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Organizing Reusable Software Repositoriesthrough Heuristic ClusteringbyKhuzaima S. DaudjeeSubmitted to the Faculty of Graduate Studies onOctober 3, 1994, in partial ful�llment of therequirements for the degree ofMaster of ScienceAbstractAs software reuse becomes more prominent and accepted in industry, systems and tools forsoftware reuse become a key aspect in achieving successful reuse of software artifacts. Amajor problem with such tools is the classi�cation and retrieval of the software components.In order to search for and retrieve the conceptually closest software component from a soft-ware repository, components need to be classi�ed in some manner. We address this problemby proposing two heuristic clustering schemes to organize software repositories. We con-tend that our proposed schemes automatically organize repositories containing descriptionsof software components, and that this organization easily supports a retrieval method forthe software components to be reused. Our clustering schemes classify components thathave been represented using a knowledge representation-based language, and eliminate theneed for manual e�ort for classi�cation when the repository's contents are changed. Ourproposed methods are tested on a small, but realistic, software collection. The experimentsindicate that while both methods attain satisfactory performance with respect to the num-ber of retrieved components that are relevant, the second method presented in this thesisperforms very satisfactorily in terms of the measure of relevant components retrieved, andthe proportion of retrieved components that are relevant.Key Words: software reuse, software repositories, heuristic clustering,repository organization.Thesis Supervisor: Prof. Anestis A. Toptsis
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Chapter 1IntroductionIt is of growing importance for corporations to have e�ective reuse of software artifactsas they invest in developing and maintaining large software systems [29].Software reuse is the process of developing software for a new system by usingthe software from other systems, thereby lessening or even avoiding the need fordeveloping new software from scratch [12].It would be cost-e�ective, especially for large software R&D corporations, if soft-ware artifacts were to be reused. Recent studies estimate that a $30 dividend is paidfor a $1 invested on software reuse over a four-year period [2]. Although there havebeen several success stories for software reuse [5], [14], [11], [30], [29], there is a largenumber of technical, managerial, and legal issues to be resolved before software reusebecomes e�ective. The key technical issues are in the areas of domain analysis, classi-�cation of software components, interoperability of software repositories, adaptationof software components, reuse of system designs and architectures, and software met-rics that quantify eligibility for reuse [20]. Reportedly, no standards exist for any ofthese areas.It is almost always impossible to �nd an existing software component that willexactly meet some of the requirements of the new software system. However, it isquite possible to �nd a software component that meets, at least partially, some of thefunctionality required of the new system.In this case, there is always a need to modify the existing component so that itcan be reused in the system to be developed. Note that this could be any artifactfrom the software lifecycle. However, in order to �nd the closest component to meet1



the software developer's needs, one has to search for such a component, knowingwell that this could be an expensive and exhaustive search, especially if there arehundreds of components that are potential candidates to be reused. In large-scalereuse, this search for components can take a substantial amount of computing timeand resources. A key part of almost all software reuse systems is the repository -also called the library- which is used to store software artifacts in various forms (ordescriptions). This is where classi�cation of software components plays a key part.If software components are classi�ed (or organized) within the software repositoryin some manner, then this will greatly aid the reuser in searching and retrieving theconceptually closest component to the query.There have been a number of industrial projects to reuse code [11] [30] [29] andsome for reusing other products from the software lifecycle, such as design artifacts[5]. As long as a su�cient number of components are provided, a system can be builtthat, given a description of a component in some form, will search and retrieve \sim-ilar" components from the repository. By similar, we mean those components thatprovide, to varying extents, at least some of the functionalities of the desired softwarecomponent. Similarity in this context is measured using a model that provides fora uniform method of computing similarity (in quanti�able terms) between softwarecomponents.In this thesis, we propose two techniques for organizing a repository of softwarecomponents. We model the software reuse environment as set out in [10] [28] [7], wherethe librarian has the central task of constructing functional descriptions from incomingsoftware modules being delivered by application developers, as well as organizing thelibrary. The retrieval tool is available for use to all reusers. The librarian constructsfunctional descriptions using some o�-the-shelf knowledge representation language.The reuse environment model is shown in Fig. 1.1 below. The domain of the librarianis shown by the oval in Figure 1.1. This also outlines the librarian's basic tasks,especially in an environment where inter-company reuse is taking place. Note thatwhile the application developers interact with the librarian by delivering componentsas well as receiving software reuse related knowledge (e.g. number of domains forwhich reusable components exist), the retrieval tool is available to all reusers (systemsanalysts, application developers and other software engineering professionals).The organization of the repository is done automatically, and its structure istransparent to the prospective software reuser. Also, our scheme handles, by default,automatic and transparent repository reorganization in the event of insertion of newcomponents, and deletion or modi�cation of existing ones. The e�ectiveness of the2



Classification

Software

Repository
Tool

Retrieval

Tool

Components

Descriptions of

Functional

Reusers

Application Developers
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Chapter 2Related WorkA number of software repository organization methods have been reported. The meth-ods outlined below provide an overall coverage in terms of the di�erent approachesand techniques.2.1 The Faceted ApproachPrieto-Diaz proposed a classi�cation scheme that uses facets [23] (as in library sci-ence). This scheme uses synthesis (as opposed to breakdown) of basic classes anda group of these basic classes make up a facet. A set of functional speci�cations isprovided by the reuser, and the reuser then searches a library of available compo-nents to �nd candidates that satisfy the speci�cation. The software component beingsearched for is represented using a tuple of terms that represent each facet. In the caseof similar terms, these synonyms are grouped together and form part of the thesaurus.The thesaurus is used to control the keyword vocabulary. The faceted classi�cationscheme was considered to represent the model of a programmer's knowledge of soft-ware. Thus, it could also serve to be a good model for building user interfaces. Thefacets in [23] were implemented in a relational database system, comprising tablescontaining some test terms for each facet.An important part of the classi�cation scheme is the use of a conceptual graphwhich measures closeness between terms in any one facet. Since obtaining the concep-tually closest component is a matter of e�cient search and retrieval, the classi�cationof components is key to the retrieval problem. In a conceptual graph, all possibleterms that belong to a facet are interconnected using weighted edges. The weights4



are representative of how conceptually close (or far) is one term from another.The order of the facets is �xed; the order provides syntactic representations ofthe test components which take the place of sentential structures. The �xed order offacets in which the query has to be made for retrieval is a restriction to the scheme'sexibility. Also, assigning or selecting more than one term in each facet cannot bedone [22].Another disadvantage is that the construction of the conceptual graph is a highlytime-consuming process. The maintenance of such a graph as more terms or featuresare added can be cumbersome since it will demand a restructuring of the whole graph.2.2 The Natural Language ApproachMaarek et al [15] focus on building a library consisting of indices of objects that arecontained in it. An index in this context is a characterizing attribute, or pro�le, foreach object. Since it is important to include functionality information in indices,and this information is hard to obtain, their scheme relies on analyzing the naturallanguage documentation. This documentation comes in the form of Unix-like manpages, and thus, their method is dependent on documentation available in this form.Maarek et al are of the opinion that indexing units richer than the conventionalsingle term index can be used, and propose to use the notion of lexical a�nity derivedfrom linguistics. They de�ne lexical a�nity between two units of language as thecorrelation of the common appearance when uttering the units in the language.However, in contrast to Maarek et al's opinion, Salton [25] states that \ The avail-able options in phrase generation appear limited, and the introduction of costly andre�ned methodologies may bring only marginal improvements". The lexical a�nitiesare extracted by using a technique of passing a window over the text. The size ofthe window is decreased as it reaches the end of the sentence (so as not to cross it).After the lexical a�nities are extracted, the potential ones are stored such that theyare representative of the singular form for nouns, and the in�nitive form for verbs inthem. The �nal lexical a�nities are selected from the above list of extracted onesby the frequency of appearance -which the authors believe is an indication of theirrelevance. To reduce the possibility of having lexical a�nities that do not contain themost information, they evaluate the resolving power of a lexical a�nity, and basedupon this, evaluate the lexical a�nity. 5



For classifying the software, a Hierarchical Agglomerative Clustering (HAC) tech-nique is used. From the index built using the above method, an inverted �le index isobtained from a pro�le repository built during indexing. A pro�le in this case is theobject that represents the reusable object, while the pro�le is a set of characterizingattributes of the object. The HAC clustering method constructs hierarchies over aset of items whereby each internal node is a cluster of items, and the leaves are wherethe single items are kept. The HAC method builds levels of clusters iteratively. Theselevel clusterings also form coarser partitions iteratively. Thus, two steps are done iter-atively: identifying the two clusters that are most similar, and merging them togetherinto a single cluster. It is worth noting that by doing the above, [6] points out thathierarchical agglomerative clustering methods often end up doing chaining, whichwould merely be an ordering of components rather than grouping them according tofunctional similarity.2.3 CATALOGCATALOG [9] is a prototype software information system built at AT&T Bell Labs.Classi�cation and retrieval is done on a small number of components that form asystem built for interactive and reliability analysis. While the source code is notindexed, and is stored as a portion of records, the text of descriptions required forevery module is stored as individual records. Inverted lists of indexing terms containall single terms. The retrieval is done by supplying Boolean combinations of searchterms, and partial matching techniques such as phonetic matching.The drawbacks of this approach include the restriction on the user having to knowexactly the right terms to search for (as in the Unix online manual). Also, upon auser supplying valid search terms to match the indices, relevant information mightnot be retrieved because it could be represented with other index terms in the moduletext descriptions.The interface does not guide the user e�ciently in restricting retrieval on morecustomary terms. Furthermore, the experimentation does not cover e�ective ways ofrepresenting software, and is considered more of an ad hoc approach to reusability.6



