Pointers
EECS 2031

Song Wang

wangsong@eecs.yorku.ca
eecs.yorku.ca/~wangsong/

Acknowledgement

e Some of the covered materials are based
on previous EECS2031 offerings:

« Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

Structures

Compound data: struct Date {
int month;
. int day;
*A date is int yle;
e an int month and }:
e an int day and
e an int year struct Date date;

date.month =
date.day = 4,
date.year = 2021;

*Unlike Java, C doesn’t automatically
define functions for initializing and
printing ...

Arrays of Structures

Array declaration Constant

\ — /

Date birthdays[NFRIENDS];

bool
check_birthday(Date today)

{
int i; Array index, then

— structure field
for (i = @; i < NFRIENDS; i++) { T//,//”/////
if ((today.month == birthdays[1i].month) &&

(today.day == birthdays[i].day))
return (true);

return (false);

}

You can pass structures as arguments to functions

main() {

struct shape
do_sth(s)

&

£

s = {1,2};

/* s.width? s.height? */

void do sth(struct shape d) call-by-value

{

d.width
d.height += 200;

+= 100;

This is|call-by-value
Function cannot change the passed struct

d = s //copy members
d.width = s.width
d.height = s.height

- a copy of the struct is made

» structs can be used as return values for functions as well
shape make dim(int width, int height)

shape d; // in stack
d.width = width;
d.height = height;
return d;

}

maini() {

shape myShape = make dim(3,4);

// myShape = d;

Copy members, d i1s gone (deallocated) afterwards

Structure and Functions --Structure
Pointers

-- Structure Pointers

« call-by-value is inefficient for large structures: not decayed
= use pointers (explicitly) !
« This also allows to change the passing struct

main () {
shape s = {1,3};
shape * ptrS = &s; // pointer to struct shape
float £ = get area(ptxS); // float £ = get area(é&s);
}

[Expect a pointer to
float get area(shape *P}~£E struct shape
{ shape tmp = *p; '
s
return tmp.width * tmp.height; Ptrs““:i
. width
} P height

Structure and Functions --Structure
Pointers

« call-by-value is inefficient for large structures: not decayed
» use pointersl!l
* This also allows to change the passing struct

main () { S
shape s = {1,2}; * | width
do sth(ss) ; P i
}
void do sth(shape * p)
{
(*p) .width += 100; Pointee s is modified !
(*p) .height += 200;
) ‘ S5

Structure and Functions --Structure

Pointers
vold do_sth(shape *p) {
(*p) .width += 100; S
* width
} P—— height

® Beware when accessing members a structure via its pointer
*p.width)(

® Operator . takes higher precedence over operator *
(*p) .width /"

* Accessing member of a structure via its pointer is so
common that it has its own operator

p -> width

Pointers to Structures

Date void
create_datel(int month, create_date2(Date *d,
int day, ’_,,,————””’Ent month,
int year) Pass-by-reference int day,
{ int year)
Date d;
= month;
onth = month; = day;
ay = day; = year;
ear = year;
return (d);
} N Date today;
\\\ »today = create \datel(2, 4, 2021);
Copies date™ | create_date2(&today, 2, 4, 2021);

Arrays of structures --declaration

« Structures can be arrayed same as the other variables

shape {
float width;
float height;

b
shape chairs[5]; // recall: int arr[5]
array of 5 (uninitialized) struct
0 1 2 3 4
width width width width width
height ||| height | || height ||| height ||| height Not NULL

Dynamic memory allocation
motivation

+ When we define an array, we allocate memory for it

int arr[20];
sets aside space for 20 ints (80 bytes)

* This space Is allocated at compile-time (i.e. when the
program is compiled)

#define SIZE 20

int arr[SIZE]; 20*4 bytes
char arr[20][30]; 20*30*1 bytes
int arr[] = {3,5,6}; 3*4 bytes
char arr[] = "Hello" 6*1 bytes

Dynamic memory allocation
motivation
What if we do not know how large our array should be?
length Is determined at runtime rather than compile time

In other words, we need to be able to allocate memory at
run-time (i.e. while the program is running)

How?

int n;

printf ("How many elements in int array? ")
scanf ("sd", &n) ;

int my array[n]; [/*butnotallowed in ANSI-C */
gcc —ansi -pedantic varArray.c x
gceccec —ansi —-pedantic-errors varArray.c

ISO C90 forbids wvariable length array 'my array’

Fortunately, C supports dynamic storage allocation: the
ability to allocate storage during program execution.

