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ABSTRACT

The discontinuities and the large image displacements pose some of the hardest prob-
lems in flow estimation. This paper uses a set of filters that change shape to avoid
blending of the constraints across discontinuity boundaries. This is done by using an
incompatibility measure of the constraints of neighbouring pixels. The algorithm is
embedded in a coarse to fine multigrid scheme to address the problem of large dis-
placements. We report results on real images which show that the algorithm works
very well.
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1. Intr oduction

There are several approaches to the problem of flow estimation in computer vision and

several ways to classify them. An important class of them are based on point matching [11,

16, 15] etc and another on region or curve matching [3, 2, 9, 21, 13] etc. The algorithms that

are based on spatiotemporal filtering [8, 10] etc can be regarded as region based algorithms

because they are matching in effect regions of the image the size of the convolution kernel.

The same classification is valid for the hierarchical methods [1, 24]. Several articles analyse

the limits of various approaches [20, 12, 6, 4] the most unique being that of Barronet al

because they report a tremendous amount of experimental data for published algorithms.

A class of algorithms that cannot be easily associated with any of the above tries to do

away with traditional subgoals of the motion problem [7, 25] but these approaches are parallel

rather than opposite to more conventional approaches.

A particularly difficult issue in optical flow estimation is related to discontinuities. An

important class of algorithms uses as starting point the detection of discontinuities [5, 16, 19]

which is quite a hard problem. In this paper we follow an approach that circumvents the need

to detect discontinuities. Instead we try to compute the flow everywhere but be careful not let

the filters we use touch suspected discontinuities. For this reason we introduce a class of con-

forming filters that can take any unusual shape to avoid regions of the image that have large

variations in the behaviour of the constraints. We also introduced a means to recognize these

areas. Inthe end of the execution, the algorithm does not report the existence or not of dis-

continuities but a quite accurate flow that remains accurate within very few pixels off the dis-

continuity.



Considering the progress in optic flow during the last several years, it is impossible to

design an algorithm that is based in one idea only, like conforming filters, without including

and improving previous ideas.Considering this, we used as a starting point the Lucas and

Kanade algorithm [13] which, although very simple, works very well [4]. To this we added

conforming filters and embedded it in a hierarchical scheme where the coarser grids provide a

guess for the finer ones. To be able to accommodate the guess without much additional cost

we used a method similar to [22, 14].

The idea itself of the deformable filters is not new [18] but this particular approach needs

only a few convolutions with uniform filters (a uniform filter can be implemented as a running

sum, so the cost is small) yet it can achieve a remarkable variety of point spread functions.

2. Regionmatching

The most common constraint for flow estimation comes from the “constant intensity”

assumption where every pixel in one image is matched with a point in the other image (which

might fall between pixels) that has the same intensity. The simplest mathematical formulation

of this constraint is the optical flow equation

(2.1)I xu + I yv + I t = 0

whereI x, I y and I t denote partial derivatives with respect tox, y andt respectively andu and

v are the components of flow in thex and y direction. This equation alone is not enough to

recover of the flow, but it is nevertheless the basis of most of the constraints used.

The principal reason that point matching Eq. (2.1) is not enough is that it represents one

equation for two unknowns which forces us to seek an alternative like region matching. The
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method by Lucas and Kanade [13] is using such an approach and, as mentioned before, works

very well and is fast and local. We present the method here using our own notation and then

built upon that to develop an equally fast but more robust solution.

First, we have to note that if we introduce more constraints then it might be impossible

to satisfy Eq. (2.1) and we have to use a least squares approach. Second, if we assume that a

small region moves uniformly then Eq. (2.1) should be satisfied everywhere in the region. We

form the error term for a regionR

(2.2)Ierr(x0, y0; x, y) = I x[x, y]u[x0, y0] + I y[x, y]v[x0, y0] + I t [x, y]

wherex0, y0 is the center of the region andx, y is a point within the region and we minimize

the sum of the squares ofIerr over the regionR aroundx0, y0

u, v
min SSE[x0, y0] =

u, v
min

x, y in R[x0, y0]
Σ I 2

err [x0, y0; x, y]