2.4 CLISCLIS [4] employs a knowledge-based information retrieval (KBIR) model for its soft-ware reuse library system. The underlying function that this model in based on isgiven by the tuple <H, C, Q, M>, whereH: is the Hierarchical Concept Graph (HCG) representing the relationships betweenindex terms utilized for the representation of software components and queries.C: set of software components to be retrieved for reuse.Q: set of queries. A Query has to be a Boolean expression over the index terms.M: serves as the function that computes similarity between a query and a softwarecomponent.In CLIS, the relations between keywords make up the HCG. This is the knowledgebase containing `generalization' relations such as \part-of", \is-a", and \broader-than". The HCG is a directed acyclic graph in which a concept is a node. Thenode is used as an index term. The HCG is also used for computing the similaritydistance of the reuser's query to the software components. The similarity distanceis determined by the estimation of distance between two concepts. This distanceestimation is computed as the distance between two nodes (concepts) by consideringthe path length between the nodes. Weights are used on the edges of the HCG torepresent conceptual closeness between nodes connected by edges. The conceptualdistance is computed by summing up the weights on the edges when traversing theshortest path between any two nodes.Since CLIS employs the faceted classi�cation model, it su�ers from some of thesame problems as the faceted approach. These are: construction and maintenanceof the conceptual graph being extremely time-consuming; the need for the query tomatch the exact number of facets; the reuser is being required to know exactly whatitems to search for (as in CATALOG above).
7



2.5 The REUSE SystemREUSE (REUsing Software E�ciently) [1] was developed with the intention of as-sisting software engineers in cataloging and retrieving existing software information.The software components in REUSE are represented -according to the informationretrieval model- as documents made up of paragraphs, sentences and words.A chain of user menus is provided within the REUSE system. The system the-saurus has a dictionary of all the menu keywords and other words which can beconsidered important for the organization wanting to reuse software. The system ofmenus represents the required information associated with each component, and anyadditions or modi�cations to the components will require modi�cations to the menusystem (this can be onerous since extensive additions, for example, would requireextensive changes to the menu system).An enhanced version of the inverted index that includes additional word locationinformation is used. The stored word locations are used to make numeric comparisonsfor indentifying adjacent words.Structured information in software components comprises a speci�c keyword to-gether with a response �eld. These are necessary since the system has to request databased on this relationship, and the keyword-response relationship must be preserved.This enables search for words within a paragraph and also within a document.For the determination of whether a word is utilized in the response �eld of thespeci�c keyword, both of them must appear in the same paragraph of the samedocument. This is a certain drawback of the REUSE system, since some importantinformation not appearing contiguously would be missed. As the authors [1] pointout, since the component classi�cation list form the basis for the user menus, thenumber of component types can never be reduced. This a highly restrictive attributeof the REUSE system.2.6 AIRSAIRS (AI-based Reuse System) [21] was initially developed as a system to reuse Adapackages. However, it has, through enhancements, evolved into a general tool forreuse. 8



AIRS uses facets [23] together with a semantic network approach. The facets areused to ease the complex and extremely task-intensive process of creating a semanticnetwork. Frames in a hierarchical network contain information about the softwareobjects, their grouping, and the relationships between them. The frames system wasoriginally proposed by Charniak et at [3], and the one used in AIRS is a modi�cationof it.The model for similarity computation and classi�cation in AIRS is based on threetypes of software objects. Features are used to describe a software component. Thesefeatures are similar to the facets described earlier. A component is a set of (f; t) pairs,where f is a feature in a given feature space while t being a term of f . A package isa collection of software components.Comparison of components' descriptions is performed by comparing the distancebetween their respective descriptions. Two types of relations are used for this: thesubsumption relation and the closeness relation. Subsumption refers to the scenariowhen a component in the software base can directly provide the functionality ofthe queried component. The closeness relation provides a similarity measure whenthe queried component can be obtained from an existing one through modi�cation.The subsumption relation is expressed using a directed acyclic graph. Every noderepresents a component, and an arc between a source node B and a destination nodeA means that B can be reused to construct A. Weights on the arcs are used as ameasure of the estimated e�ort required to construct A from B. In the case of thecloseness relation, a feature graph allows the arrangement of terms (of features) in adirected graph. Weights are once again used to represent the expected e�ort requiredto obtain term t2 given term t1. Both feature and subsumer graphs are designedthrough the intuition and knowledge of the domain being modeled.The drawbacks with the AIRS system are:1. All software components are de�ned through the use of a �xed set of features.Also, a component must be described in terms of all the features of the class.2. It is di�cult for the library designer to maintain the class hierarchy upon addi-tion of objects to it.3. The classi�cation and retrievalmechanism is highly intertwined with the methodof computing similarity. This makes it quite di�cult to incorporate new meth-ods for computing similarity into the system.9



Chapter 3Software ComponentRepresentation3.1 Representing the functionality of componentsThe software components to be inserted into the repository are expressed in termsof their functionality, using a knowledge representation language based on Telos [18].The importance of using a Telos-like language to represent knowledge about informa-tion systems is discussed in [18], as is the value of using a knowledge representationlanguage.We use the representation technique and structure outlined in [8] [10] to representthe components. In this representation method, each component is expressed as afunctional description (FD). A FD consists of one or more features. A feature isa triple (verb, noun, weight), where the verb is the action or operation performed,the noun is the object upon which the operation is performed, and the weight isa number indicating the relative importance of the feature within its FD. In otherwords, this weight represents the degree of functionality that a particular verb-nounpair contributes to a software component. A sample functional description (FD) withthree features is shown below.FD: open-file Lread-file Mclose-file LThe letters M,L represent weights for Medium and Low respectively. The mapping10



between the letters and weight values isVery High = 1High = 1/2Medium = 1/4Low = 1/8Very Low = 1/16In case of synonyms verbs or nouns, a thesaurus is used to store those synonyms.3.2 Software Component SimilarityGiven any two software components, our repository organization schemes need to com-pute their similarity. The similarity between two components is a number indicatinghow close the two components are, for the purpose of using them interchangeablyduring software development. Several similarity computation methods have been re-ported in various disciplines and contexts. Possibly, the most well-known are the onesdealing with text retrieval [27] [25]. Since we deal with software artifacts rather thanplain text documents, we feel that the techniques described in [8] [10] are most suitedfor our purposes. The similarity computation method 1 in [8] [10] takes as input twosoftware components expressed as functional descriptions and returns a number be-tween 0 and 1, which indicates how similar the two components are. The closer thisnumber is to 1, the more similar the components are, and vice versa. For example,a similarity value of 1 between two components means that the one component cancompletely replace the other in the software development process. While [8] does notaddress the usability issue of their technique for computing similarity, it has beenused in the Ithaca Software Information Base, which is a large ESPRIT reuse project[16].[8] gives an excellent step-by-step example of the similarity computation method.For convenience, we also provide such an example later in this section. Following theterminology in [8], given two components expressed as FDs, one will be referred toas the source FD and the other as the stored FD. The computation involves severalmatrices as described below.1As outlined in [8], this similarity computation is non-symmetric, non-transitive, and does notexhibit the triangular inequality property. 11



1. The EQ (equivalence) matrix expresses the degree of keyword compatibilitybetween the i-th feature of the source FD and the j-th feature of the stored FD.2EQ is an f-source � f-stored matrix, where f-source is the number of features inthe source FD and f-stored is the number of features in the stored FD.2. The IMP matrix shows the degree of satisfaction that a source description iscompatible (or can be replaced) with a stored description. Its entries show theimportance between the j-th feature of a stored FD, and the i-th feature of asource FD. This importance is computed as min(1; B=A), where B is the weightof a verb�noun pair of the source FD, and A is the weight of a verb�noun pairof the stored FD. The values of A and B are members of the set f1, 1/2, 1/4,1/8, 1/16g, which represent weight values corresponding to fVH (very high),H (high), M (medium), L (low), VL (very low)g. IMP is an f-stored � f-sourcematrix, where f-source is the number of features in the source FD, and f-storedis the number of features in the stored FD. For any entry of the EQ such thatEQ[i][j] = 0, in the IMP matrix, the entry IMP[j][i] is also zero. The value ofthe remaining entries of IMP is computed as min(1; B=A) as described above.3. The W (weight) matrix holds the normalized values of the source FD. Eachentry of matrix W is a number between 0 and 1, and represents the percentageof the corresponding weight within its FD. There is one weight per feature inany given FD, therefore the size of matrix W is f � 1, where f is the numberof features in the FD.4. The SAT (satisfaction) matrix combines matrices EQ and IMP, and is computedas EQ � IMP. SAT is f-source � f-source in size.5. The SIM (similarity) matrix is the product of SAT �W. Entry SIM[j] of matrixSIM represents a weighted satisfaction index for feature j of the source FD withrespect to the stored FD.6. The �nal similarity value (also called the con�dence value) is the result of thecomputation, and is obtained by summing up all the elements of SIM. This isa number between 0 and 1 inclusive, and represents the closeness of the sourceFD to the stored FD. The higher the similarity value, the closer the source FDis to the stored FD.2A thesaurus is used to store synonyms (if any) and their degree of compatibility. In case of nosynonyms, the compatibility degree is either 1 (if a match occurs) or 0 (if no match occurs).12



