGETYPE

All the above types are intended for advanced MediaMath programming and can be ignored by
the casual module writtefhe recommended method of manipulating these structures is with the
high level routines that are provided, which are also documented and accessible within the
MediaMath interpreter.

SPECIALTYPE

Description:
The type ofstruct . Should not be normally used by C functions.

Typechecking:

32

SPECIALP(t_obj,sz) : cpp macro that returns 1 if int SPECIALP(t_obj,s2)
t _obj isSPECIALTYPEand has lengtsz, O ather- L_Ptrt_obj;

wise. Ifsz is zero does not check for size. int s2;

Access:
XPTR(t_obj+n) : cpp macro that returns the" L_Ptr XPTR(t_obj+n)
field oft_obj . The fields are numbered starting from :-n_tFr:t_r t_obj;

2. It is better to ussref to do the same thing. The L_Ptr sref(curr_tnum,strct,indx)

typenum of thet obj is XPTR(t_obj+1) . When L Ptr curr_tnum, strct, indx:
the macro appears on the left side of an assignment__Ptr sset(curr_tnum,strct,indx,obj)
statement it will modify the contents bfobj . Again L_Ptr curr_tnum, strct, indx, obj;
it is better to useset .

Creation:
mk_typenum_struct(num,sz) . It creates a L_Ptrmk_typenum_struct(num,sz)

structure withtypenumnum and sizesz . L_Ptr num, sz;

REGULARTYPE

Description:
The type of an array of lisp pointers. Every pointer can point tdfexelit kind of element.
It can be used to hold a sequence of images or a set of templates, etc.

Typechecking:
REGULARP(t_obj,sz) :cpp macro that returns 1 if int REGULARP(t_obj,sz)
t_obj isREGULARTYPENd has lengtisz, 0 ather- L_Ptr t_obj;
wise. Ifsz is zero does not check for size. ntsz;

Access:
XPTR(t_obj+n) : cpp macro that returns tm" ele- L_Ptr XPTR(t_obj+n)
ment oft_obj . The elements are numbered starting :-n—t':t_r t_obj;

from 1. It is better tousearef to do the same thing.
When the macro appears on the left side of an assign-
ment statement it will modify the contentstobbj

It is better to usaset .

aset(array, intgr, elm) . Set theintgr th L_Ptr aset(arr,indx,elm)
element of lis@rray toelm and returrelm. L_Ptrarr, indx, elm;

aref(arr,indx) : Access theindx element of L_Ptr aref(arr,indx)
arr L_Ptr arr, indx;
Creation:

33

make_array(len,elm) . Returns a new array L_Ptrmake_array(len,elm)
1..len every element of which contaiesm . L_Ptrlen, elm;

CONS

Description:
The type of a list. The name comes from lisp. Lists are overloaded with uses. The carry the
multiple arguments for arguments declaggdst , they are the internal representation for
MediaMath programs (in a Lisp style), as well as ordinary lists for general programming.
There is an extensive list processing library to manipulate them.

Typechecking:
CONSP(t_obj) returns non-zero ift obj is a int CONSP(t_obj)
cons cell zero otherwise. WhilBlIL is the empty list L_Ptrt_obj;
CONSP(NIL) will return zero for that.

Access:
XPTR(t_obj+1) returns thecar of the list (eg. the L_Ptr XPTR(t_obj+n)

first element) L_Ptrt_obj;

XPTR(t_obj+2) returns thecdr of the list (eg. the ntn;

rest of the list). Both of the can appear in the left side

of an assignment statement to set ta@ and the

cdr of acons cell.

The recommended way to access them is using

car(l) and cdr(l) and to modify them

rplaca(l,elm) andrplacd(l,tl)

car(cell) and cdr(cell) : Return the first and L_Ptrcdr(cell)

second element of corsll . If cell is viewed as a L_Ptr cell

. . . . L_Ptr car(cell)

list the meaning is that they return the first element L Ptr cell

and the rest of the list. B

rplaca(l,elm) and rplacd(l,tl) ; L_Ptr rplaca(lst,newel)

rplaca(l,elm) replaces the car of liswith elm. L_Ptr Ist,newel;
. . L_Ptr rplacd(Ist,newel)

rplacd(l,tl) replaces the cdr of list witth . L_Ptr Ist.newel:

Creation:
cons(a,b) creates @ons cell witha andb as ele- L_Ptr cons(a,b)
ments. L_Ptra, b;

34

LIST2(el1,el2)..LIST6(ell..el6) : Asim- L_Ptr LIST2(ell,el2)
ple and convenient way to create lists up to length 6. L_Ptrell, el2;

SYMBOL

Description:
The type of a symbol. Symbols serve as variables, place holders, function names etc. They
are structures that contain four fields: name, value, property list and next. They can be in a
hash table in which case they are caliete(n ed and outside a hash table in which case
they are called untern ed. The next field serves only for the external chaining of the
hash table and works better if left alone.

