
Pointers
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

Using the malloc’d Array
• Once the memory is allocated, it can be used with

pointers, or with array notation
• Example:

int *p, n, i;
scanf(“%d”, &n);
p = (int *) malloc (n * sizeof(int));

 for (i=0; i<n; ++i)
 scanf(“%d”, &p[i]);

The n integers allocated can be accessed as *p,

*(p+1), *(p+2),…, *(p+n-1) or just as p[0], p[1],
p[2], …,p[n-1]

Example

printf("Input marks for %d
students \n",N);
 for (i=0; i<N; i++)
 scanf ("%f", &marks[i]);

 for(i=0;i<N;i++)
 sum += marks[i];

 avg = sum / (float) N;

 printf("Average marks = %f \n",
 avg);
 free (marks);
 return 0;
}

int main()
{
 int i,N;
 float *marks;
 float sum=0,avg;

 printf("Input no. of students\n");
 scanf("%d", &N);

 marks = (float *)
 malloc(N * sizeof(float));

Debugging

• gdb and gcc with option -g.
• valgrind: illegal accesses,
unintialized values, etc.

• Hard to reason about a such
complicated program only using
these generic tools.

• Use your heap checker to print out
more information before it crash
and burns!

valgrind

valgrind

Linked Lists
• A linear collection of self-referential objects, typically

called nodes, connected by other links
• linear: for every node in the list, there is one and

only one node that precedes it (except for possibly
the first node, which may have no predecessor,) and
there is one and only one node that succeeds it,
(except for possibly the last node, which may have no
successor)

• self-referential: a node that has the ability to refer
to another node of the same type, or even to refer to
itself

• node: contains data of any type, including a
reference to another node of the same data type, or
to nodes of different data types

• Usually a list will have a beginning and an end; the
first element in the list is accessed by a reference
(e.g., pointer), and the last node in the list will have a
reference that is set to NULL.

Linked Characteristics
• A linked list is a data structure which can

change during execution.
• Successive elements are connected by

pointers.
• Last element points to NULL.
• It can grow or shrink in size during execution

of a program.
• It can be made just as long as required.
• It does not waste memory space.

A B C

head

• Keeping track of a linked list:
• Must know the pointer to the first element of

the list (called start, head, etc.).

• Linked lists provide flexibility in allowing
the items to be rearranged efficiently.

• Insert an element
• Delete an element

Linked Characteristics

Array versus Linked Lists
• Arrays are suitable for:

• Inserting/deleting an element at the end.
• Randomly accessing any element.
• Searching the list for a particular value.

• Linked lists are suitable for:
• Inserting an element randomly.
• Deleting an element randomly.
• Applications where sequential access is

required.
• In situations where the number of elements

cannot be predicted beforehand.

Illustration: Insertion

AA

Item to be
inserted

X

X

A B C

B C

curr

tmp

Pseudo-code for
insertion

typedef struct nd {
 struct item data;
 struct nd * next;
 } node;

void insert(node *curr)
{
node * tmp;

tmp=(node *) malloc(sizeof(node));
tmp->next=curr->next;
curr->next=tmp;
}

Illustration: Deletion

A B

A B C

C

Item to be deleted

curr tmp

Pseudo-code for deletion
typedef struct nd {
 struct item data;
 struct nd * next;
 } node;

void delete(node *curr)
{
node * tmp;
 tmp=curr->next;
curr->next=tmp->next;
free(tmp);
}

Types of Lists
• Depending on how the links are used to

maintain adjacent nodes, several different types
of linked lists are possible.

• Linear singly-linked list (or simply linear list)
• One we have discussed so far.

A B C

head

• Circular linked list
• The pointer from the last element in the list points

back to the first element.

A B C

head

• Double linked list
• Pointers exist between adjacent nodes in both

directions.
• The list can be traversed either forward or

backward.
• Usually two pointers are maintained to keep track

of the list, head and tail.

A B C

head tail

typedef struct nd {
 struct item data;
 struct fnd * next; struct bnd * back;
 } node;

Basic Operations on a List

• Creating a list
• Traversing the list
• Inserting an item in the list
• Deleting an item from the list
• Concatenating two lists into one

Example: Working with
linked list

• Consider the structure of a node as
follows:
struct stud {
 int id;
 char name[25];
 char email[50];
 struct stud *next;
 };

 /* A user-defined data type called “node” */
typedef struct stud node;
node *head;

Creating a List
• To start with, we have to create a node (the

first node), and make head point to it.

head = (node *) malloc(sizeof(node));

head

email

name

id

next

Contd.
• If there are n number of nodes in the

initial linked list:
• Allocate n records, one by one.
• Read in the fields of the records.
• Modify the links of the records so that the

chain is formed.

