
Structs
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

debug with gdb

https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-
using-gdb-in-6-simple-steps/

Launch gdb

Set up a break point inside C program

Execute the C program in gdb
debugger

Printing the variable values inside
gdb debugger

Quit the gdb

Structures in C

• Be able to use
compound data
structures in programs

• Be able to pass
compound data
structures as function
arguments, either by
value or by reference

• Be able to do simple
bit-vector
manipulations

struct myStructure {
 int myNum;
 char myLetter;
};

int main() {
 struct myStructure s1;
 return 0;
}

Structures
• Compound data:

• A date is
• an int month and
• an int day and
• an int year

• Unlike Java, C doesn’t
automatically define functions
for initializing and printing …

struct ADate {
 int month;
 int day;
 int year;
};

struct ADate date;

date.month = 2;
date.day = 4;
date.year = 2021;

Structure Representation &
Size

sizeof(struct …) =
sum of sizeof(field)

6261 EF BE AD DE
c1 c2 i

struct CharCharInt {
 char c1;
 char c2;
 int i;
} foo;

foo.c1 = ’a’;
foo.c2 = ’b’;
foo.i = 0xDEADBEEF;

Theoreti
cal:

Structure Representation &
Size

sizeof(struct …) =
sum of sizeof(field) struct CharCharInt {

 char c1;
 char c2;
 int i;
} foo;

foo.c1 = ’a’;
foo.c2 = ’b’;
foo.i = 0xDEADBEEF;

6261 EF BE AD DE
c1 c2 ipadding

Real:

Variations in Struct declaration

• Struct variables can be declared inside
other structs

• Struct members can be arrays or pointers
14

struct D {
 int e;
 int f;
}

struct X {
 int i;
 struct D d;
 int j;
}

struct W {
 int i;
 int a[10];
 int j;
}

struct V {
 int i;
 int* a;
 int j;
}

Typedef
• Mechanism for creating new type names
• give an alias name to an existing type
• Create new type

typedef struct ADate {
 int month;
 int day;
 int year;
} Date;

Date d = { 2, 4, 2021 };
New type name

typedef int xyz;
xyz i = 0;

// defining structure
struct str1 {
 int a;
};

// defining new name for str1
typedef struct str1 str1;

// another way of using
typedef with structures
typedef struct str2 {
 int x;
} str2;

Typedef

int main()
{
 // creating structure
variables using new names
 str1 var1 = { 20 };
 str2 var2 = { 314 };

 printf("var1.a = %d\
n", var1.a);
 printf("var2.x = %d",
var2.x);

 return 0;
}

Things you can and can't do
• You can

Use = to assign whole struct variables
• You can
• Have a struct as a function return type

• You cannot
• Use == to directly compare struct variables;

can compare fields directly
• You cannot
• Directly scanf or printf structs; can read fields

one by one.

Arrays of Structures

Date birthdays[100];

bool check_birthday(Date today)
{
 int i;

 for (i = 0; i < 100; i++) {
 if ((today.month == birthdays[i].month)
&&
 (today.day == birthdays[i].day))
 return true;

 return false;
}

Array
declaration

Array index,
then structure

field

Structures and arrays

Initializing Structures

• Structures within structures:

Struct can be used as
input/return type

Nested Structures
struct point {
 int x;
 int y;
};
struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

Width? Length? Area?

Nested Structures
struct point {
 int x;
 int y;
 int z;
};
struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

Width? Length? Area?

Nested Structures
struct cube {
struct rectangle r1;
struct rectangle r2;
struct rectangle r3;
struct rectangle r4;
struct rectangle r5;
struct rectangle r6;

};
struct cube c;
c.r1.pt1.x = 1;
c.r1.pt1.y = 2;
c.r1.pt1.z = 0;

…

	Structs EECS 2031
	Acknowledgement
	debug with gdb
	Launch gdb
	Set up a break point inside C program
	Execute the C program in gdb debugger
	Printing the variable values inside gdb debugger
	Quit the gdb
	Structures in C
	Structures
	Structure Representation & Size
	Structure Representation & Size (2)
	Slide 13
	Variations in Struct declaration
	Typedef
	Typedef (2)
	Things you can and can't do
	Arrays of Structures
	Structures and arrays
	Initializing Structures
	Struct can be used as input/return type
	Nested Structures
	Nested Structures (2)
	Nested Structures (3)