Typechecking:
SYMBOLP(t_obj) : returns non-zero if obj is a L_Ptr SYMBOLP(t_obyj)
symbol, zero otherwise. WhilblIL is considered a L_Ptrt_obj;
symbolSYMBOLP(NIL) returns zero.

Access:
XPTR(t_obj+pos) : returns the name, value, prop- L_Ptr XPTR(t_obj+pos)
erty list, or next whenpos is NAME_POSTN L_Ptrt_obj;
VALU POSTN PLIST POSTN NEXT_POSTN nt pos;
XPTR(t_obj+pos) can appear on the left side of
an assignment statement.

Creation:
intern(str,NIL) : Returns an interned symbol L_Ptrintern(name,tblist)

with namestr . The second gument has to bNIL L_Ptr name, thllst

for future versions that will support multiple hash
tables. If the symbol does not already exist it is cre-
ated and the initial value for the value fieldJSIDEF
(undefined), for the property liMIL and the next
field is used by the hash table. If there is a symbol
with this name in the hash table it is simply returned.

intern_soft(str,NIL) : Same as L_Ptr intern_soft(str,tbllst)

intern(str,NIL) but if the symbol does not L_Ptr str, thlist;

exist, it is not created.

make_symbol(str) : Just creates a symbol with L_Ptrmake_symbol(str)
L_Ptr str;

the namestr without interning it. This means that if
we call this function twice with the samegaments
we get two different symbols, wheremasern will
return the same symbol. Also note that if we loose
track of an umtern ed symbol we cannot find it
again. This function is used only for advanced pro-
gramming using macros.

35

NULLTYPE

Description:
The type of NIL. Cannot be accessed, cannot be modified, it is created only once during the
initialization of a session. It should be seen as simil&UaL of standard C programming.

Typechecking:
NULLP(t_obj) :returns non-zero if obj isNIL, int NULLP(t_obj)
zero otherwise. L_Ptrt_obj;
SELECTTYPE
Description:

The type of a selection. Selection is the object that represents a generic function. It is an
array that contains either selections or functionslar. For instance if the generic function
dispatches on the two first arguments then it is an array of selections which in turn are
arrays of functions. Every selection array can have a mix of selections, functiiisyr

to dispatch on one or moregaments. ANIL means that there is no function defined for

this combination of argument types if tiBEFAULTTYPEentry is alsoNIL . If the
DEFAULTTYPEentry is notNIL then this is the function that corresponds to the combina-
tion of argument types.

Typechecking:
SELECTP(t_obj,sz) : Returns non-zero if obj int SELECTP(t_obj,sz)
is a selection of sizez . If sz is zero there is no size L_Ptr t_obj;
checking. int sz,
selectp(t_obj) : returns nomNIL if t obj is a L_Ptr selectp(t_obj)
L_Ptrt obj;

selection. Thigs the recommended way to typecheck.

Access:
XPTR(t_obj+typenum) : Returns the selection for L_Ptr XPTR(t_obj+typenum)

type typenum . Typenum is an integer that repre- L_Ptrt_obj;

sents the corresponding type. It cannot be eifE- it typenum;
CIALTYPE or LARGEsince both are not single types

but whole classes of types.

get_selection(t_obj,Ist) st is a list of L_Ptr get_selection(t_obj,Ist_n)
integers (i1, i2, ...) representingtypenums and L_Ptrt_obj, Ist_n;

t obj is a selection.Get_selection retrieves

the i1 element oft_obj , then the id element of
that and so on until either the list is over or a non
selection object is found which is returned. This is the
recommended way to retrieve a selection.

Creation:

36

add_selection(smbl,Ist) . this function is L_Ptr add_selection(smbl,Ist)
called in response to generic definition. When L_Ptr smbl, Ist;
called from within the MediaMath it does not evaluate

its arguments, but if it is called from C behaves like an

ordinary function. It assigns the selection object to

smbl , but whensmbl already contains a selection

then this is updated. Embl contains a function this

function becomes the default, so whatever used to

work before for this function continues to work.

DEFAULTTYPE

Description:
There is no instance of this type. It merely exists so that selection functions fall back to this
when they find &IL .

KEYTYPE

Description:
The type of the structure that represents key-value pairs. It appears iguheear list of
functions that contain keys e.gwrite_eps_img(imgl, “face.eps”,
-dpi=2*res); . Itis a gructure that contains two fields: a symbol, in this cise, and
a value, in this case the structure that represents the piece d'tede.

