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debug with gdb

https://u.osu.edu/cstutorials/2018/09/28/how-to-debug-c-program-
using-gdb-in-6-simple-steps/



Launch gdb



Set up a break point inside C program



Execute the C program in gdb 
debugger



Printing the variable values inside 
gdb debugger



Quit the gdb 



Structures in C

• Be able to use 
compound data 
structures in programs

• Be able to pass 
compound data 
structures as function 
arguments, either by 
value or by reference

• Be able to do simple 
bit-vector 
manipulations

struct myStructure {
  int myNum;
  char myLetter;
};

int main() {
  struct myStructure s1;
  return 0;
}



Structures
• Compound data:

• A date is
• an int month and
• an int day and
• an int year

• Unlike Java, C doesn’t 
automatically define functions 
for initializing and printing …

struct ADate {
   int  month;
   int  day;
   int  year;
};

struct ADate date;

date.month = 2;
date.day = 4;
date.year = 2021;



Structure Representation & 
Size

sizeof(struct …) =
sum of sizeof(field)

6261 EF BE AD DE
c1 c2 i

struct CharCharInt {
   char  c1;
   char  c2;
   int   i;
} foo;

foo.c1 = ’a’;
foo.c2 = ’b’;
foo.i  = 0xDEADBEEF;

Theoreti
cal:



Structure Representation & 
Size

sizeof(struct …) =
sum of sizeof(field) struct CharCharInt {

   char  c1;
   char  c2;
   int   i;
} foo;

foo.c1 = ’a’;
foo.c2 = ’b’;
foo.i  = 0xDEADBEEF;

6261 EF BE AD DE
c1 c2 ipadding

Real:





Variations in Struct declaration

• Struct variables can be declared inside 
other structs

• Struct members can be arrays or pointers
14

struct D {
  int e;
  int f;
}

struct X {
  int      i;
  struct D d;
  int      j;
}

struct W {
  int i;
  int a[10];
  int j;
}

struct V {
  int  i;
  int* a;
  int  j;
}



Typedef
• Mechanism for creating new type names
• give an alias name to an existing type 
• Create new type

typedef struct ADate {
   int month;
   int day;
   int year;
} Date;

Date d = { 2, 4, 2021 };
New type name

typedef  int  xyz;
xyz i = 0;



// defining structure
struct str1 {
    int a;
};
  

// defining new name for str1
typedef struct str1 str1;
  

// another way of using 
typedef with structures
typedef struct str2 {
    int x;
} str2;

Typedef

int main()
{
    // creating structure 
variables using new names
    str1 var1 = { 20 };
    str2 var2 = { 314 };
  

    printf("var1.a = %d\
n", var1.a);
    printf("var2.x = %d", 
var2.x);
  

    return 0;
}



Things you can and can't do
• You can

Use = to assign whole struct variables
• You can
• Have a struct as a function return type

• You cannot
• Use == to directly compare struct variables; 

can compare fields directly
• You cannot
• Directly scanf or printf structs; can read fields 

one by one.



Arrays of Structures

Date birthdays[100];

bool check_birthday(Date today)
{
  int i;

  for (i = 0; i < 100; i++) {
    if ((today.month == birthdays[i].month) 
&&
        (today.day == birthdays[i].day))
      return true;

  return false;
}

Array 
declaration

Array index, 
then structure 

field



Structures and arrays



Initializing Structures

• Structures within structures:



Struct can be used as 
input/return type 



Nested Structures 
struct point {
  int x;
  int y;
};
struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

Width? Length? Area?



Nested Structures 
struct point {
  int x;
  int y;
 int z;
};
struct rectangle {
struct point pt1;
struct point pt2;

};

struct rectangle screen;
screen.pt1.x = 1;
screen.pt1.y = 2;
screen.pt2.x = 8;
screen.pt2.y = 7;

Width? Length? Area?



Nested Structures 
struct cube {
struct rectangle r1;
struct rectangle r2;
struct rectangle r3;
struct rectangle r4;
struct rectangle r5;
struct rectangle r6;

};
struct cube c;
c.r1.pt1.x = 1;
c.r1.pt1.y = 2;
c.r1.pt1.z = 0;

…
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