Feature Number Source FD Stored FD�rst feature top-stack M size-array Msecond feature pop-stack VH size-queue Lthird feature top-stack VLTable 3.1: A source FD and a stored FD3.2.1 A Similarity Computation Worked ExampleConsider two software components whose FDs are shown in Table 3.1 below.According to the above, the sizes of the matrices will be: EQ=[2x3], IMP=[3x2],W=[2x1], SAT=[2x2], and SIM=[2x1].The source and stored FDs of Table 3.1 have the same keywords (top-stack) intheir �rst and third features respectively. Therefore, EQ[0][2] = 1, and all otherentries of matrix EQ are zero. Considering the importance matrix IMP, IMP[2][0] =0.25, because the third feature of the stored FD is compatible with the �rst featureof the source FD, and min(1,B/A) = min(1,VL/M) = minf1; (1=161=4 )g = 1/4 = 0.25.All other entries of IMP are zero since all other entries of EQ are zero. The weightmatrix W holds the normalized values of the weights of the source FD. In the sourceFD, we have the weights M and VH. According to the mapping (1, 1/2, 1/4, 1/8,1/16) = (VH, H, M, L, VL), M is 1/4 and VH is 1, i.e. VH is four times as muchas M. Thus, if we assume that the weights of the source FD amount to 5 units, 4 ofthese units are occupied by VH and 1 unit is occupied by M, i.e., 80% by VH and20% by M, and hence, W[0] = 0.2, W[1] = 0.8. Matrices EQ, IMP and W are shownbelow.EQ =  0 0 10 0 0 ! ; IMP = 0B@ 0 00 00:25 0 1CA ; W =  0:20:8 ! :As a result, matrices SAT and SIM are:SAT = EQ � IMP =  0:25 00 0 ! ; SIM = SAT � W =  0:050 ! :13



Therefore, the similarity value between the given source and stored FDs is SIM[0] +SIM[1] = 0.05. This implies that the two FDs are not very similar, and furthermore,if the stored FD was to replace the source FD, then it would not be a good candidatefor it.
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Chapter 4The Clustering SchemesIn this chapter, we present two heuristic clustering schemes for organizing the softwarerepository. A cluster is the term referring to a group of items that are similar enoughwith respect to some measure within the cluster, and di�erent enough between otherclusters. The term heuristic clustering is due to Salton [25], and di�ers from otherclustering methods in that it produces clusters quickly at little cost, and needs noadvance knowledge of the similarities of the objects to be clustered. The inspirationto use heuristic clustering for software reuse originated from [19].The other known clustering method used to organize software repositories [15] ishierarchical clustering [25]. In this method, a complete list of all pairwise similaritiesbetween the items to be clustered is �rst obtained, followed by a grouping mechanismwhich groups items that are similar enough, by some measure, into clusters. The pre-computed similarities are then compared during each iteration of the sorting of thepairwise similarities. This is to obtain the most similar (closest) item to be clustered�rst, followed by the next most similar, and so on. The clustering can be carried outdivisively, or agglomeratively, the di�erence being that in the �rst case, one completecluster is subsequently divided to form smaller clusters, while in the latter, severalclusters are assimilated into a larger cluster in a hierarchical fashion.With heuristic clustering methods, pairwise item similarities do not need to becomputed in advance. Our �rst clustering scheme presented below is a simple one-passclustering process. In both the schemes presented in this chapter, the componentsto be clustered can be taken one at a time in any arbitrary order. Note that we willuse the term `software component' to mean its functional description, since we aredealing with a software repository of functional descriptions.15



4.1 The Sphere Packing Clustering Scheme( Scheme A )4.1.1 TerminologyWe use the symbol � to represent the similarity value computed using the methoddescribed in Section 3.2. This is to di�erentiate between the similarity computed (�)and the use of the word \similarity" for discussing how similar one component is toanother. Also, we use the operator sim to represent the function that computes thesimilarity value � as described in Section 3.2.In this thesis, we sometimes use the term distance 1 to refer to how conceptuallyclose (or far) is one component to another. In this context, a component is \close"to another if the similarity � between them is high (the distance between them beingsmall). If a component is \far" from another component, then the similarity� betweenthem is low (meaning that the distance between them is large).4.1.2 The SchemeThis scheme centers around the idea that components inserted into the repositoryare organized into \spherical" clusters. The clusters (or \spheres") will have a centerthat is `stationary'. By this, we mean that the center is �xed, and remains un-changed throughout the clustering process. Components inserted into a cluster haveto be within a threshold value T from the center of the cluster. The �rst componentto be inserted into the cluster automatically becomes the cluster's center. A moredetailed description of the scheme is outlined below.1. For every component ci to be inserted into the repository2. If any clusters exist then3. compute the similarity of ci with respect tothe centers of all existing clusters4. Identify all clusters that can host ci, and5. insert ci into the cluster whose center is closest in terms of similarity6. If none of the existing clusters can host ci then7. insert into a new cluster, making ci its center1Since distance has an \inverse" relationship with similarity, it is also non-symmetric, non-transitive, and does not exhibit the triangular inequality property.16



8. else9. insert component into the �rst cluster and make it the cluster's centerLet c1 be the �rst software component to be inserted into the repository. Asyet, there are no existing clusters, so c1 is inserted into a newly created cluster C1and becomes its center. Let c2 be the second component to be inserted into therepository. The similarity � of c2 with respect to the center of cluster C1 is computed.If (1� �) � T , then c2 is inserted into cluster C1. If (1� �) > T , then c2 is insertedinto a new cluster C2, and also becomes its center. Recall that the greater the valueof � between two components, the more similar the components are. Since we wouldlike to place similar components into the same cluster, we wish to have large similarityvalues between any two components of a cluster. Since 1 � � becomes smaller as �becomes larger (recall, 0 � � � 1), satisfaction of the condition \1 � � � T" meansthat two components with similarity � are \similar within T", and thus they shouldbelong to the same cluster.Consider an incoming component ci. If there are m existing clusters C1 to Cm,then for each incoming component to be clustered, we compute the similarity of theincoming component ci with respect to the centers of all existing clusters.�i1 = sim(ci; C1)�i2 = sim(ci; C2)...�im = sim(ci; Cm)The next step is to check if the similarities which are the result of the abovecomputation fall within the threshold T .(1� �i1) � T(1� �i2) � T...(1� �im) � TFor those clusters whereby the � value of the component to their centers is lessthan T , making the clusters ineligible to host ci, an auxiliary array called host clustersis used to record this information. For any cluster Cj that is not eligible to hostcomponent ci, its corresponding entry in the host cluster array is set to 0. If the clusterCj is eligible to host a component, then the corresponding entry in the auxiliary arrayis set to 1. 17



Component Featuresc1 push-element Hpop-element Hc2 size-array VLsize-queue Lc3 top-stack Mpop-stack VHc4 push-element Hc5 size-array Lsize-queue MTable 4.1: The Components to be Clustered.For those clusters that are able to host ci, the component will be inserted intothe closest cluster to ci in terms of the similarity between ci and that cluster. Thus,we sort all the similarity values of the component with respect to all clusters whosecorresponding entry in the host cluster array is 1 to obtain the greatest value amongall possible hosting clusters. The component is then inserted into the cluster that hasthe center whose similarity value with respect to the component is greatest (i.e. it isclosest to the component).In the case that no cluster can host ci, a new cluster is created, and ci is theninserted into it and made its center. The above scheme is repeated for every incomingcomponent, until all are clustered. Since the center of each cluster is rigid, andcomponents are \packed" around the centers, we have aptly called it the \sphere-packing" scheme.4.2 An Example of Clustering Scheme AThe �ve components c1; c2; :::; c5 to be clustered are shown in Table 4.1.Upon application of scheme A for clustering the components, the following takesplace. c1 is the �rst component to be clustered. Since there are no existing clustersyet in the repository, c1 is inserted into the new cluster C1 and made its center. Next,c2 is to be clustered. The similarity of c2 with respect to C1's center is zero2. Since2The similarity � is computed as described in Section 3.2.18
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Figure 4.1: A Pictorial Representation of the Clustered Components for the Sphere-Packing Schemethe threshold T = 0.35, then the di�erence (1-�) where � is the similarity value equalsone and exceeds the threshold T . Thus, c2 is inserted into a new cluster C2 and alsobecomes its center.The similarity of c3 with respect to both the �xed centers of the two clusters iszero. Once again, (1-�) (for c3) is 1 and does not fall within the threshold T . Thisimplies that c3 goes into a new cluster C3. Next, c4's similarity with respect to thecenter of cluster C1 is 1, and (1-�) gives 0 which is less than T . Thus, c4 is insertedinto cluster C1. For c5, the same is true as for c3 above, and c5 ends up being in anew cluster by itself while also becoming that cluster's �xed center.The �nal positions of the components are shown on a one-dimensional scale inFig. 4.1. The components located in the centers of the circles are the �xed centers ofthe clusters.4.3 The Multidimensional Clustering Scheme( Scheme B )4.3.1 MotivationThe previous clustering scheme is remarkable in its simplicity, but has its drawbacks.19