Typechecking:

KEYP(t_obj) :returns non-zero if obj is a key. int KEYP(t_obj)

ACCEsS: L_Ptrt obj;
XPTR(t_obj+pos) : returns the symbol or the L_PtrXPTR(t_obj+pos)
value of the key Pos is eitherKEY NAME_POSTN h]_tPtgst__obJ:
or KEY_VALU_POSTNIt can appear on the left side Pos;
of an assignment statement.

KEY_SYMBOL(t_obj) andKEY_VALUE(t_obj) L_Ptr KEY_SYMI§OL(I_0bj)
return the symbol and the value of the kegbj L pr ;E\i)tr\;ﬂitl)jif(t obi)
They can appear on the left side of an assignment™— |~ obj :
statement. -

Creation:
key cons(smbl,t_obj) : returns a new cell with L_Ptr key_cons(smbl,t_obj)

smbl andt _obj as symbol and value. L_Ptr smbl, t_obj;

RANGETYPE

Description:
The type of the structure that represents a range. It appears iguheeat list of functions,
or array dereferencing, that contain ranges e.qpk ftmpl(-2..2,
[-1,2,-3,2,-1]); . Itis a gructure that contains two numbers in this c&send?2.

37

Typechecking:

RANGEP(t_obj) : returns non-zero if obj is a int RANGEP(t_obyj)

range. L_Ptr t_obj;
Access:

XPTR(t_obj+pos) :returns the from and to part of L_Ptr XPTR(t_obj+pos)

the range.Pos is either RANGE_INT1_POSTNor iLn—tF;‘;St_—ObJ?

RANGE_INT2_POSTNIt can appear on the left side
of an assignment statement.

RANGE_INT1(t_obj) and L_Ptr RANGE_INTL(t_obj)
RANGE_INT2(t_obj) return the from and to num- o ;KEEE—OIZJ;TN b
bers of the range. They can appear on the left side ofL— L_Ptrt obj (t_obp
an assignment statement. - T
Creation:
range_cons(intl,int2) . returns a new cell L_Ptrrange_cons(intl,int2)
with intl andint2 for from and to part of the L_Ptrintl, int2;
range.
3. Cobjects

C objects contain a tag and a regular C type like intetpeat, string (pointer ttNULL ter-
minated string), image or file pointe€ objects are again of two main types: small andgdar
Smaller or equal in size to a pointer is small and all else is large. Small ones are stored after the
header and lge ones are stored somewhere else and the pointer to this else is stored after the
headerThe lage types are not defined in compilation type but in load time (e.g. when Media-
Math is started or when a new module is loaded) so new large types can be defined dynamically
The extraC_info field has various uses: function types, macro types etc use it to store the min-
imum number of arguments. Large types use it to store the typenum, an index to an array of sym-
bols that have all the needed info in their property lists. Every type has such a typenum.

typedef union L_Header *L_Ptr;

typedef union L_Header
{
struct

{
unsigned int mrkbit:1; /* GC marker bit */
unsigned int usrmrkbit:1; /* Why not give one to the luser */
unsigned int C_info:22; /* Info about C_types (typenum) */

unsigned int type:8; /*One of C_TYPE or L_TYPE *
/* Always UNEVALED is on */
[* The six first bits describe ~ */
/* the C data type */
} C;
} L _Header;

38

3.1. Typechecking, Accessing and Creating

For every C data type understood by MediaMath there is an acdgpsehecker and a

creator The first two are macros the later are functions.

Type
UNINT

INT
FLOAT
UNCHAR
CHAR
STRNG

LARGE

FUNCTION

VFUNCTION

SPECIALFRM

VSPECIALFRM

MACRO

VMACRO

Typecheck Accesser
UNINTEGERP XUNINT
INTEGERP XINT
FLOATP XFLOAT

UNCHARP XUNCHAR

CHARP XCHAR

STRNGP XSTRNG

LARGEP XLARGE

FUNCTIONP XFUNCTION

VFUNCTIONP XFUNCTION

SPECIALFRMP XSPECIALFRM

VSPECIALFRMP XSPECIALFRM

MACROP XMACRO

VMACROP XMACRO

Each one of the above types has the following use:

Type

UNINT

INT

FLOAT
UNCHAR
CHAR
STRNG
LARGE
FUNCTION
VFUNCTION
SPECIALFRM

Comment

unsigned integer

signed integer

float

unsigned character

signed character

NULL terminated string
anything larger than a pointer
Function with fixed number of args
Function with varying args
Special fixed

39

Creator
C_2_L_uninteger(uninteger)

unsigned int uninteger;

C_2 L _integer(integer)

int integer;

C_2_L_float(fl

float fl;

C_2_ L _unchar(unch)
unsigned char unch;

