
York University EECS 4101/5101 October 22, 2024

Homework Assignment #6
Due: November 1, 2024 at 5:00 p.m.

1. Consider a set ADT that only has to support Delete and Find operations (no Inserts).
Suppose we use an external (leaf-oriented) BST to represent the set. Initially, the tree contains

n0 keys of the set and is perfectly balanced so that its height is exactly dlog2 n0e. The value of n0

is known. The argument to a Delete operation is a pointer to the leaf that must be deleted.
Our goal is to design a data structure so that in any sequence of Find and Delete operations,

the worst-case time for a Find is O(log n) (where n is the number of keys stored in the set at the
time the Find is performed) and the amortized time for each Delete is O(1).

The idea is that a Delete does not actually remove the leaf. Instead, it simply marks the
leaf (by setting a bit stored in the leaf), to indicate that the leaf’s key has been deleted. Then,
periodically, the entire tree is rebuilt to again make it a perfectly balanced BST containing all the
unmarked leaves.

(a)[6] Describe how to rebuild the tree efficiently. If the old tree contains n leaves, how much time
does it take to do the rebuild? Give your answer in terms of n using Θ notation and briefly
justify your answer.

(b)[1] Explain how would you decide when to rebuild the tree in order to achieve the time bounds
described above.

(c)[3] Show that the amortized time per Delete is O(1).

(d)[2] Show that the worst-case time per Find is O(log n) when the tree has n (unmarked) keys.

1