If the �xed center is a good representative of future components to be clusteredthat are similar to it, then scheme A will work very well. However, there is noway of exactly predicting how many, or what functionalities future components willhave. Thus, a �xed center could lead to a poor representation of a cluster's overallcomposition in terms of the functionality of the software components in it.The problem in having a dynamic center is that how do we \move" the center,or, equivalently, how do we vary the similarity value associated with the center thatis representative of the cluster as more components are added to the cluster?If we were to vary the center then how do we compute similarity for a dynamiccluster center? In scheme A, if we were to adjust the �xed center -to make it dynamic-by, let's say, modifying the center's similarity value each time another component isadded to the cluster, then what would be the basis of the center's modi�cation?Answers to these questions, and thus solutions to the above problems, are outlinedin the following section, where we propose another heuristic clustering scheme to beused for organizing software repositories.4.3.2 TerminologyWe use � to represent the similarity computed between the the component to beclustered and the reference components. We also use sim as the function whichreturns the value �, computed as described in Section 3.2.4.3.3 The SchemeThe basic idea is to perceive the software repository as a k-dimensional space de�nedby k reference components (k is set by the software repository organizer). Incomingsoftware components are inserted into the repository according to their \location" inthe k-dimensional space, and clusters of similar components are formed. Componentswhich are close to each other (according to their \location" in the k-dimensionalspace) are placed into the same cluster. Each cluster is associated with its \center".The center is a k-dimensional vector and it represents the average location of allcomponents of the corresponding cluster within the k-dimensional space.The location of a software component is a k-dimensional vector which indicatesthe relative position of the software component with respect to k reference com-20



ponents. The reference components are constructed by the repository designer oradministrator and they are �xed prior to initiating any component insertions into therepository. Also, they remain unchanged through the lifetime of the repository3. Thereference components should be \well spread out" so that no two dissimilar softwarecomponents end up having the same relative position with respect to the referencecomponents. Later in this chapter (Section 5.2), we discuss how to make good choicesof reference components. The clustering method is described below.1. For every component cnew to be inserted into the repository2. compute sim(cnew; Ri) for i = 1 to k3. If no clusters exist then4. insert ci into a new cluster5. assign sim(cnew; Ri) for i = 1 to k to the cluster'scenter ~C = (Cj1; Cj2; � � � ; Cjk)6. else7. compute T (j)new;i = �new;i �Cji for every cluster Cj (for j = 1 to m)and for every Ri(for i = 1 to k)8. if j T (j)new;i j� T , matrix [i][j] = j T (j)new;i j (= -1 otherwise)9. set array NotInC[j] = 010. else NotInC[j] = 111. if C1; C2; :::; Cw (where 1 � w � m) can host ci12. insert ci into cluster Ch(1 � h � w) such thatPki=1matrix[i][h] =minnPki=1matrix[i][1]; Pki=1matrix[i][2]; :::; Pki=1matrix[i][w]o13. modify center of the cluster to reect addition of cnew14. else15. insert ci into a new cluster16. assign sim(ci; Rj) for j = 1 to k to the cluster's center ~CIn scheme B, each cluster center has a similarity value with respect to each of thek dimensions de�ned by the k reference components respectively. The similarity � ofeach component is also computed with respect to each of the k reference components.To obtain the di�erence in similarity between each component to be clustered andthe cluster centers, the di�erence between the similarity � (in each dimension) of thecomponent and the cluster center (also in each of the k dimensions respectively) iscomputed. Since both the values which are used to obtain the di�erence are withrespect to the reference components, the di�erence in each dimension translates into3If the reference components change, then the entire repository needs to be reorganized21



the distance between the component and the cluster center. Thus, the direct corre-lation of di�erence with distance allows the use of the di�erence as distance betweenthe component to be clustered and the cluster center. In scheme A, the center of eachcluster does not have any similarity value(s) associated with it. When the similarity �of a component to be clustered is computed, it is only with respect to the �xed clustercenter (the cluster center is the �rst component to be inserted into the cluster).If cnew is the component to be clustered (inserted into the repository), we compute:�new1 = sim(cnew; R1) = C11 � T (1)new1 = C21 � T (2)new1...�newk = sim(cnew; Rk) = C1k � T (1)newk = C2k � T (2)newk.Given that the threshold value T is the same as before, and two clusters C1 andC2 exist, thencondition1 = (T (1)new1 � T and T (1)new2 � T; ::and::; T (1)newk � T )condition2 = (T (2)new1 � T and T (2)new2 � T; ::and::; T (2)newk � T ),condition1 : check how similar cnew is from center of C1condition2 : check how similar cnew is from center of C2.Consider the cases for the various possibilities of truth values (where TRUE = 1and FALSE = 0),Case 1: (condition1 = 1 and condition2 = 1)- insert c3 into the (existing) cluster C1 or C2- adjust the center of the hosting cluster, similar to the case for component c2Case 2: (condition1 = 1 and condition2 = 0)- insert c3 into the (existing) cluster C1- adjust the center of C1 similar to the case for component c2Case 3: (condition1 = 0 and condition2 = 1)- insert c3 into the (existing) cluster C2- adjust the center of C2 similar to the case for component c2Case 4: (condition1 = 0 and condition2 = 0)- create new cluster C3- associate with C3, the tuple (C31; :::; C3k) = (�31; :::; �3k) as its center.In the case that a component is to be inserted into an existing cluster alreadyhaving at least one component in it, the weight of the center of that cluster prior to22



the addition of the new component has to be taken into account. This implies thatthe center of the cluster resulting from the insertion of the new component is not\half-way" from the current center, but rather of the value~C � ~Tnew�componentjCj+ 1 ;where ~C = (Cj1; Cj2; � � � ; Cjk) for cluster Cj, ~T = (T (j)z1 ; T (j)z2 ; :::; T (j)zk ) for cluster Cjfor component cz, from the center of the existing cluster, and j C j = the number ofcomponents in the cluster before the insertion of the new component.There are two issues yet to be resolved for placing a component into a cluster.First, assuming that there are m clusters C1; C2; :::Cm (where m > 2) created so far,how do we check if a component can be placed into any (and which) of these clusters?Second, having found all the clusters that are eligible to host a component, how dowe determine which of them is the closest to this component?A method that can be easily automated by implementing it in a software toolfor the clustering, �nding clusters that are eligible to host a component, as well asidentifying the best (nearest) cluster for hosting the component is outlined below.Let cnew be a component to be clustered, and R1; R2; ::; Rk be the reference com-ponents, and C1; C2; :::; Cm be the clusters.In order to check if any of these clusters (and which ones) can host componentcnew, we can have a matrix whose rows represent the reference components and whosecolumns represent the clusters.We compute T (j)new;i = �new;i�Cji for every cluster Cj (for j = 1 to m) and for everyreference componentRi (for i = 1 to k). This is to compute the di�erence between thesimilarity value with respect to each reference component and each cluster's center.Then check if j T (j)new;i j� T .4 This is to check if the di�erence falls within the thresholdT . The absolute value of the di�erence is �rst taken before the comparison is madesince in some cases, this di�erence can be less than T , while in others, it can begreater than T . However, the key criterion is that the di�erence should be withinthe \reach" of (fall within) the threshold T , since any di�erence greater than T is4By using the absolute value j T (j)new;i j, we eliminate the need for the � operations used duringthe insertions of c1, c2 and c3 before. 23