C_2 L char(ch)
char ch;

C_2_ L_string(str)
char *str;

C_2 L large(C_obj,typenum)
L_Ptr C_obj;
int typenum;

C_2_L_function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

C_2 L _function(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

C_2 L _specialfrm(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

C_2 L _specialfrm(fun,minarg,maxarg)

L_Ptr (*fun)();
int minarg, maxarg;

C_2 L _macro(fun,minarg,maxarg)
L_Ptr (*fun)();
int minarg, maxarg;

C_2_L_macro(fun,minarg,maxarg)

L_Ptr (*fun)();
int minarg, maxarg;

Casted to
unsigned int
int

float
unsigned char
char

char *

void *
(L_Ptr ()0)
(L_Ptr ()0)
(L_Ptr ()0)

VSPECIALFRM Special varying (L_Ptr ()
MACRO Macro fixed (L_Ptr ()0)
VMACRO Macro varying (L_Ptr (0)

All the above types are very uniform in how they are accessed, typechecked and created.
The only exception is theARGEtype that is not really a type but a class of types. All the type-
checking macros accept one argument and return non zero ifjtiveeart is of the correspond-
ing type. The accesser macros accept gignaent a Lisp object and return the corresponding C
object. The creator functions accept as argument a C type and return a lisp type.

The lage types use the accesser and creator with a type cast (it is not necessary to use casts
but it makes it more portable). The above mentidn@BRGEPwill return non zero if the gu-
ment is a lage type, but we hardly ever need that, because an image and a vector arg@éoth lar
andXLARGHloes not distinguish them.

CHK_LIVETYPE(tname,t_obj) which returns non-nil int CHK_LIVETYPE(tname,t_obj)
if the type oft_obj istname (tname does not end with Etylfe”a”:)ef tname;
Typenum; this is appended by the macro_) qu itis not as ;, CHK_—T:(rPtE(()mJéme’t_obj)
yet deallocated. If we want to check only if it is of the-cor <typename> tname:

rect type we doCHK_TYPE(thame,t_ obj)) . We @n L_Ptrt_obj;

check if it is still usable witiALIVE(t_obj) that returns int ALIVE(t_obj) -

zero ift_obj is deallocated. L_Ptrt_obj;

The typenum of a lge object can be extracted with int XLARGE_TYPENUM(t_obj)
XLARGE_TYPENUM(t_obj). The recommended way L-Pwrtob; .
though is to useint_get typenum(t_obj) that mt'm[gﬁ,tt??/ %i?;um(t—om)

returns thetypenum of t obj no matter if it is lage,
integer or structure.

3.2. Converting
There are functions that convert between various kinds of numerical types. These are:

L_Ptr to_integer(num)
L_Ptr num;

L_Ptr to_uninteger(num)
L_Ptr num;

L_Ptr to_float(hum)
L_Ptr num;

L_Ptr to_char(num)
L_Ptr num;

L_Ptr to_unchar(num)
L_Ptr num;

All these functions accept onggament and return a tagged object of type intagesigned inte-
ger, float, character and unsigned character respectiMedy will convert anything they can and
issue an error if they cannot.

Quite often these functions are the preferred way to typecheck a fusciigninents,
because with one statement we can typecheck and convert and do it consistently.

40

4. Imagesand matrices

The image and matrix data types are defined ifithege.so” module. They are 18 dif-
ferent types. They can be classified in many different ways: According to dimensionality there
are one (the first three columns below) or two dimensional (the last three columns).

fvec fscin ftmpl fmat fimg ftmpl2
ivec iscln itmpl imat iimg itmpl2
ucvec ucscin uctmpl ucmat ucimg uctmpl2

According to the underlying data type: floating (first line above), integer (second line) and
unsigned character (third line). And according to functionality: matrix-vector for linear algebra
operations, image-scanline for image operations and 1d template - 2d template for convolutions.

There are a few conventions about these types. The two dimensional types have the vertical
dimension and the horizontal dimension. So anything that relates to one of the two dimensions of
the data structure has either ar anh in front of it as invmax or hconvol_fimg_ftmpl

Another convention is that an image or a scanline ofSiefrom O toN -1 asin C, lnt a
matrix or vector of sizé\ is from 1 toN. And a template is from anything to anything.

All of the above data types are tagged objects of type large. That is they contain a pointer to
a monventional C data structure that holds the image or the va@tiere are six such data struc-
tures pointed to by pointers of type:

fone_Dptr used by: fvec fscln ftmpl

ione_Dptr used by: ivec iscln itmpl

ucone_Dptr used by: ucvec ucscin uctmpl
ftwo_Dptr used by: fmat fimg ftmpl2

itwo_Dptr used by: imat iimg itmpl2

uctwo_Dptr used by: ucmat ucimg uctmpl2

We have three different tagged objects sharing the same C structure so that operations like multi-
plication can work differently on matrices and images.