We form the Euler equations for this minimization

ρu =
x, y in R[x0, y0]

Σ 

I x[x, y] I x[x, y] u[x0, y0] + I x[x, y] I y[x, y] v[x0, y0] + I x[x, y] I t [x, y]



ρv =
x, y in R[x0, y0]

Σ 

I x[x, y] I y[x, y] u[x0, y0] + I y[x, y] I y[x, y] v[x0, y0] + I y[x, y] I t [x, y]



and the actual constraints areρu = 0 and ρv = 0. Theobservation that makes this method effi-

cient (and flexible) is that the summations like

(
x, y in R[x0, y0]

Σ I x[x, y] I y[x, y] )

are convolutions with a uniform function. A generalization that suggests itself is to try to con-

volve with any template not just the uniform. The template has to be zero or positive every-

where, otherwise the implicit matrix of the minimization is not positive definite. The Euler
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equations then become

(2.3)
ρu = E(g)

xxu + E(g)
xyv + Extg

ρu = E(g)
xyu + E(g)

yyv + Eytg

where E(g)
xx = Exx∗g, E(g)

yy = Eyy∗g, E(g)
xy = Exy∗g and g is the filter. Exx = I x I x,

Exy = I x I y, Eyy = I y I y, Ext = I x I t and Eyt = I y I t are the coefficients of the Euler equations.

The equations for every pixel are independent from other pixels soExx, Exy etc represent a

collection of 2× 2 matrices and 2× 1 vectors of knowns

A[ij ] =




Exx

Exy

Exy

Eyy





and

b[ij ] =




−Ext

−Eyt





We can viewA andb either as a matrix and a vector whose elements are images or as images

every pixel of which is a matrix or a vector. Either way it is easy to define the operations of

addition, multiplication, convolution, differentiation etc. Eq. (2.3) then becomes

(2.4)→ρ = (A(g))u − (b(g))

whereA(g) = A∗g, b(g) = b∗g and u= 


u

v


.

The choice of filterg represents a trade off. In general if the support of the filter (the area

where the template of the filter is non zero) is very wide then a larger area is matched result-

ing in more stability, at the expense of accuracy because the area might cover a region of

highly nonuniform flow. If, on the other hand, the filter is very narrow then a small area is

matched that might not contain enough interesting features to lead to stable equations. So a
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choice of filter can be good for a part of an image but not good for the rest. The solution then

is to use a family of filters that differ in scale (and shape) and apply different filters in differ-

ent parts of the image.

The filter regardless of its scale, has to be as localized as possible for a given scale, easy

to do the convolutions over different scales and easy to manipulate analytically. The filter we

choose as a basis to start is the Gaussian and then show how to move to a more general class

of filters.

2.1. From Gaussian filters to adaptive filters

It is well known [17] that if we convolve an image with a uniform function several

times, the result is indistinguishable from a convolution of the same image with a Gaussian.

In fact, this is true even if we replace the uniform filter with almost any filter. The variance of

the Gaussianσ 2 is the sum of the variances of the individual filters. This is the well known

Central Limit Theorem and suggests the following algorithm for the computation of the con-

volution of the Gaussian:

• Convolve the image with a uniform functionUkv
of width kv columnwise.

• Convolve the resulting image with a uniform functionUkh
of width kv rowwise.

• Repeat the aboven times.

Every convolution with a uniform function in either the vertical or horizontal direction

requires about one addition and one subtraction irrespective of the width and one multiplica-

tion per pixel in the end if it is implemented as a running sum where we add in the front and

subtract from the back. So the above algorithm does not require more floating point
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computations than a regular Gaussian forσ rather big.

Now assume that we know somehow which parts of the image require a wide filter and

which a narrow. For this purpose we are given four imageswv1, wv2, wh1 andwh2 every pixel

of which contains 0 or 1 depending on whether we need filter with the corresponding width

and direction. So we arrive to theconforming filter algorithm.