considered as beyond the cluster's \radius" and thus, beyond reach for insertion intothat particular cluster. If j T (j)new;i j� T , the value j T (j)new;i j is stored into matrix[i][j]. Otherwise, NotInC[j], an auxiliary array of the size equal to the number ofexisting clusters and used to keep track of which clusters are ineligible to host a newcomponent, is set to 1 (a zero entry in NotInC[j] would mean that cluster j can hostthe new component). If NotInC[j] 6= 0, then matrix [i][j] is set to �1.Thus, matrix [i][j] is � 0 if cluster Cj can host new component cnew with respectto Ri, or �1 otherwise. NotInC[j] = 1 if it is determined that cluster Cj cannot hostcomponent cnew, and the entry equals 0 otherwise. After j Reference Components j� j clusters j number of operations, we will have passed the entire table. If C1; C2; :::; Cw(where 1 � w � m) are the clusters selected from the algorithm that determines whichclusters can host cnew, then component cnew is inserted into cluster Ch(1 � h � w)such thatPki=1matrix[i][h] =minnPki=1matrix[i][1]; Pki=1matrix[i][2]; :::;Pki=1matrix[i][w]o.Note that while the di�erence in similarity � between two components gives usdirectly the di�erence in similarity between them, even if the di�erence in distance(where distance = 1 � �) between them was used, this di�erence would be exactlythe same in value as the di�erence obtained from their similarities. This is becauseif j �1 � �2 j= difference; then j (1� �1)� (1 � �2) j=j �2 � �1 j= difference:4.4 An Example of Clustering Scheme BConsider the 5 components c1; :::; c5 used in Section 4.2 to be clustered, shown inTable 4.2 again for the reader's convenience.To demonstrate the clustering of our sample components using scheme B, k is setto 2, i.e. we have two reference components, as shown in Table 4.3.We consider the reference components as the stored FDs, and the incoming com-ponents c1; :::; c5 as the source FDs. Assume a threshold T = 0.35. The similaritiesbetween the incoming components and the reference components are computed (asin Section 3.2), and their �nal values are shown in Table 4.4.In the next three �gures, we show the e�ect of the multidimensional clusteringscheme on the dynamic centers. Following that, the resulting cluster formation of therepository and the center of each cluster, are shown.24



Component Featuresc1 push-element Hpop-element Hc2 size-array VLsize-queue Lc3 top-stack Mpop-stack VHc4 push-element Hc5 size-array Lsize-queue MTable 4.2: The Five Components to be Clustered.R1 R2push-element M size-array Mpop-element H size-queue Ltop-stack VLTable 4.3: The reference components (de�ning a 2-dimensional space)component reference componentssim(ci; R1) sim(ci; R2)c1 0.75 0.0c2 0.0 1.0c3 0.0 0.05c4 0.5 0.0c5 0.0 0.67Table 4.4: Similarities between ci and Rj25
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Chapter 5Performance Evaluation5.1 Evaluation MethodologyWe have implemented a prototype tool that organizes the repository using both ofour clustering schemes, and allows the reuser to retrieve the conceptually closestcomponent.The components were queried after the repository was organized using the heuris-tic clustering schemes. A library of data structures component descriptions were usedas our test data. This library consists of about 150 components that perform opera-tions on the various data structures such as arrays, stacks, queues, B-trees and graphsused quite often in software development. All components used in our experimentsare listed in Appendix A. The components in this library are based on a popular datastructures text [13] used in data structures courses in universities. Our reason forusing a library of data structures was due to the consensus among the software reusecommunity that there is a need to reuse \relatively small but very carefully designedcollections of domain-speci�c software" [17]. The combination of features has beendone using the software engineering principles of high cohesion and low coupling,including a few variations to make the data variant.The following two query components are used to query the repository.Q1: Q2:restore-btree M swap-pointers Hsize-array L 29



The query is processed exactly as in the clustering mechanism, but after the closestcluster to the query is determined, all components of that cluster are retrieved.The performance evaluation is done in terms of recall, precision and clustertightness. Our results for the benchmarks recall and precision versus the threshold Tare shown as graphs below for the two queries Q1 and Q2 submitted to the repository.Recall is de�ned as the ratio rR . Precision is de�ned as the ratio rc , where r = number ofrelevant components retrieved by query Qi (�r is the number of irrelevant componentswith respect to Qi), R = number of relevant components in the repository ( �R is thenumber of irrelevant components in the repository) with respect to Qi, c is the totalnumber of components retrieved by Qi, and C is the total number of componentsin the repository. We consider one component to be relevant to another if thereis at least one common verb-noun pair between them. Since reuse of a componentalways requires some modi�cation on the reuser's part, it follows that at least onecommon verb-noun pair between a source component and a stored component willallow reuse. Our choice of recall and precision as metrics for the evaluation of howwell the clustering scheme functions by allowing the reuser to search for, and retrieve,the conceptually closest component is due to [26].We also study the e�ect of the variation of cluster structure on the above bench-marks by �rst clustering the components inserted in one order, and then insertingthem into the repository in the reverse order.To evaluate the clusters formed from the two clustering schemes, we also inves-tigate into how far away (in terms of similarity �) are components that are insertedinto clusters. To do this, we compute the distance of each component belonging tothat cluster from it's center. We then compute the average distance of components ineach cluster, and obtain the average over all clusters while varying T . This gives usan idea of how close to the center the components are, and thus how similar they arewithin a cluster (this is especially important in scheme B since the centers are variedaccordingly when a new component is inserted into an existing cluster). Since T isthe largest value that a cluster's radii can have (for each T value), the average radiusof each cluster should certainly be no more than T , and if the clusters have a goodnumber of functionally similar components in them, the radius should de�nitely beless than T . 30



5.2 Construction of Reference ComponentsSince the reference components provide the means to calculate the relative location ofeach component in our k-dimensional repository, for scheme B, we believe that theymerit a discussion of how they are constructed.The construction of reference components is a domain-intensive task. By this, wemean that a domain analysis has to be done, given the domain to which the com-ponents to be inserted into the repository belong. Todate, there is no automatedmeans of performing a domain analysis, as [24] states, \Domain Analysis is a knowl-edge intensive activity for which no methodology or any kind of formalization is yetavailable." An important process in domain analysis is the \capture of the essentialfunctionality required in that domain"[24]. In domain analysis, common characteris-tics from systems are captured and generalized. This implies that domain analysis isquite similar to knowledge acquisition, where knowledge has to be elicited from thedomain, and encapsulated into the requirements of the system.We have had to elicit the knowledge from the components to be inserted into therepository so that the reference components are representative of the domain. In ourcase, we have followed two principles for ensuring that the reference components trulyrepresent the domain:1. Construct functional descriptions of components that encompass the domain.(in our case, this is the data structures domain). This was done by extractingall possible components from among the data structures components and mak-ing them into reference components so that the domain would be completelyrepresented; however, it was ensured that no feature appeared more than onceamong the reference components.2. In constructing functional descriptions of components, ensure that every featureoccurring in the components to be inserted into the repository occurs no morethan once among the reference components. This implies that the referencecomponents are distinct, i.e. no two reference components contain a commonverb-noun pair. Note that both these steps are highly manual tasks.It is important to point out that once the domain is well-understood and com-pletely represented, there is no further need to construct new reference components.This is often the case when an organization becomes mature in its development ofsystems with respect to a particular domain. As [17] points out, corporations have31



realized that reuse across domains is not done once the corporation's system develop-ment processes have matured. In [17], one researcher and software reuse practitionerpoints out that domain-speci�c collections is where reuse has had the most success,and therefore is where our future e�orts should be directed. This supports our choiceof using components limited to one domain. All the reference components used inour experiments are listed in Appendix B.5.3 Test ResultsThe results of our experiments are plotted in Figs. 5.1 to 5.20. Appendix C showsthe actual values used for these �gures.5.3.1 Recall and PrecisionWe label the graphs in the following manner:< Scheme; Structure; Query; Number of Components >.1. Scheme can be either S (for scheme A) or R (for scheme B)2. Structure can be either n (for the initial investigation of components read inone order) or r (for components read in the reverse order)3. Query is either Q1 or Q24. Number of Components can be 100 or 150.The graphs for recall and precision for the clustering schemes A and B are shownbelow. The threshold T is increased by 0.1 each time and the recall and precisionvalues for queries Q1 and Q2 are recorded.Figs 5.1 and 5.2 show how recall varies for queries Q1 and Q2 for both clusteringschemes. In Fig 5.1, we see that recall for Q1 begins earlier (at T=0.1) for schemeA, while recall begins at T=0.3 for scheme B. However, from T=0.3 onwards, therecall for scheme B is much higher than for scheme A. This shows that scheme Bhas a much better recall performance than scheme A. In Fig. 5.2, recall -in the case32



