
More Linux Commands
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

Repetition * ? + summary

 ab*c matches ac abc abbc abbbc abbbbc ….
 ab?c matches ac abc
 ab+c matches abc abbc abbbc abbbbc
….

Regex Meaning Filename substitution
(wildcard)

a* 0 or more a a followed by 0 or more
anything

a? 0 or 1 a a following by 1 anything
a+ 1 or more a
[abc]
[a-c]

a or b or c a or b or c

• Don’t get confused with filename wildcard *
 ls ba* ba followed by 0 or more any char -- anything

 ls a*.c a followed by 0 or more any char – anything, then .c

Pattern Maning Example
c Non-special, matches itself 'tom'
\c Turn off special meaning '\$'
^ Start of line '^ab'
$ End of line 'ab$'
. Any single character '.nodes'
[…] Any single character in [] '[tT]he'
[^…] Any single character not in [] '[^tT]he'
R* Zero or more occurrences of R 'e*'
R? Zero or one occurrences of R (egrep) 'e?'
R+ One or more occurrences of R (egrep) 'e+'
R1R2 R1 followed by R2 '[st][fe]'
R1|R2 R1 or R2 (egrep) 'the|The'

4

anchored

repetition

Regular Expression Summary

Regular Expressions: Repetition Ranges,
Subexpressions

Removing Duplicate Lines: uniq

sort

sort Example

sort+ uniq

Comparing Files: cmp, diff

Comparing Files: cmp, diff

File Differences: diff

cut deal with fields (columns)

find Utility

find Utility

find example

find example

Processes

Process communication: Unix
Pipes

Pipeline Example

Shell Variables

23

• Different types of variables
• Environment variables: HOME, PATH…
• Parameter variables: $1, $2, …
• User-defined variables: student, file, x, ..

• Set PATH variable
PATH=$PATH:.:~/eecs2031/bin
export PATH # make PATH an environment variable,

which is inherited by all subprocesses
• Example:

[indigo 301] % bash #run bash
[indigo 301]$ x=1
[indigo 301]$ echo $x

Shell parameter variables

24

• If your script is invoked with parameters,
shell sets parameter variables

• $#: number of parameters

• $0, $1, …: command/script name, first/second
parameters

• $*, $@: Represents all command-line arguments
at once. They can be used to pass command-line
arguments to a program being run by a script
or function.

Shell parameter variables
(2)

25

• “$*”: all command-line arguments as a
single string. Equivalent to "$1$2 …".

• printf "The arguments were %s\n" "$*"

• "$@": all command-line arguments as
separate, individual strings. Equivalent to
"$1" "$2" ….

• best way to pass arguments on to another
program, since it preserves any whitespace
embedded within each argument.

• lpr "$@" #print each

Positional Parameters

Positional Parameter What It References
$0 References the name of the script
$# Holds the value of the number of positional parameters
$* Lists all of the positional parameters
$@ Means the same as $*, except when enclosed in double

quotes

"$*" Expands to a single argument (e.g., "$1 $2 $3")
"$@" Expands to separate arguments (e.g., "$1" "$2" "$3")
$1 .. ${10} References individual positional parameters

set Command to reset the script arguments

Set command

27

• set command, a shell builtin command
• display current variables, “set”
• set shell options, “set –f”, “set –n” ..
• set position parameters (no options),

[indigo 301] $ set Hello world;
[indigo 301] $ echo $1, $2

 Hello world

• Combine command substitution and set command
[indigo 301]$ set `who am i`
[indigo 301] $ echo Welcome, $1! You logged in from $5.
[indigo 301] $ set `date`
[indigo 301] $ echo The year is $6
The year is 2023

Set command
When we run the set command without any arguments, it returns a list
of all shell settings

Set -f
• -f prevents us from using wildcards to search

for filenames or strings.

set -x
• print each command or pipeline before executing it,

preceded by a special prompt (usually +)

set –x
• print each command or pipeline before executing it,

preceded by a special prompt (usually +)

$ set -- hello "hi there" greetings #Set new
positional parameters
$ echo there are $# total arguments
#Print the count
there are 3 total arguments
$ for i in $* #Loop over arguments
individually
> do echo i is $i
> done
i is hello #Note that embedded whitespace was lost
i is hi
i is there
i is greetings

33

$ set -- hello "hi there" greetings #Set new
positional parameters
$ for i in "$*" # With quotes, $* is one string
> do echo i is $i
> done
i is hello hi there greetings

34

$ for i in "$@" #With quotes, $@ preserves exact
argument values
> do echo i is $i
> done
i is hello
i is hi there
i is greetings
$

35

User defined variables

36

• Declare variables by using them, e.g.,

[indigo 301]$ for letter in a b c
> do
> echo "Letter $letter"
> done
Letter a
Letter b
Letter c

Read variable value from input

37

[indigo 301] $ read timeofday
Morning
[indigo 301] $ echo Good $timeofday!
Good Morning!
[indigo 301] $ read greeting
Good morning # don’t need to quote
[indigo 301] $ echo $greeting
[indigo 301] $ Good morning
[indigo 301] $ echo “$greeting” is \$greeting

What will be the output ?