• For imageI computer v = (I ∗Ukv1
)wv1 + (I ∗Ukv2

)wv2

• Then computer h = (r v∗Ukh1
)wh1 + (r v∗Ukh2

)wh2

• Set I = r h and repeat the aboven times.

It is easy to see how the above algorithm can be generalized to a larger collection of filter

widths. We can also vary the weights of the filters in each iteration.Although the algorithm is

very similar to the one that computes the standard Gaussian, the resulting filters are very dif-

ferent (Fig. 1). In the next section we develop the criteria for the local choice of filters.

2.2. Determiningthe size of the filters

The size of the filters should be governed by the following considerations.

* The size should be bigger when the flow is varying very little.

* When the equations are unstable then the size should become bigger to stabilize the

result.

We could use the derivatives of the flow as an indicator of the size of the filters. The higher

the magnitude of the derivative the smaller the filter. But this would run contrary to the sec-

ond criterion when the reason for the high variance in the flow is the instability, so the use of

flow derivatives is ruled out.

6



Figure 2.1b The left image controls the width of the filter. The white blocks are areas where the filter should have small support
and the black area large support. The point spread function of a bright point placed in the midpoint between the tips of the white

squares is shown on the right.

A better approach is to look at the constraints themselves. We notice that when we con-

volve the coefficients of the normal equations then wecreate a new set of constraints that in

general give different result. If we plug the new result in the original equation then we get a

non zero residual that means that the equation is not satisfied. The residual will be very small

if the flow is very smooth, because in a sense we mix similar equations. Also the residual will

be very small if the equations are unstable because unstable equations contain very little infor-

mation and can be satisfied by almost anything. We call this residual theincompatibility mea-

sure.

Let’s use a Gaussian filterg(x, y; σ ) whereσ is the standard deviation. Without loss of

generality assume that the Gaussian is along the horizontal (x axis) component of the separa-

ble kernel. It is implied thatA(g) andb(g) are now functions ofσ . The quantity

d

dσ


A(g)u(σ ) − b(g)


= 0

is zero because

A(g)u(σ ) − b(g)


= 0. Thus
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A(g)
σ u(σ ) − b(g)

σ + A(g)uσ (σ ) = 0

and so the incompatibility measure becomes

c = |A(g)(u + du) − b(g)|= |A(g)u − b(g) + A(g)du|= |A(g)du|=

|A(g)uσ ⋅ dσ |= |(A(g)
σ u− b(g)

σ )dσ |

A property of the Gaussian that is used often in computer vision is that the derivative of a

Gaussian with respect toσ is proportional to its second derivative with respect to the spatial

argument, in this casex. So finally

ch = |A(g)
xxu− b(g)

xx|

whereA(g)
xx is the second derivative with respect tox of the convolution of matrixA with the

Gaussiang(σ ) and similarly forb(g)
xx.

The criterion for the selection of a filter with widthk is k ⋅ c ≤ t, wheret is a threshold.

2.3. Thealgorithm

There are a couple more details missing. Since nothing changes if we multiply bothA(g)

andb(g) with the same number we have to make sure that the algorithm is not affected by a

scale factor. So we divide cv andch by the Frobenious norm ofA(g). It is easier to computecv
2

andch
2 to avoid taking the square root. And finally instead of thresholdingk ⋅ c it is easier to

compute the weights of the filters

w =
t

t + k2c2

Integrating all the above, the algorithm becomes
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1 Set A = A∗g for some filterg with small support andb = b∗g.

2 Compute u= A−1b and thench andcv and thenwv,i andwh,i for the set of uni-
form functions with widthskv,i andkh,i .

3 Convolve the elements ofA andb with the corresponding set of uniform func-
tions and form the weighted sum using the weightswv,i andwh,i .

4 Repeat steps 2 and 3n times.

For the experimentsn was 3, and the widths of the filters were 3, 5 and 11. Thisalgorithm

works very well for images that do not have large displacements, is accurate in areas of

smooth flow and retains its accuracy up until very close to discontinuities. Using iterative

improvement and hierarchical approximation we can improve the performance even with

large displacements.