of Q2- for scheme B starts much earlier (at T=0.2) than scheme A which producesrecall at T=0.5. Furthermore, there is more of a gradation for recall in the caseof scheme B than for scheme A. It is expected that recall would increase when thethreshold is increased, since a higher T value means that there is a greater \tolerance"for components not so near to the cluster center in terms of similarity. This leadsto the concept of a \wider" cluster, meaning that the closest components, as wellas the similar but not so close components, will also be home to the same cluster.Our expectations are realized as the graphs demonstrate a general trend of increasingrecall with increasing T .In Figs. 5.3 and 5.4, the variation of precision is shown with respect to T . Whileboth schemes maintain a high precision value for all values of T for which recall occurs,we see that because recall starts earlier (in Fig. 5.3) for scheme A, its precision valuesare extended over a longer T range (by two values of T ). The opposite is true in thecase of Q2 (in Fig. 5.4) where the precision values of scheme B are extended overa longer range of T (from T= 0.2 to 0.4). For the graphs of precision versus T , wenotice that whenever there is a non-zero recall value1, the precision is at 1. Thisis indeed an encouraging result since this implies that the closest component(s) arealways retrieved whenever retrieval occurs.In Figures 5.5 to 5.8, we investigate into the variation of recall and precisionwith increase in repository size. After the number of components to be clustered isincreased by 50%, the recall and precision is measured while varying T . It is clearfrom the graphs shown in Figs. 5.5 and 5.6 that scheme B performs better thanscheme A in terms of recall for both the queries. In the case of query Q1 in Fig. 5.7,precision for scheme A stays at 1, while for scheme B, it falls slightly by 10% to 0.9,which is still a very good precision value. For Q2 (Fig. 5.8), precision for scheme Bextends over more values of T than for scheme A, though both maintain a very highprecision value of 1.As the graphs demonstrate, recall values for scheme B do not vary by more than10% over the recall values obtained before increasing the repository size. Also, thevariation in precision for the same case is not more than 10%. For scheme A, recallvalues do vary by about 15% for some values of T (comparing Figs. 5.2 and 5.6 forQ2) and for the value of T=0.7 (comparing Figures 5.1 and 5.5 for Q1), by about 30%.Precision, however, stays a constant 1.0 for schemeA in all cases when a correspondingrecall value is obtained. Thus, the performance of scheme B remains stable even when1Note that when recall is zero, precision is also zero since when no items are retrieved, the valuer in the precision ratio r=c is zero. 33
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Figure 5.2: Recall (R) vs Threshold (T) for < S; n;Q2; 100 > and < R;n;Q2; 100 >34
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Figure 5.4: Precision (P) vs Threshold (T) for < S; n;Q2; 100 > and < R;n;Q2; 100 >35
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Figure 5.5: Recall (R) vs Threshold (T) for < S; n;Q1; 150 > and < R;n;Q1; 150 >the number of components to be clustered increases. Furthermore, the high precisionvalues attained by both schemes demonstrates that the closest component is alwaysretrieved, this being the key reason for organizing the repository.In scheme A, the center of each cluster is �xed, and is also representative of thecluster's functionality. Because of the �xed center, this implies that perhaps therewould be changes in the cluster structure formed when components are clustered (in-serted into the repository) in a di�erent order. Thus, we inserted the components intothe repository in reverse order to the way they were inserted for the tests performedabove. This would result in a di�erent cluster structure formation from before. Wethen performed exactly the same queries Q1 and Q2 as before.The variation of recall versus T is shown in Figs. 5.9 and 5.10. In the case of Q1,scheme B greatly outperforms scheme A for all values of T . Compared to the resultsobtained when the components were inserted in the initial order, scheme A's resultsdegrade by about 15%, in addition to having zero recall for a greater range of T .Scheme B however gives stable results, with the variation of recall being no greaterthan 10% from when the components were inserted into the repository in the initialorder. 36
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Figure 5.6: Recall (R) vs Threshold (T) for < S; n;Q2; 150 > and < R;n;Q2; 150 >
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Figure 5.7: Precision (P) vs Threshold (T) for < S; n;Q1; 150 > and < R;n;Q1; 150 >37
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Figure 5.8: Precision (P) vs Threshold (T) for < S; n;Q2; 150 > and < R;n;Q2; 150 >Fig. 5.11 shows the precision for Q1 for both schemes. The zero precision valuesfor scheme A are highly noticeable, whereas the precision values for scheme B areunchanged from when the components were inserted into the repository in the initialorder, and remain high at 0.9. In the case of query Q2 (Fig. 5.12), the precision staysvery high at 1.0 for scheme B, but for scheme A, we see a drop in precision of about45% for values of T=0.8 and 0.9.The two schemes were also tested when the components were inserted in thereverse order and after the repository size was increased by 50%. Fig. 5.13 showsthat scheme B outperforms scheme A in recall (for Q1) for all values of T greaterthan 0.3. The recall (for T=0.5 to 0.7) is less by no more than 10% compared to therecall before the repository size was increased. For Q2 (Fig. 5.14), scheme A performsbetter than scheme B in terms of recall for all values of T despite the fact that schemeB's recall di�ers by no more than 10% for most values of T -except for T=0.4 whenit di�ers by about 15%- before the repository size was increased (Fig. 5.10).Precision values for Q1 and Q2 after increase in repository size are shown in Figures5.15 and 5.16 respectively. For both queries, precision for scheme B is unchanged at0.9 and 1.0 (from before increasing the repository size) for Q1 and Q2 respectively.In the case of scheme A, the precision is very high at 1.0 for Q1 (Fig. 5.15) but fallsonce again by about 50% for Q2 (Fig. 5.16).38
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Figure 5.10: Recall (R) vs Threshold (T) for < S; r;Q2; 100 > and < R; r;Q2; 100 >39
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Figure 5.12: Precision (P) vs Threshold (T) for< S; r;Q2; 100 > and< R; r;Q2; 100 >40
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Figure 5.13: Recall (R) vs Threshold (T) for < S; r;Q1; 150 > and < R; r;Q1; 150 >
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Figure 5.14: Recall (R) vs Threshold (T) for < S; r;Q2; 150 > and < R; r;Q2; 150 >41



00:20:40:6
0:81

0 0:2 0:4 0:6 0:8 1P T< S; r;Q1; 150 > �� � � � � � � � �< R; r;Q1; 150 > ss s s s s s s
Figure 5.15: Precision (P) vs Threshold (T) for< S; r;Q1; 150 > and< R; r;Q1; 150 >
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Figure 5.16: Precision (P) vs Threshold (T) for< S; r;Q2; 150 > and< R; r;Q2; 150 >42



The recall and precision results therefore indicate that scheme A is relativelystable when the repository size is increased once the initial components have beeninserted, but comparisons with the insertion order of components indicate that theresults of precision and recall can vary when the order of insertion of components intothe library is changed. For the most part, the scheme's precision results are quiteencouraging, and even a 50% drop in precision for a few values of T is a decent resultsince for most other values of T , precision stays at 1.The cause of the degradation of some of the precision values, and an absenceof recall over a wider range of T values for scheme A after the order of insertion ofcomponents was reversed (as compared to the results of the insertion of components inthe initial order) can be attributed to having �xed centers as cluster representatives.If a component that becomes a cluster's center will not be a good representativeof the other components that are to be inserted into the repository in the future,then this will cause the cluster either not to accept similar components in the futureinto the cluster unless the T value is high enough, or might allow components to beinserted into the cluster that would not be a close match to the query. This impliesthat for a query, recall might increase after a certain threshold is crossed, or that thecluster that is identi�ed as having the most similar component will not contain allcomponents that are similar to the query. These results certainly show that recalland precision can vary depending on the cluster structure formation, which in turnvaries according to the order of incoming components to be clustered. However, it isan interesting result that for the most part, precision is high. This means that moreoften than not, the closest components are retrieved. This is signi�cant in terms ofhow well clustering scheme A works, depicting that it mostly functions well.For the case of scheme B, the very good precision values for all values of T tellsus that the clusters formed for each value of T indeed contain components that arefunctionally very close to each other. When T is small (less than 0.5), the clustersformed are `narrow', since no component that varies more than the low threshold fromthe center of the cluster is allowed into the cluster. Likewise, when the repositoryis organized with increasing values of T , the clusters become `wider'. However, theprecision value stays the same since the components that fall into the clusters arestill functionally very similar. This also proves that the concept of a dynamic clustercenter as explained in the clustering scheme works well. Furthermore, the clusteringscheme is successful in keeping components that are dissimilar in separate clusters.The above result is an important one, since the aim of the clustering scheme isto organize components in a manner whereby it should be possible for the reuser43