Using dynamic storage allocation, we can design data
structures that grow (and shrink) as needed.

The <stdlib.h> header declares three memory
allocation functions:
malloc Allocates a block of memory but doesn't initialize it.
calloc Allocates a block of memory and clears it.
realloc Resizes a previously allocated block of memory:.

These functions return a value of type void * (a “generic’
pointer).
= function has no idea what type of data to store in the block.

1000 1001 1002 1003 1004

malloc() L ‘ |

+ "stdlib.h" defines:

void * malloc (int n);

+ allocates memory at run-time

« returns a void pointer to the memory that has at least n
bytes available (just allocated for you).

= Address of first byte e.g., 1000
= Can be casted to any type

Dangling Pointers
malloc() e

J

@

#include <stdlib.h>

int main() {

int *p; // uninitialized, not point to anywhere

*P=52; x
printf ("%d\n", *p):

segmentation fault

core dump

malloc()

#include <stdlib.h>

int main() {
int *p, %;
p = &x;
*p 52; // x=52
printf ("%d\n", *p);

X

3 326 327 328

0000000 Q0000000 }}&DMI}DU (0011 0100

malloc() p

1000 1001 1002 1003

II]II]D'D'D[:'[:'[:"[:'[:'[?[?DDDD [ooo0o00 | 0011 [:'101

#include <stdlib.h>

int main() {

int *p;

p = (int *) malloc(4);
*p = 527

printf ("%d\n", *p);

* Note: type conversion (cast) on result of malloc
p = malloc (4); also works. Will convert

malloc()

1000 1001 1002 1003

» A better approach to ensure portability ‘

int *p;

!

p = malloc(sizeof (int)) ;
52;

*
'O
Il

malloc()

+ Allocation not always successful

« malloc() returns NULL when it cannot fulfill the request, i.e.,
memory allocation fails (e.g. no enough space)

int *p;
p = (int *)malloc(100000000);// mallocreturns NULL
p = (int *)malloc(-10); // malloc returns NULL

NULL

« <stdlib.h> <stdio.h> <string.h> ...defines macro
NULL a special pointer constant with value 0

* 0 (zero) is never a valid address

* NULL == “0 as a pointer” == “points to nothing”
" int * p; // p == NULL? Not really
" p==07? // better use NULL like EOF

p = malloc (10000000) ;
if (p == NULL) { // an “exception”
exit(0) /* allocation failed; take appropriate action

}

else ..

if ((p = malloc(10000000)) == NULL) {
exit(0) /* allocation failed; take appropriate action

lelse ...

1024 1025 1026 1027
malloc() ([>

100y 1004 1008 1012 1016 mzcn\\}ﬂ/

#include <stdlib.h> | 2112

i

{ 0 1 2 3 4 n-1

- . in bytes allocated.
int n; n=7 28 bytes 1000~1027 allocated

printf ("How many elements in int array? ");
scanf ("%d", &n);

int main ()

int * p = malloc(n * sizeof (int)) ;
if (p == NULL)

ex1t(0) ;
// else
*p = 1; // pl[0]1 =1 second +1 +4°7?
*(p+l) = 2; // p+1 = 1004 p[ll= 2

*(pt2) = 12; // p+2 = 1008 p[2] = 12
} pointer arithmetic!!!

calloc()

« What if we want to allocate arrays of n element?
malloc (n * sizeof(int)) ;
alternatively,
void * calloc(int n, int size);

* calloc allocates an array of n elements where each
element has size size

+ eqg.
int *p;

p = (int *)calloc (6, sizeof(int));

calloc() vs. malloc()

* calloc(x , y) Is pretty much the same as
malloc(x * y)

except
" malloc does not initialize memory

= calloc Initializes memory content to O (zero)

]