A B C

head

node *create_list()
{
 int k, n;
 node *p, *head;

 printf ("\n How many elements to enter?");
 scanf ("%d", &n);

 for (k=0; k<n; k++)
 {
 if (k == 0) {
 head = (node *) malloc(sizeof(node));
 p = head;
 }
 else {

 p->next = (node *) malloc(sizeof(node));
 p = p->next;
 }

 scanf ("%d %s %s", &p->id, p->name, &p->email);
 }

 p->next = NULL;
 return (head);
}

• To be called from main() function as:

 node *head;

 ………
 head = create_list();

Traversing the List

• Once the linked list has been
constructed and head points to the first
node of the list,

• Follow the pointers.
• Display the contents of the nodes as they are

traversed.
• Stop when the next pointer points to NULL.

void display (node *head)
{
 int count = 1;
 node *p;

 p = head;
 while (p != NULL)
 {
 printf ("\nNode %d: %d %s %s", count,
 p->id, p->name, p->email);
 count++;
 p = p->next;
 }
 printf ("\n");
}

• To be called from main() function as:

 node *head;

 head = create_list();
 display (head);

Inserting a Node in a List

• The problem is to insert a node before a
specified node.

• Specified means some value is given for the
node (called key).

• In this example, we consider it to be id.
• Convention followed:

• If the value of id is given as negative, the
node will be inserted at the end of the list.

How to insert?

• When a node is added at the beginning,
• Only one next pointer needs to be modified.

• head is made to point to the new node.
• New node points to the previously first element.

• When a node is added at the end,
• Two next pointers need to be modified.

• Last node now points to the new node.
• New node points to NULL.

• When a node is added in the middle,
• Two next pointers need to be modified.

• Previous node now points to the new node.
• New node points to the next node.

void insert (node **head)
{
 int k = 0, id;
 node *p, *q, *new;

 new = (node *) malloc(sizeof(node));

 printf ("\nData to be inserted: ");
 scanf ("%d %s %s", &new->id, new->name, &new->email);
 printf ("\nInsert before id:");
 scanf ("%d", &id);

 p = *head;

 if (p->id == id) /* At the beginning */
 {
 new->next = p;
 *head = new;
 }

 else
 {

while ((p != NULL) && (p->id != id))

 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* At the end */
 {
 q->next = new;
 new->next = NULL;
 }

 else if (p->id == id)
 /* In the middle */
 {
 q->next = new;
 new->next = p;
 }
 }
}

The pointers
q and p
always point
to consecutive
nodes.

• To be called from main() function as:

 node *head;

 head = create_list();
 display (head);
 insert (&head);

Deleting a node from the
list

• Here also we are required to delete a
specified node.

• Say, the node whose id field is given.

• Here three scenarios arise:
• Deleting the first node.
• Deleting the last node.
• Deleting an intermediate node.

void delete (node **head)
{
 int id; /* To be deleted */
 node *p, *q;

 printf ("\nDelete for id:");
 scanf ("%d", &id);

 p = *head;
 if (p->id == id)
 /* delete the first element */
 {
 *head = p->next;
 free (p);
 }

 else
 {
 while ((p != NULL) && (p->id != id))
 {
 q = p;
 p = p->next;
 }

 if (p == NULL) /* Element not found */
 printf ("\nNo match :: deletion failed");

 else if (p->id == id)
 /* delete any other element */
 {
 q->next = p->next;
 free (p);
 }
 }
}

	Pointers EECS 2031
	Acknowledgement
	Using the malloc’d Array
	Example
	Slide 5
	Debugging
	valgrind
	valgrind (2)
	Linked Lists
	Linked Characteristics
	Linked Characteristics (2)
	Array versus Linked Lists
	Illustration: Insertion
	Pseudo-code for insertion
	Illustration: Deletion
	Pseudo-code for deletion
	Types of Lists
	Slide 18
	Slide 19
	Basic Operations on a List
	Example: Working with linked list
	Creating a List
	Contd.
	Slide 24
	Slide 25
	Traversing the List
	Slide 27
	Slide 28
	Inserting a Node in a List
	How to insert?
	Slide 31
	Slide 32
	Slide 33
	Deleting a node from the list
	Slide 35
	Slide 36