to search for, and retrieve, the conceptually closest component to the query. Ourproposed clustering scheme does exactly this.The results clearly show that the idea of using a dynamic cluster center, as wellas a multidimensional space model for the clustering of the repository consistentlyproduce better results. The performance of scheme B over scheme A in terms ofrobustness is lucid from the results we have obtained through testing. Note thatprecision for scheme B never falls below 0.9, and for the most part, stays consistentlyat 1. This result is very encouraging since a key reason for organizing the repositoryis to be able to retrieve the most similar component to the queried one. Our recallvalues, especially for scheme B, are also quite good, peaking between 0.62 and 0.76in all test cases.5.3.2 Cluster TightnessIn this section, we present results of the cluster tightness tests as explained in theprevious section for both schemes. The tests were run with the repository having 150components (which is its current maximum size).In Figures 5.17 and 5.18, we show the results of the variation of the average radiiover all clusters with respect to the threshold T . The graph of average cluster radiusversus T for scheme A in Fig. 5.17 (for components inserted into the repository inthe initial order) depicts an increase in the radius as T is increased. This is expectedsince as T increases, there is greater leeway for the di�erence in similarity betweenthe center and each component in a cluster. Thus, the average radius is expected toincrease with increasing threshold T . Note that the average radius is always smallerthan the T value. This clearly shows that the components are clustered around thecenter in close proximity (in terms of the similarity), at about 1/4 the respective Tvalue for the majority of T values. This provides us with a snapshot of the clusterformation within the repository.In Fig. 5.18 for scheme A, when the order of insertion of components is reversed,the graph of the average radius versus T is shown. As is evident from the graph, theaverage radius increases with T as expected, but remains lower by more than 1/3the value of it's respective T value in general. This again shows that the clustersare tight, and that the cluster formation is quite good in terms of a cluster hostingcomponents that are functionally similar to each other.With respect to cluster tightness, it is important that the average shown for each44
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Figure 5.17: Average distance D of components over all clusters vs Threshold T forscheme A for components inserted in the initial order
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Figure 5.18: Average distance D of components over all clusters vs Threshold T forscheme A for components inserted in reverse order45
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Figure 5.19: Average distance D of components over all clusters vs the Threshold Tfor scheme B for components inserted in the initial ordervalue of T does not vary by more than T . In fact, the lower the average distance,the better the clustering since low average distances means that the components are,in general, functionally similar to each other to a larger degree. Fig. 5.19 showsthe cluster tightness results for scheme B when the components were inserted intothe repository in the initial order. The graph shows that the average distance ofcomponents from their clusters is always lower then the respective T value. In fact,the average values are considerably lower than their respective T values, and in mostcases, less than the T value by over 1/4T . Also, the general trend of increasingaverage distance as T increases is expected, since the clusters formed due to higherT values are `broader' than those formed when T is small. The dip in the averagedistance when T is 0.3 is not unnatural, since it is highly possible that for a certain Tvalue, the clusters formed can be optimum in how close the components rally aroundtheir clusters' centers.The results of evaluating the cluster tightness in terms of average radius valuesover all clusters for scheme B after components were inserted in the reverse order isshown in Fig. 5.20. The graph shows that in most cases, the ratio of T to the averageradius over all clusters for that T value is less than 1/4. This once again proves to usthat the components in the clusters are indeed functionally quite similar.46
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Figure 5.20: Average distance D of components over all clusters vs the Threshold Tfor scheme B for components inserted in reverse orderNote that Figs. 5.19 and 5.20 both show that at T=0.9, the average cluster radiusis less in both Figures than those for scheme A (Figs. 5.17 and 5.18). Low averageradii also complements the fact that using the concept of a dynamic cluster centerpays o�, resulting in superior performance over that of scheme A. Furthermore, italso enables scheme B to perform more robustly over scheme A. This, in terms ofcluster structure formation, produces meagre changes in recall and precision whencomponents are inserted into the repository in the reverse order over the resultsproduced by inserting components into the repository in the initial order (as is evidentfrom our experiments for scheme B, for some values of T , insertion of components inthe initial order gives slightly better results over insertion in the reverse order, andvice-versa for other values of T ).5.4 ImplementationIn this section, we outline the details of the implementation and the computing en-vironment of the prototype tool we have developed that computes the similaritybetween software components, clusters the repository and retrieves components fromthe repository when queried by a reuser. The prototype has been implemented in the47
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SoftwareFigure 5.21: Logical View of the Prototype ToolC language to run on Sun workstations in the Unix operating system environment.5.4.1 Logical DesignThe prototype system was used to obtain the results presented in Chapter 5. A logicalview of the prototype is shown in Figure 5.21.The Similarity Computation SubsystemThe similarity computation subsystem computes the similarity between software com-ponents. The method used for doing this is described in Chapter 3. In the case ofscheme A, each time a component is to be inserted into the repository, the similaritywith respect to the centers of existing clusters is computed. A �le containing thecenters of current clusters is kept. An index of the cluster numbers (their ids) is alsomaintained, and updated as new centers are added.The software components' functional descriptions (FDs) are kept in a �le to whichcomponents can easily be added, deleted, or modi�ed. This is also the case for thereference components, supporting easy addition of new reference components if andwhen the domain needs to be expanded. These �les are then read and the process ofcomputing similarity then begins. Control is passed over to the similarity computationsubsystem each time the similarity between the incoming component and the referencecomponents (in the case of scheme B) or the \�xed" cluster centers (in the case of48



scheme A) needs to be computed.Since the components are inserted into the repository one at a time, the �le of FDsthat form the current clusters' centers (for scheme A) is updated when new clustersare formed.The Clustering SubsystemThe clustering subsystem executes the heuristic clustering schemes. The user has theoption to cluster the repository using either scheme A or scheme B. The clusteringsubsystem's modules receives similarity values computed by the similarity computa-tion subsystem for each component and invokes the appropriate modules to clusterthe component. In the case of scheme A, after the similarity computation subsys-tem has computed the similarity of a component with respect to all the centers ofexisting clusters, the clustering subsystem uses the computed similarities to insertthe component into the closest cluster possible (according to scheme A outlined inSection 4.1). For clustering the components according to scheme B, the similaritycomputation subsystem makes available all similarity values of the components to beclustered with respect to all reference components. The clustering mechanism theninserts the component into the repository according to scheme B described in Section4.3.2.The Retrieval SubsystemAfter all components are clustered, the reuser can submit a query expressed as a FD.The retrieval subsystem reads this query using the functionalities of the similaritycomputation subsystem to compute the similarity between the query and the centersformed as a result of clusters formed using scheme A. In the case of scheme B, thesimilarity with respect to the reference components is also computed using the sim-ilarity computation subsystem. Since retrieval follows the method of insertion intothe repository by the respective clustering scheme, the retrieval subsystem uses partof the functionalities of the clustering subsystem to identify the best (closest) clusterfor insertion of the component to be clustered. Once this is done, instead of insertingthe component, the retrieval subsystem informs the reuser as to the cluster whosecenter is closest in terms of similarity between the components and the cluster center,and all the components of that cluster are retrieved.49



OutputAfter clustering of the repository is completed, the system outputs a complete \pic-ture" of the repository (this is done by writing the relevant information to a �le forconvenient accessibility to the reuser). This �le contains all similarities of each com-ponent clustered. For scheme A, these similarities are with respect to the centers ofeach cluster, whereas for scheme B, it is with respect to each reference component.Next, the cluster ids and the components hosted by each cluster follow. In thecase of scheme B, the �nal similarity coordinates of each center are also shown. Asin case of the clusters, each component is identi�ed by a unique id which is a positiveinteger starting from zero to the number of total components in the repository.
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Chapter 6DiscussionOur clustering schemes address various shortcomings of previous solutions to theproblem of classi�cation and retrieval of software components. In the approachesoutlined in [23] [21] [4], a form of the conceptual graph is used to provide a measureof similarity between facets (or features). The construction of a conceptual graph isexpensive and tedious. Furthermore, the maintenance of such a graph as more termsor features are added can be cumbersome, since it will demand a restructuring of thewhole graph. In our scheme the repository is organized automatically, and places noconstraints in the event that more components are added to the repository. This isimportant since software development is a dynamic process, requiring many changesin the systems developed throughout the software lifecycle.In [1] [9] [15], information retrieval techniques such as phonetic matching, auto-matic stemming, and analysis of natural language documentation are used. Theseinformation retrieval techniques are relatively hard to implement, and are expensiveoperations. [15] use a Hierarchical Agglomerative Clustering (HAC) method to orga-nize the library, but their method is dependent on having documentation of softwarecomponents in Unix-like man pages. Their results show that in the GURU system,when recall is 0.1, the precision value obtained is 0.85; when recall is 0.9, precisionis 0.39. Their results cannot be directly compared with ours since their method ofsimilarity computation is di�erent, and furthermore, their test data is also di�er-ent from ours. On the other hand, [6] points out that hierarchical agglomerativeclustering methods often end up doing chaining, which would merely be an orderingof components rather than grouping them according to functional similarity. As isdemonstrated by our tests, the second heuristic clustering method that we proposein this thesis is shown to be extremely robust and consistent in its results.51