Command Substitution

38

• Command substitution: substitute output of a
command (a string) into another context, i.e.,
command

• Syntax: enclose command using backquote, or $()
• As an argument for another command

• rm `ls *.o` ## same as rm *.o

• To set a variable
• time1=$(date); echo $times1 ## set the output of date to

variable times

• To be used in “for” construct
for file in `ls *`; do ## for every file in current directory, do

something
…
done

Variable’s default type:
string

39

• Variables values are stored as strings
[indigo 301] $ number=7+5
[indigo 301] $ echo $number
7+5

[indigo 301] $ x=2; y=3
[indigo 301] $ z1=x+y; z2=$x+$y

[indigo 301] $ echo $z1 $z2
What will be the output?

Arithmetic Evaluation

40

• arithmetic expression:
 [indigo 301] $ x=1

[indigo 301] $ x=$[$x+1] ## x now has value
of 2

[indigo 301] $ y=$((2*$x+16)) ## y now has
value of 20

• Note: spaces around operators optional
• Complex expressions supported

• No spaces around equals sign, as with any
bash variable assignment

41

From highest precedence to lowest
Relational operators (<, <=, …) produces a numeric result that acts as a truth value

Arithmetic Evaluation (2)

42

• Or use command expr (less efficient)
[indigo 301] $ x=`expr $x + 1` #

increment x by 1
 [indigo 301] $ x=$(expr $x * 2) ## need to

escape *, (,)

• No spaces around equals sign, as with any
bash variable assignment

• E.g., convert 38 F to Celsius degree
• Rule: (N -32)*5/9

Declare variable

• One can explicitly declare a variable:
declare OPTION(s) VARIABLE=value

• Option
• -a: variable is an array
• -f : use function names only
• -i: variable is to be treated as an integer; arithmetic

evaluation is performed when variable is assigned a
value

• -l: when assigned a value, all upper-case characters
are converted to lower-case.

• -r Make names readonly. These names cannot then
be assigned values by subsequent assignment
statements or unset.

• …

43

Example of numerical
variable

[indigo 301] $ declare -i x ## x will be an integer not a
string

[indigo 301] $ x=10
[indigo 301] $ x=x+1
[indigo 301] $ echo $x
11
[indigo 301] $ x=30
30
[indigo 301] $ x=x*2
[indigo 301] $ echo $x
60

44

Control Structures &
Conditions

45

• Control structures in bash
• if … then … fi
• if … then … else … fi
• if … then …elif … else … fi
• for … in … do … done
• while … do … done
• until … do … done
• case … in … esac
• break, continue

• Conditions (tests): used in if structures, while,
until structures, similar to boolean expression in
C/C++

• Dots shown in red are to be replaced with conditions

Example

echo -n "Enter your age: "
read age
if [$age -lt 18]
then
 echo "You need to be 18 or older to apply for

account"
else
 echo "Choose your preferred account

name"
fi

46

If-statement

Conditions in shell
• exit status of a command, script or shell function,

e.g.,
if diff file1 file2 >& /dev/null # if file1 and file2 are the

same
…

• test command: used to perform a variety of test, e.g.,
test file attributes, compares strings and numbers.

if test –e tmp.o ## if there is file named test.o
…

• Compound condition: combine above using ! (negation),
&& (and), || (or)

if !grep pattern myfile > /dev/null
…

48

Exit status
command/script/function

• Exit Status: every command (built-in, external, or shell
function) returns a small integer value when it exits, to the
program invoked it.

• Convention: command/program returns a zero when it
succeeds and some other status when it fails

• How to return value from shell script?
• exit command, syntax
exit [exit-value]
• Return an exit status from a shell script to its caller

• If exit-value is not given, exit status of last command
executed will be returned.

• ? A special variable stores exit status of previous
command.