The C structures that hold the floating point image or matrix data are:

typedef struct fone_D *fone_Dptr;
typedef struct ftwo_D *ftwo_Dptr;

typedef struct fone_D

{
int vmin, vmax; /* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
float *fdata; [* pointer to vmin positions */
/* before the beginning of the */
[* array */
} f one D;

typedef struct ftwo_D
{

int vmin, vmax;
int hmin, hmax; [* the upper left and lower right */

41

/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/

float **fdata; /* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */
} f two_D;

The reason that the pointers pomtin or hmin positions before the actual data is te cir
cumvental0]..a[n-1] convention of C. So if pointeat pointsvmin positions before the
actual first element of an array thaivmin] will be the first element of the artaghis way we
can have arrayg[vmin]..a[vmax] for arbitraryvmin andvmax and the index of the first
element of a vector or a template can be different than zero. This technique might not be
portable to architectures that use paged segmented mdmoayse ANSI C does not require it.

The rows in the 2D structure are allocated all at once from a contiguous space. If one wants
to visit the whole matrix/image can start fré&a[vmin][hmin] and increment until the end
of the whole matrix.

The type definition for unsigned character structures and integer structures is similar.

typedef struct ucone_D *ucone_Dptr;
typedef struct uctwo_D *uctwo_Dptr;

typedef struct ucone_D

{
int vmin, vmax; [* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
unsigned char *ucdata; /* pointer to vmin positions */
/* before the beginning of the */
[* array */
} ucone_D;

typedef struct uctwo_D

{
int vmin, vmax;
int hmin, hmax; [* the upper left and lower right */
/* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/
unsigned char **ucdata; [* a pointer that points vmin */
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */
} uctwo D;

typedef struct ione_D *ione_Dptr;
typedef struct itwo_D *itwo_Dptr;

42

typedef struct ione_D

{
int vmin, vmax; [* the vector is a[vmin]..a[vmax] */
/* so it has length vmax-vmin+1 */
int *idata; [* pointer to vmin positions */
/* before the beginning of the *
[* array *
} i one_D;
typedef struct itwo_D
{
int vmin, vmax;
int hmin, hmax; * the upper left and lower right */
[* corners of the 2-D vector are */
/* a[vmin][hmin] and a[vmax][hmax]*/
int **idata; /* a pointer that points vmin *
/* positions before the beginning */
/* of the array of pointers that */
/* point hmin positions before the*/
/* beginning of every row. */
} i two_D;

4.1. Accessinghe first and the last

There are a few macros that return the address of the first and the last element or pixel of a
matrix or image.

unsigned char *UC2DFIRST(twoD)
uctwo_Dptr twoD;

unsigned char *UC2DLAST (twoD)
uctwo_Dptr twoD;

int *I2DFIRST(twoD)
itwo_Dptr twoD;

int *I2DLAST(twoD)
itwo_Dptr twoD;

float *F2DFIRST(twoD)
ftwo_Dptr twoD;

float *F2DLAST (twoD)
ftwo_Dptr twoD;

unsigned char *UC1DFIRST(oneD)
ucone_Dptr oneD;

unsigned char *UC1DLAST(oneD)
ucone_Dptr oneD;

int *ILDFIRST(oneD)
ione_Dptr oneD;

int *I.DLAST(oneD)
ione_Dptr oneD;

float *F1DFIRST(oneD)
fone_Dptr oneD;

float *F1IDLAST(oneD)
fone_Dptr oneD;

43

The argument has to be a pointer to the C structure, not a tagged object.

4.2. Converting
Most types can be converted from one to the offiex functions that do that are:

to_fvec to_fscln to_ftmpl

to_fmat to_fimg to_ftmpl2

to_ivec to_iscln to_itmpl

to_imat to_iimg to_itmpl2

to_ucvec to_ucscln to_uctmpl

to_ucmat to_ucimg to_uctmpl2

These turn to the corresponding type whatever can bel_Ptrto_fvec(t_obj)

turned. All of them accept asgament a tagged type, and L_Ptr t_obj;
L_Ptr to_fscIn(t_obj)

return another tagged type. L_Ptrt_obj;

4.3. Creating and destroying

etc...

There are functions to create and destroy images and matrices.

mksimple_fmat(vdim,hdim) . Allocates an matrix
with vdim rows anchdim columns.

mksimple_fimg(vdim,hdim) . Allocates an image
with vdim rows anchdim columns.

mksimple_ftmpl2(vmin,vmax,hmin,hmax)
Allocates an 2D template frommin to vmax and hmin
to hmax.

mksimple_fvec(vdim) . Allocates a vector of floats

with vdim elements.
mksimple_ftmpl(vmin,vmax)
of floats fromvmin to vmax.