Important savings in using our technique of clustering the library are realized inthe form of the complexity of the algorithm. In the HAC method discussed in [25],the pairwise comparison of n components to be clustered takes n(n�1)=2 operations.Furthermore, it takes n2 log n2 operations to sort the similarity pairs and arrangethem in decreasing order of similarity. For scheme A, the complete clustering processtakes n�m steps, while for scheme B, the entire clustering process for n componentstakes no more than 2� n� k�m steps, where m is the number of resulting clusters,and k is the number of reference components used to de�ne our k-dimensional space.The number k is a constant for any one domain (since the reference components areset as a subset of the component descriptions). Note that prior to the completion ofthe entire clustering process, the number of clusters is normally less than their �nalnumber m. After testing, we observed that on average, m is between n=3 to n=2, andour scheme B performs between k:n2=3 and k:n2=2 comparisons. Thus, our technique(scheme B) has considerable savings, while the savings are even greater in the caseof scheme A. This would be greatly realized when the repository is to contain a largenumber of components, especially in an industrial setting.Our clustering scheme uses a knowledge representation language structure for de-scribing the functionality of components, and is independent of the documentationthat might be provided with the software components. We also argue that the func-tionality of components is better represented by a knowledge representation language,especially one designed for representing information about information systems [18].Our model for the software reuse environment has been documented extensively,and has been used widely in software reuse research targeted toward industry[29],[10], [16], [28], [7]. Thus, the librarian's task of constructing FDs would be highlyintertwined with managing the library of reusable components. In the case of inter-company reuse -as is the aim of the REBOOT project- the librarian could haveresponsibility for maintaining libraries for various domains and as such, managingthe repositories for the various domains would be a vital task.When making queries to the repository, the reuser has to construct a query as aFD. We believe that it would be quite easy for the reuser to make a query since theFDs are simple and easy to construct, and the reuser need not know exact �guresto insert as weights. The simple mapping of the weights into abbreviations such asH (for high) or L (low) to represent functionalities of various features within FDswould be easier than to express queries in terms of reuse metrics, where sometimes,more exactness is required in the absence of a simple and non-complicated mappingsystem. 52



A de�nite advantage with our clustering schemes is that they are implementedapart from the similarity computation method, that is, there is very low couplingbetween these two subsystems in their implementation. This implies that one couldeasily replace the current similarity computation method with another similarity com-putation method, and in this case, then our clustering scheme would still functionwith minor modi�cations required to the clustering subsystem.
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Chapter 7ConclusionIn this thesis, we presented two heuristic clustering schemes for organizing softwarelibraries for software reuse.The organization of the repository is done automatically, its structure is trans-parent to the software reuser, and places no constraint in the event of incrementalchanges. Our schemes use a knowledge representation language structure for de-scribing the functionality of components, and therefore, do not rely on any specialcomponent description (as in [15]). The e�ectiveness of the proposed scheme wastested on a software collection in terms of recall and precision. Our experimentsdemonstrate that while our sphere-packing scheme performs at a good precision levelfor the most part, our multidimensional scheme attains a respectable recall value anda high precision value. While the cluster tightness experiments do not directly reecton the precision values obtained through testing, they show that the clusters formedare indeed tight, and that components do cluster close to the centers. This impliesthat components are clustered with respect to the centers in terms of relatively highfunctional similarity (within the threshold set by the repository organizer). Resultsfrom our experiments demonstrate that the proposed multidimensional clusteringscheme is stable and robust under conditions of variation in repository size, as wellas the order of insertion of components into the repository. Our clustering schemesaddresses various shortcomings of previous solutions to the problem of classi�cationand retrieval of software components. Speci�cally, it does not require the manualconstruction of a conceptual graph as outlined in [23], [21], [4].54



7.1 Future WorkThere are many other issues yet to be dealt with in software reuse. We have compiledthe following list which is by no means an exhaustive one, and outline some of thetechnical areas which are worth investigating.1. Reuse software speci�cations as well as software designs.2. Reuse of knowledge, especially knowledge relating to domain analysis.3. E�ective operation of multiple repositories.4. Adaptation of software components.We believe that the process of reusing speci�cations can follow the same approachas described in this thesis, since as long as the speci�cations are represented usinga representation language, a repository comprising speci�cation components can beorganized using our clustering schemes. For the reuse of domain analysis knowledge,a key problem is that each domain analysis approach taken needs to be tailored forthe particular domain. A formalization of the techniques used for domain analysiscould be used as a tool for other domain analysis approaches. In the case of theinteroperation of software repositories, we believe that representing knowledge usinga knowledge representation language could form a representation standard, easingthe problems due to varying component exchange standards between repositories.Lastly, if the classi�cation and retrieval process of software components as describedin this thesis could also be done for other software artifacts (where a repositorywould exist for each type of artifact), then the clustering schemes we describe in thisthesis could be enhanced and adapted to combine similar software artifacts from thevarious repositories. This would provide the reuser with a complete software lifecycleof software artifacts. Functionally similar designs, architectures, code components, aswell as test cases (all these being the artifacts for which multiple repositories couldbe maintained) would then be available for the development of a new system. Thiswould further assist application developers in their modi�cation and reuse of notonly software components but all artifacts in general, while lowering the cost of thesoftware development process. 55
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Appendix CValues for Recall and Precision< S; n;Q1; 100 >T R0.1 0.0580.2 0.0580.3 0.0580.4 0.0580.5 0.0580.6 0.0580.7 0.310.8 0.310.9 0.31 < S; n;Q2; 100 >T R0.5 0.250.6 0.250.7 0.750.8 0.750.9 0.75 < S; n;Q1; 100 >T P0.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1 < S; n;Q2; 100 >T P0.5 10.6 10.7 10.8 10.9 1< S; n;Q1; 150 >T R0.1 0.0580.2 0.0580.3 0.0580.4 0.0580.5 0.0580.6 0.0580.7 0.0580.8 0.4110.9 0.411 < S; n;Q2; 150 >T R0.5 0.40.6 0.40.7 0.60.8 0.60.9 0.6 < S; n;Q1; 150 >T R0.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1 < S; n;Q2; 150 >T R0.5 10.6 10.7 10.8 10.9 1
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< S; r;Q1; 100 >T R0.7 0.160.8 0.320.9 0.32 < S; r;Q2; 100 >T R0.5 0.250.6 0.250.7 0.50.8 0.50.9 0.75 < S; r;Q1; 100 >T P0.7 10.8 10.9 1 < S; r;Q2; 100 >T P0.5 10.6 10.7 10.8 0.560.9 0.56< S; r;Q1; 150 >T R0.1 0.060.2 0.060.3 0.060.4 0.060.5 0.120.6 0.120.7 0.30.8 0.30.9 0.3
< S; r;Q2; 150 >T R0.1 0.50.2 0.50.3 0.50.4 0.750.5 0.750.6 0.750.7 0.750.8 0.750.9 0.75

< S; r;Q1; 150 >T P0.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1
< S; r;Q2; 150 >T P0.1 10.2 10.3 10.4 10.5 10.6 10.7 0.50.8 0.50.9 0.5< R;n;Q1; 100 >T R0.3 0.0670.4 0.530.5 0.530.6 0.60.7 0.670.8 0.670.9 0.67

< R;n;Q2; 100 >T R0.2 0.250.3 0.250.4 0.250.5 0.50.6 0.50.7 0.50.8 0.750.9 0.75
< R;n;Q1; 100 >T P0.3 10.4 10.5 10.6 10.7 10.8 10.9 1

< R;n;Q2; 100 >T P0.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1< R;n;Q1; 150 >T R0.3 0.060.4 0.530.5 0.530.6 0.60.7 0.650.8 0.650.9 0.7
< R;n;Q2; 150 >T R0.2 0.330.3 0.330.4 0.330.5 0.50.6 0.50.7 0.670.8 0.670.9 0.7

< R;n;Q1; 150 >T P0.3 10.4 0.90.5 0.90.6 0.90.7 0.90.8 0.90.9 0.9
< R;n;Q2; 150 >T P0.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 175



< R; r;Q1; 100 >T R0.3 0.070.4 0.540.5 0.620.6 0.620.7 0.620.8 0.620.9 0.62
< R; r;Q2; 100 >T R0.2 0.250.3 0.250.4 0.50.5 0.50.6 0.50.7 0.750.8 0.750.9 0.75

< R; r;Q1; 100 >T P0.3 0.90.4 0.90.5 0.90.6 0.90.7 0.90.8 0.90.9 0.9
< R; r;Q2; 100 >T P0.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1< R; r;Q1; 150 >T R0.3 0.060.4 0.50.5 0.50.6 0.50.7 0.50.8 0.630.9 0.7

< R; r;Q2; 150 >T R0.2 0.330.3 0.330.4 0.330.5 0.50.6 0.50.7 0.670.8 0.670.9 0.7
< R; r;Q1; 150 >T P0.3 0.90.4 0.90.5 0.90.6 0.90.7 0.90.8 0.90.9 0.9

< R; r;Q2; 150 >T P0.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 1Values for Fig. 5.17T D0.1 0.0130.2 0.0190.3 0.030.4 0.060.5 0.110.6 0.110.7 0.1410.8 0.1890.9 0.22
Values for Fig. 5.18T D0.1 0.0120.2 0.0180.3 0.0260.4 0.0470.5 0.080.6 0.1060.7 0.190.8 0.2450.9 0.268

Values for Fig. 5.19T D0.1 0.0480.2 0.0730.3 0.0370.4 0.090.5 0.1480.6 0.1660.7 0.1810.8 0.1810.9 0.199
Values for Fig. 5.20T D0.1 0.0350.2 0.0390.3 0.0190.4 0.0620.5 0.1130.6 0.1260.7 0.140.8 0.1370.9 0.163
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