
York University EECS 3101Z Eric Ruppert January 10, 2025

Homework Assignment #1
Due: January 17, 2025 at 5:00 p.m.

• You will submit this assignment online via Crowdmark.

• Before starting the assignment, you must read the course policy on academic honesty on the
course web page.

• You may work in pairs. Each pair should submit only one paper.

• If you discuss the assignment with anyone (other than your partner, if you have one), you
should mention their names at the beginning of your submission. You should not take written
notes away from such discussions, and you should write up your solutions yourselves.

1.[6] Put the following four functions in order so that f comes before g if f is O(g). All logs have base 2.

√
n

√
log n (log 4

√
n)2 log

√
n+ 5

Briefly explain why your answer is correct using the formal definition of big-O notation.

2. Consider the problem of computing mn for natural numbers m,n.

(a)[3] Fill in the blanks in the following algorithm.

1: Power(m,n)
2: Precondition: m,n ∈ IN and m > 0
3: y ← m
4: x← n
5: z ←
6: loop
7: invariant: y > 0 and mn = z · yx
8: exit when
9: if x is odd then z ←

10: x← ⌊x/2⌋ ▷ chop off rightmost bit of x
11: y ← y · y
12: return z
13: Postcondition: returns mn

Remark: y > 0 is included as part of the invariant so that we know yx makes sense even if
x = 0. (00 is undefined.)

(b)[4] Prove that the statement on line 7 is indeed a loop invariant.

(c)[1] Explain why the algorithm terminates.

(d)[1] Use the loop invariant to explain why the postcondition is satisfied when the loop terminates.

(e)[1] Assume the binary representations of m and n are at most ℓ bits long. Give a good upper
bound (using big-O notation) on the number of bits of the largest integer ever stored in any
of the variables. Briefly explain why your answer is correct.

1 over. . .



EECS 3101Z Assignment 1 January 10, 2025

(f)[2] Recall that we considered in class an algorithm that can multiply two k-bit numbers in O(k2)
time. If we use that algorithm to perform the multiplications, give a good upper bound (using
big-O notation) on the running time of the algorithm in part (a) in terms of ℓ.

How does this compare with a simple loop that multiplies n copies of m together?

2