. Allocates atemplate

mksimple_fscin(vdim) Allocates a scanline of

floats withvdim elements.

The functions above, are for floating point. There is a set for unsigned characters and one for

integers. Just replace thewith uc ori .

L_Ptr mksimple_fmat(vdim,hdim)
L_Ptr vdim, hdim;

L_Ptr mksimple_fimg(vdim,hdim)
L_Ptr vdim, hdim;

L_Ptr mksimple_ftmpl2(vmin,vmax,
hmin,hmax)
L_Ptr vmin,vmax,hmin,hmax;

L_Ptr mksimple_fvec(vdim)
L_Ptr vdim;

L_Ptr mksimple_ftmpl(vmin,vmax)
L_Ptr vmin,vmax;

L_Ptr mksimple_fscIn(vdim)
L_Ptr vdim;

There is a set of routines to deallocate images, matrices etc, and can be called explicitly

Normaly these are called by the garbage collector.

free_fvec free_fscln free_ftmpl
free_fmat free_fimg free_ftmpl2
free_ivec free_iscln free_itmpl
free_imat free_iimg free_itmpl2
free_ucvec free_ucscin free_uctmpl
free_ucmat free_ucimg free_uctmpl2

44

All of them accept as argument the tagged object we want to discard and\iéturll parts of
the abject that were obtained wihalloc() are freed and the object is marked so that the
macroALIVE returns 0.

The casual writer of C modules will use a fraction only of the above macros and functions.
It is better if we see their use with a few examples.

5. Examples

5.1. Thresholding an image

We @an study how to accept arguments, create arrays that return the result etc. by having a
look atthresh_fimg . Like any function that is accessible from MediaMath, it has a header
that can be created on emacs by typgT A-x. This will create a header that we can fill up.

It is a good practice to separate the driver function from the actual function that does the
work. thresh_fimg is just the driver function and does all the error checking and data type
manipulation.

[rawkstart**rrrrrttiiiookokokokootkkoookokokoekkokokokooook
Name: thresh_fimg
MinArgs: 2
MaxArgs: 2
Type: function
Synopsis: thresh_fimg(,<number>)
Doc: Threshold an image of floats.
Doc: Returns an image of unsigned characters of the same size as
Doc: that is 1 where exceeds <number> and 0 everywhere else.
Doc: All operations are in float.
SEE: max_fimg, min_fimg
Example: thresh_fimg(img1,10);
Fikkkkkkkkeke k- awk stop*/

L_Ptr thresh_fimg(img,Inum)
L_Ptr img,Inum;
{

L_Ptrres;
int vd, hd;
ftwo_Dptr fimg;
float num;

img = to_fimg(img);
Inum = to_float(Inum);

num = XFLOAT (Inum);
fimg = (ftwo_Dptr)XLARGE(img);

vd = fimg->vmax-fimg->vmin+1;
hd = fimg->hmax-fimg->hmin+1;
res = mksimple_ucimg(C_2_L_integer(vd),C_2 L integer(hd));

ftwo_D_thresh(fimg, num, (uctwo_Dptr) XLARGE(res));

45

return res;

}

Every well behaved function that is callable from MediaMath should typecheckutmants. If

any argument is not among the kinds we expect then we issue anTkamwe convert every
argument to the most convenient type. If we want for instance a numdean accept an inte-

ger, a float, an unsigned character etc, and then we convert to the type we really want: a float. T
make life easier we just calh_float to convert it to float (if it cannot be converted then func-
tionto_float will issue an error). The same goes for imagEsis explains the first two exe-
cutable lines.

If all went well then we extract the contents of these two objdé&nembereverything
that is declaredl_Ptr is a whole data structure that contains tags etc. If the tag says there is an
integer inside or an image we have to get it owd.cih use the accesser macros to do that. The
XLARGEmMacro requires casting because it can be used for many types including images, matri-
ces and vectors. And that is what the next two lines do.

The next three lines create the image that will store the result. They extract the dimensions
of the image (notice that although we know that for an infiagg->vmin is zero, we still do
the subtraction to avoid having to rewrite it if the definition of an image ever becomes more gen-
eral) and then calinksimple_ucimg . This is a function that can be called from the Media-
Math interpreter also so needs tagged objects as arguments.

After we do all these we pass the proper arguments to a conventional C routine that knows
nothing about MediaMath tags and headers. d80b provide the space to it to store the result
(again usingKLARGE. Andthen we return the result.

