
York University EECS 3101Z Eric Ruppert January 31, 2025

Homework Assignment #4
Due: February 14, 2025 at 5:00 p.m.

The same rules apply as for Assignment 1. (In particular, you can work in pairs, where each
pair submits just one paper.)

1.[4] In the first lecture, we saw an algorithm that checks whether there is some value that appears more
than n/2 times in an (unsorted) array A[1..n]. That algorithm runs in O(n) time.

In a recent lecture, we saw an algorithm Select(A[1..n], k) that finds the kth smallest element
of an (unsorted) array A[1..n] in O(n) time. If A contains duplicates, this algorithm returns the
value that would appear in position k of the sorted version of array A.

Now consider the problem of deciding whether some value appears more than n/5 times in an
(unsorted) array A[1..n]. Give a simple algorithm to solve this problem in O(n) time. Briefly
explain why your algorithm is correct. (You do not have to give a formal proof.)

Hint: Your algorithm should call Select a few times to find a few candidate values that you
can then check.

2. Some scientists repeatedly do an experiment and take a measurement. They want to find out the
median value of the measurement.

They maintain a hash table to keep track of the measurements. The hash table stores a set of
pairs (val, freq), where freq represents the number of times the scientists have seen the measure-
ment val so far. Each time they repeat the experiment, and get a measurement of val, they look
up val in the hash map and increment its corresponding freq by 1 (or insert (val, 1) into the hash
table if val has never been seen before).

At the end of their experiment they iterate across the hash table and collect all the (val, freq)
pairs into two arrays V al[1..n] and Freq[1..n]. Here, n is the number of different values that were
seen as measurements. The arrays are not sorted, since the hash function scrambles keys.

Let r =
n∑

i=1
Freq[i] be the total number of repetitions of the experiment. Note that r could be

much larger than n. We want to find a median measurement m such that
∑

i:V al[i]<m
Freq[i] ≤ r/2

and
∑

i:V al[i]>m
Freq[i] ≤ r/2. (In other words, at most half the repetitions obtained a measurement

less than m and at most half obtained a measurement greater than m.) We wish to do this in O(n)
time.

(a)[4] To solve the problem, we generalize it a little. Given f , we want to design a Find function
to find the value vf such that

∑
i:V al[i]<vf

Freq[i] < f and
∑

i:V al[i]≤vf

Freq[i] ≥ f . (Intuitively, if

you wrote down all the results of measurements one by one in sorted order, vf would appear
in the fth position.)

Fill in the missing parts of the following algorithm to do this.

1 over. . .

EECS 3101Z Assignment 4 January 31, 2025

1: Find(V al[1..n], F req[1..n], f)

2: Precondition: n ≥ 1 and 1 ≤ f ≤
n∑

i=1
Freq[i]

3: if n = 1 then return V al[1]
4: else
5: vmid ← Select(V al[1..n], bn/2c) . algorithm from text Section 9.3
6: create arrays V allow[1.. bn/2c], F reqlow[1.. bn/2c], V alhigh[1.. dn/2e], F reqhigh[1.. dn/2e]
7: indexlow ← 1
8: indexhigh ← 1
9: totallow ← 0 . will store total frequency in low half

10: for i← 1..n do . split arrays into two halves by value
11: if V al[i] ≤ vmid then
12: V allow[indexlow]← V al[i]
13: Freqlow[indexlow]← Freq[i]
14: indexlow ← indexlow + 1
15: totallow ← totallow + Freq[i]
16: else
17: V alhigh[indexhigh]← V al[i]
18: Freqhigh[indexhigh]← Freq[i]
19: indexhigh ← indexhigh + 1
20: if then
21: return Find()
22: else
23: return Find()

Give a brief explanation of how you designed your solution.

You do not have to prove your algorithm is correct. (However, if you want to check your
solution, you can prove it is correct; just don’t hand in that proof.)

(b)[2] Show that your solution to part (a) runs in O(n) time.

(c)[1] How would you use the algorithm in (a) to find the median value m described above?

2