100% 1004 1008 1012 1016 1020 1024

oo, 010 |0 -0

0 1 2 3 4 n-1

1020 1021 1022 1023
.-lll""-.-_-_""h-.
P x>

calloc() malloc())
IOD.F 1004 1008 1012 1016 142 1024
#include <stdlib.h> 1 2112
0 1 2 3 il n-l1
int main() {
. Ain bytes allocated.
int n; n=7 28 bytes 1000~1027 allocat

printf ("How many elements in int array? ") ;
scanf ("3d", &n);

//int * p
int * p = calloc(n , sizeof(int));
if (p == NULL) exit(0);

malloc(n * sizeof(int)) ;

*p = 1; // pl0] =1
*(p+l) = 2; // p+l 1004 p[l]l= 2
* (p+2) = 12; // P+2 1008 pl[2] = 12;

free()

« memory allocation functions malloc, calloc obtain
memory blocks from a storage pool known as the heap,
where storage Is persistent until the programmer explicitly
requests that it be deallocated (or program terminates)

» Ablock of memory that's no longer accessible to a
program is said to be garbage.

= A program that leaves garbage behind has a memory leak.

+ Some languages (e.g., Java) provide a garbage collector
that automatically locates and recycles garbage, but C
doesn’t.

Memory Leaks

int *p; o - I |
P malloc(20) ; —l

P = &1 ; //now point to sth else
F 1""~I ‘ Mem leak |
N
+ The first memory block is lost “forever” (until program
terminates).

» May cause problems (exhaust memory).

Memory Leaks

A program that forgets to deallocate a block is said to have a "memory
leak" which may or may not be a serious problem. The result will be
that the heap gradually fills up as there continue to be allocation
requests, but no deallocation requests to return blocks for re-use.

For a program that runs, computes something, and exits immediately,
memory leaks are not usually a concern. Such a “one shot” program
could omit all of its deallocation requests and still mostly work.

Memory leaks are more of a problem for a program that runs for an
indeterminate amount of time. In that case, the memory leaks can
gradually fill the heap until allocation requests cannot be satisfied, and
the program stops working or crashes.

free()

+ Instead, each C program is responsible for recycling its
own garbage by calling the £ree function to release

unneeded memory.
void free (void *ptr);

+ “frees” memory we previously allocated, tells the system
we no longer need this memory and that it can be reused

« address Iin “ptr” must have been returned from either
malloc, calloc Or realloc.

p = malloc(7*4);

free(p);

" EI prl p+2 wauswei
malloc() calloc() . (>
logg 1004 1008 1012 1016 00 Ny

#include <stdlib.h> 1 2112
i . 0 1 z 3 4 n -1
int main() { An bytes allocated.

int n; int *p; n=7 28 bytes 1000~1027 allocatec

printf ("How many elements in int array? "),
scanf ("%d", &n);

p = malloc(n * sizeof(int)); //or
p = calloc(n , sizeof(int));
if (p == NULL)

exit (0) ;
*p = 1,‘ // store 1 at address 1000 (1000~1003)
*(p+l) = 2; // p+l = 1004 store 2 at address 1004
*(p+2) = 12; // p+2 = 1008 store 12 at address 1008

pointer arithmetic!!!
free (p);
p=&1i;

char *ptr;

realloc() ptr = malloc(20);

ptr = realloc (ptr, 50)
resize a dynamically allocated array.

void *realloc (void *ptr, int size);

ptr must point to a memory block obtained by a previous call of
malloc, callocg, Oor realloc.

= ptr is NULL, a new block is allocated

size represents the new size of the block, which may be larger
or smaller than the original size.

realloc (NULL, n) behaveslke malloc (n).

realloc (ptr, 0) behaveslike free (prt), asitfrees
the memory block.

	Pointers EECS 2031
	Acknowledgement
	Structures
	Arrays of Structures
	Slide 5
	Slide 6
	Structure and Functions --Structure Pointers
	Slide 8
	Slide 9
	Pointers to Structures (2)
	Arrays of structures --declaration
	Dynamic memory allocation motivation
	Dynamic memory allocation motivation (2)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	malloc()
	malloc() (2)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Memory Leaks
	Slide 28
	Slide 29
	Slide 30
	Slide 31