The functionftwo D thresh does the actual work. It has minimum interference with
the rest of MediaMath and can be used in other programs.dadityes not do any error check-
ing other than things that cannot be checked out by the driver function above (in this case there is
nothing that cannot be checked by the calling function.

int ftwo_D_thresh(fimg,num,res)
ftwo_Dptr fimg;
uctwo_Dptr res;
float num;

int vmin, vmax, hmin, hmax;
intij;

float *ff;

unsigned char *fr;

vmin = fimg->vmin;
vmax = fimg->vmax;
hmin = fimg->hmin;
hmax = fimg->hmax;

ff = F2DFIRST(fimg);
fr = UC2DFIRST(res);

for (i=vmin; i<=vmax; i++)

46

for (j=hmin; j<=hmax; j++)
{
if (num > *(ff++)) *(fr++) = 0;
else *(fr++) = 1;

}

return O;

}

The first thing the function does is retrieve the sizes of the image. The first 4 statements do just
this. The next two get the address of the first pixel of both the source image and the resulting
image. Both of them have the same number of pixels (the driver function made sure of that). This
is what the two next statements do. The next set of statements is the dolhdp fibrat does

the job. It simply scans the two images at the same time.

The macro$2DFIRST andUC2DFIRSTreturn the address of the first pixel. It is guaran-
teed that the rows of an image occupy consecutive places in mesadoy simple operations
we can just scan from the top left to the bottom right image continuously.

5.2. Normof an image

Another example is theorm_fimg function. It accepts as argument an image and returns
a floating point number.

[rawkstart**rrrrrttiiiookokokokototioookokokoooekokoookokooook
Name: norm_fimg

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: norm_fimg(<fimg>)

Doc: Returns the Frobenious norm of <fimg>.

SEE: gnorm

Example: gnorm(mk_fimg(2,3,[[1,2,3],[4,5,6]]));

Fikkkkkkkkkoke k- awk stop*/

L_Ptr norm_fimg(fimg)
L_Ptr fimg;
{

if \CHK_LIVETYPE(Sfimg,fimg))
error_signal(Snorm_fimg,SWrongTypeArg,NIL,fimg);

return C_2 L float(ftwo_D_norm((ftwo_Dptr)XLARGE(fimg)));
}

The driver of this function is much simpler because we need not allocate any image or other
structure. The function only checks if the argument is an image of floating point numbers and it
is alive (not deallocated). It then caftsvo D _norm to do the work which returns a float
which is passed t6_2 L float to put a tag on it. That'it.

Functionftwo_D_norm is no more difficult. It accepts asgament a two dimensional
function and returns a float (the argument in this functionas because it is also used for the
matrix norm (Frobenious)).

47

float ftwo_D_norm(mat)
ftwo_Dptr mat;
{ . ..
int ij;
int imin, imax, jmin, jmax;
register float *ff1, temp, res;

imin = mat->vmin;

imax = mat->vmax;

jmin = mat->hmin;

jmax = mat->hmax;

ffl = F2DFIRST(mat);

res = 0;
for (i=imin; i<=imax; i++)
for (j=jmin; j<=jmax; j++)

{
temp = *(ff1++);
res += temp*temp;
}
return sqrt(res);

}

The function retrieves the bounds of the array and the address of the first element and the scans
the whole array accumulating the result in the variabte. It then returns the square root of
res .

5.3. Transpose a matrix

The transpose routine is a bit tricky because the transpose of a matrix might be a vector
when the matrix has one row and many columns.

/*aWkstart**

Name: transp_fmat

MinArgs: 1

MaxArgs: 1

Type: function

Synopsis: transp_fmat(<fmat>)

Doc: Returns the transpose of a matrix.
SEE: gtranspose

Example: mk_fmat(2,2,[[1,2],[3,4]])°T;

**awksto p*/

L_Ptr transp_fmat(fmat)
L_Ptr fmat;

{
ftwo_Dptr mat;
L_Ptrres;
int vd, hd;

if \CHK_LIVETYPE(Sfmat,fmat))
error_signal(Stransp_fmat,SWrongTypeArg,NIL,fmat);

48

mat = (ftwo_Dptr)XLARGE(fmat);

vd = mat->vmax-mat->vmin+1;
hd = mat->hmax-mat->hmin+1;
if (vd==1)
{
res = mksimple_fvec(C_2_L_integer(hd));
ftwo_D_transposel(mat,(fone_Dptr)XLARGE(res));
}

else

{
res = mksimple_fmat(C_2_ L _integer(hd),C_2 L _integer(vd));
ftwo_D_transpose(mat,(ftwo_Dptr) XLARGE(res));

}

return res;

}

After we check if the type is what we expect, we extract the pointer to the C structure and we get
the size of the matrix. & dheck the number of rows to decide which version of
ftwo_D_transpose we call. The allocation is done inside the because we need to allocate
different structures in each case.