3. Iterative improvement

The idea is simple. If we have a guess for the solution then we can warp the first image

and solve the flow problem between the warped image and the second image. Assuming that

the guess is not misleading we then have a simpler flow problem to solve. But there are two

problems in this approach. One is that warping is not cheap and it may introduce noise of its

own. The second is that then we work with the residual of the flow not the flow itself. This

will not work well with other constraints that need the actual flow (like smoothness con-

straints, structure from motion constraints etc). The first problem we can solve by rounding

the guess to the nearest integer and using this to warp the image. Integer warping does not

cost much in terms of CPU. The other problem can be solved by appropriate mathematical

manipulations.
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Let’s use the notationW[ I , ug] to denote an image warped byug. We also use one

dimensional image to simplify the derivations. Extension to two dimensions is straightfor-

ward. The time derivativeI t is not I2 − I1 anymore butI t = I2 − W[ I1, ug] whereug is the

(rounded) guess for the flow. The optic flow equation becomes

I xur + (I2 − W[ I1, ug]) = 0

whereur is the residual of the flow we seek. To avoid working with the residual we add and

subtractI xug and we get

I xu + (I2 − W[ I1, ug] − I xug) = 0

whereu = ug + ur . The spatial derivatives then become

I x =
1

2





∂I2

∂x
+ W





∂I1

∂x
, ug









4. Hierarchical computation

The question is where can we get a good guess in order to apply the above method. If the

flow is small then we can start with a guess equal to zero. If it is large it is better to reduce the

resolution (usually to half) and solve the coarse problem first [1]. The main issue here is the

image reduction and the image expansion. The reduction must be computationally inexpen-

sive and it should not create frequency aliasing and the filters used should avoid sharp

changes in the spectral response. The reason for this last requirement is that otherwise features

in the image would make sudden appearances. Consider for instance a periodic texture with

fundamental spatial frequencyf that is slightly greater than the cutoff f requency for some

scale. Then the texture is invisible. But if the camera moves towards the texture then the
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fundamental frequency suddenly becomes clearly visible in the second frame. This is bound

to create problems to any flow algorithm.

The image reduction is done by prefiltering with a low pass filter to eliminate higher fre-

quencies and then subsampling. A reduction by a power of two (2, 4, 8 etc) makes the sub-

sampling easy. We now describe the prefiltering in one dimension only. We use separable two

dimensional filters so we simply apply the 1-D filters once along each dimension to do 2-D

filtering.

Idealy, we would like to convolve the image with the sampling function with cut off
π
2

Sa(
x

2
) =

sin(
π
2

x)

π
2

x

This will cut all the frequencies in[π /2. .π ] that will create aliasing when we subsample. But

the tails of the sampling function are too long (the sampling function decays as slow asa/x)

and we have to use the standard windowing approach and multiply the sampling function by a

quickly decaying function like Gaussian (there are many other choices but for this case a

Gaussian is enough). Of course this does not solve all the problems. The Fourier transform of

the ideal sampling function is a box function but if we multiply it by a Gaussian it becomes a

rounded box function (Fig. 1.).The tail of the rounded box function goes beyond
π
2

creating

aliasing. Although by increasing the width of the Gaussian we can make this tail as small as

we want, we cannot eliminate it completely because it is computationally expensive. The cost

of the convolution is proportional to the width (support) of the filter.
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Figure 4.1 The Fourier spectrum of a Gaussian windowed sampling function with σ equal to 3, 5, 7 and the Fourier spectrum of
the filters with reduced cutoff points for σ equal to 3, 4 and 5.

Even if we were ready to bear the cost by using very efficient hardware like an array of

Transputers or DSPs, there are still two issues. One is that we introduce sharp changes in the

spectral response of the filter with the consequences mentioned above. The other is that no

flow algorithm will work well on images that contain frequencies close to the Nyquist limit.

Given the unforgiving nature of the flow estimation problem, the error that is thus introduced

is unacceptable.