The other interesting thing abawansp_fmat is thatftwo_D_transpose scans the
array in two different ways: by incrementing the pointer starting from the beginning of the array
and by explicit array references.

int ftwo_D_transpose(mat,res)
ftwo_Dptr mat, res;
{ . ..
int ij;
int imin,jmin,imax,jmax;
float *ff1, **fr;

imin = mat->vmin;
imax = mat->vmax;
jmin = mat->hmin;
jmax = mat->hmax;

ffl = F2DFIRST(mat);
fr = res->fdata;

for (i=imin; i<=imax; i++)
for (j=jmin; j<=jmax; j++)
fr{i][i] = *(ff1++);
return O;

}

One of the two vectors has to be scanned column by column, so we have to use array referencing
for at least one of them.

49

Table of Contents

Part 1

Introduction to MediaMath programming language

1 A Gentle INTrOAUCTION.......ooe ettt e e e e e e e e e e eeeeennees 2
1.1 ASIMPIE EXAMPIE.. e 2
1.2 ANOhE®XamPIE ... 3.

2 Syntax of the [aNQUAGE.ooeiiiii e 4
21 0] (2515 [SR PPPPPPPPPRRPN 4
P I R O o= = (0] £ ST UPPPPTTRRTRPPRPN 4
P2 A O | o = = o T PSSP 5
2.2 ASSIGNMENEXPIESSIONS ..vveeeuiiiiieeeeeeeeeeeeeeeeettattt s ra e e e e e e e e e e e eeeeeeesssebban e e aaaaaeaaaas 9.

3 MISCEIIANEOUS ... e e et e et b b e e e e e e e e e e e eaes Q..

4 LiDrary fUNCHONS........ooeeee e e e e e 9
4.1 Imageand MALriX DFAIY....... .o 9
4.2 Creatingand destroying images and MatriCeS.........ccuuuuuuuvuumiiiiiiieeeee e eeeeeeeeeiienenens 10
4.3 Accessingmages and MALNCES.........coiiiiiiiiiiiiiiiiiaae e e e e e e e e e e e e e e e 10
4.4 Buildingimages and MatrCESiiiii e 1 1
4.5 (0] 01 V/0] (U110 o IS ST 12
4.6 ArithmetiCOPEIatIONScoiiiiiiiiiiiiiiiiar e e e e e e e e e e e teb s e e e e e e e e e e eeeeeeeeesannnes 12

5 1YV g T T o] = Y USRS 13
6 LiSt ProCeSSING lIDrary.....coo e e e e 13
Part 2

Run time linking of C modules

1 Overview Of the C MOAUIESccviiiiiiiiieeee e 16
2 WHItiNg @ SIMPIE FUNCHION........ooeeeee e 17
2.1 IMprovingour firSt MOAUIE............ueiiii e 19
3 Variable AQUMENES ...t s e e e e e e e e e e e e e eeeesenanans 20

3.1 Addinga few more fEAtUrES..........uuueeeiiiiii e e e e, 22
4 1 8L O UPPT 23..

4.1 (04 F= TS 1ST | {To%= 11 o] o TP 23
4.2 RUNIME rePreSENtAtiON.........iiiiiiiiiiiieiee et e e e e e e e e e e eeeeeeeeeaaaas 24
4.3 Keepingrack Of the tYPeS......ooo e eeeeeaeees 25
4.4 DefiNINGA NMBW C Iy P ittt r e e e e e e e e e e e e eeeeeneenes 26
4.4.1 Exampledefine floating iMage tyPeS........uuuiiiiiiiieee e 26

5 LINKING oo e e e e et b a e e e e e aeeeees 29.

Part 3

C modules: Reference manual

1 (€T T - | TP 32..

2] 0 I Y =TSSP 32
3 [0 o= X (=PRSS 38
3.1 Typechecking, Accessing and Creating........cccccueeeieeeeeeeiiiieieeeiiee e eeeeeeee 39
G ©1o] 0 |V = 5 1] o P UOPU 40
4 IMAQES AN MALIICES. ... oo i e et e et e e e e e e e e e e eaeeeeeeeeannens 41
4.1 Accessinghe first and the [aSh..........ccooviiiiiiiiiiiii e 43
N O] 0 1Y/=1] T TS 44
VG T @1 (Y= 1119 T - 1 To o (=15 0]/ o Vo PO 44
5 EXAMPIES .o aaaa 45..

5.1 ThresholdiN@N IMaQE.......uu i e e e e e aaeeeees 45
5.2 NOIMOT AN IMAGE.eeiiiiiiiei e e e e e e e aeaaees a7
R T [= 10 Y 0T LTI T 0 = L1 D U 48