Luckily we don’t need a completely new approach to solve these problems.We simply

reduce the cutoff point to a lower frequency so that the tail of the rounded box does not

extend beyond
π
2

. In practice a cutoff that is
π
2

−
2

σ
works well (if the remants of the tail that

go beyond
π
2

create aliasing problems use
3

σ
), whereσ is the standard deviation of the Gaus-

sian. Asshown in Fig. 1. a value ofσ between 3 and 5 is appropriate.
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5. Experiments

We conducted experiments with real and synthetic images. The results from the synthetic

images were perfect (but then, they were designed to work well with this algorithm). We

report only on the experiments on real images.

For the experiments we used two image sequences with two frames each. The one is the

NASA sequence with the camera moving towards a coke can (Fig. 1.) and the other is from

the CMU’s Calibrated Image Laboratory that is the scene of the model of a castle and the

camera translates horizontaly in a direction parallel to the image plane (Fig. 2.). We display

the result in mainly two ways. One is the standard needlemap and the other is the inverse

magnitude map. This is bright at places where the flow is small and dark where it is large.

Figure 5.1 The first and fifth images of the NASA coke sequence.
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Figure 5.2 The third image of the castle sequence. As a second image in our experiments we used the forth image. The dis-
placement varies between 20 and 30 pixels.

5.1. NASAsequence

This sequence was designed for experiments in optical flow estimation and structure

from motion. At every point the displacement is less than one pixel per frame and the scene

contains several discontinuities and specular reflections that give rise to transparency phenom-

ena. For this image we did not need the hierarchical component of the algorithm because the
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displacements were small.

5.2. Castlesequense

The castle sequense was designed for camera calibration and not for optical flow. Thus

the displacements are unusualy large. The images contain several discontinuities but no

Figure 5.3 The needlemap of the coke sequence. The flow vectors are mostly trained towards the focus of expansion. The flow
is meaningfull even in part of the hole of the mounting bracket at the lower left side of the image.

Figure 5.4 The weight for the horizonal uniform function of width 1 for the NASA sequence.
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Figure 5.4 The inverse of the magnitude of the flow of the NASA sequense. It is consistent with the distance of the objects from
the camera and from the focus of expansion. The pencils are widened by 2-4 pixels on each side. The flow on the wires on the
left side of the left pencil and the right side of the right pensil is clearly visible.

specular reflections. At several places the main linear features are parallel to the direction of

flow giving rise to the apperture problem. For this image the vectors in the needle map are all

horizontal and no interesting deductions can be made from it. The inverse magnitude though

is extremely interesting because due to the direction of translation it is proportional to the

depth. The house in the left foreground is dark and its side wall is progressively brighter, the

trees on its right are clearly distinguishable, the different levels of the wall are also visible.

The cylindrical shape of the wall is apparent. The flow of the tower in the far background is

blended with the dotted white wall of the lab in the placesbetweenthe dots while at the dots

the flow is consistent with the distance to the wall. There are a few places where the inverse
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magnitude is incorectly very dark or very white due to the apperture problem.

6. Conclusions

We presented a simple and practical algorithm for optic flow estimation.The main qual-

ities of the algorithm are the following:

• Computes the flow very accurately in the places with sufficient variation in the gray

level.

• Computes the flow up until very close to a discontinuity, if both sides of the discontinu-

ity have sufficient variation in the gray level.

• It works well with extremely large displacements. We tried up to 30 pixels displacement

in a real image.

• It does not require heavy computation. It is roughly 1.5 times slower than the Lucas and

Kanade algorithm but it is much more robust.

• The algorithm uses two frames only.

Credits

The coke can images are from the “NASA sequence” by Banavar Sridar and it was part

of the standard image sequences of the Workshop on Motion 1991. The castle images are

from the Calibrated Images Laboratory at CMU. The plots were done using gnuplot and the

algorithm was implemented on MediaMath [23].

Financial support was provided by NSERC of Canada.
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Figure 5.6 The inverse of the magnitude of the castle sequence. Due to the direction of translation this is proportional to the
depth map.
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Figure 5.7 The weight of the smallest horizontal filter used in the last iteration.

Figure 5.8 The areas where the flow is stable are white. This image was obtained by thresholding the determinant of A.
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