49

50

test command

• Used to perform a variety of test in shell
scripts, e.g., test file attributes, compares
strings and numbers.

• Provide no regular output, used exclusively
for its exit status

• Syntax:

test expression
[expression]

Note: space between [,] and expression …

51

52

53

54

Numerical tests work on integers only.

Test status of file: file conditionals

• File conditionals: unary expressions examining
status of a file

if test –e /etc/.bashrc # same as if [-e /etc/.bashrc]
 # do something if /etc/.bashrc exists
then
 # do something else if it doesn’t
fi

• More testing
• -d file: true if the file is a directory
• -e file: true if the file exists
• -f file: true if the file is a regular file.
• -s file: true if the file has nonzero size

55

if control structure

• Single-line Syntax
if TEST-COMMANDS; then CONSEQUENT-COMMANDS; fi

• Multi-line Syntax
 if TEST-COMMANDS
 then
 CONSEQUENT-COMMANDS
 fi

56

Testing in interactive shell

57

• Write a script that reads from standard input a
string, and check if it’s the same as your secret
password “secret”; if yes, print out “welcome!”;
print out “Go away” if not.

• test it out in interactive shell:
[indigo 301] $ read string
Secret

[indigo 301] $ if [$string == "secret"]; then echo
"Welcome"; else echo "Go away"; fi

[indigo 301] $ Welcome

[indigo 301]$ vim ps.sh
#!/bin/bash
echo -n "Enter your password: "
read password
if [$password == "secret"]
then
 echo "Welcome!"
else
 echo "Go away!"
fi

58

Bash Script

if … then … elif … then …
else

if [["$op" == "+"]]
then
 result=$(($x +

$y))
 echo $x $op $y =

$result
elif [["$op" == "-"]]
 then
 result=$(($x - $y))
 echo $x $op $y =

$result
60

elif [["$op" == "*"]]
 then
 result=$(($x * $y))
 echo $x * $y = $result
 elif [["$op" == "/"]]
 then
 result=$(($x / $y))
 echo $x $op $y =

$result
 else
 echo "Unknow operator

$op"
 fi

if… statements can be nested
#!/bin/bash
 # This script will test if we're in a leap year or not.
 year=`date +%Y` # shows the year only
 if [$[$year % 400] -eq 0]; then
 echo "This is a leap year. February has 29 days."
 elif [$[$year % 4] -eq 0]; then
 if [$[$year % 100] -ne 0];
 then echo "This is a leap year, February has 29

days."
 else echo "This is not a leap year. February has 28

days."
 fi
 else echo "This is not a leap year. February has 28 days."
 fi

61

Loop structure: while loop

62

• Multi-line Syntax:
 while condition
 do

commands
done

• Single-line Syntax (useful in interactive
mode)

 while condition; do commands; done

• Note: condition and commands terminated with
;

while loop

63

declare –i i=1 # an integer variable I
while [$i -le 10]
 do
 echo "loop $i"
 i=i+1 # can use this since i is integer
done

If i is not declared as integer …
i=$(($i+1))
i=$[$i+1]

#!/bin/bash
echo -n "Enter your password: "
read password
if [$password == "secret"]
then
 echo "Welcome!"
else
 echo "Go away!"
fi

64

• How to modify this to allow user to
try until the password matches?

#!/bin/bash
while test $password != "secret" #as long as the password is not

same as “secret”
do

echo -n "Enter your password: "
read password

done
echo "Welcome!”

65

• What if we give the user at most 3 tries?
 1. use a variable to keep track of the
number of tries …
 2. modify condition …

until loop
• Tests for a condition and keeps looping as

long as that condition is false (opposite of
while loop).

until condition
do

 command(s)...
done

• e.g.:
$until [$passwd -eq "secret"] ; do echo -n "Try again: "; read

passwd; done

66

For loops
• For loop: iterates over a list of objects, executing loop body for

each individual object in the list

for variable in a_list_of_objects
 do
 # do something on $variable
 commands ..
 done

e.g., for filename in lab1.cpp lab2.cpp lab3.cpp
 do

indent $filename
 done

67

Using for loop
• Use for loop to print out 2’s power

• Command seq: print out a sequence of number

 #!/bin/bash
 # print out 2’s powers
 for a in `seq 1 10`
 do
 echo 2^$a=$((2**a))
 done
Note: ** is the exponent operator

case construct: branching
• case construct is analogus to switch in C/C++.

 case "$variable" in
 shellpattern1)
 command...
 ;;
 shellpattern2)

 command …
 ;;

 shell pattern n)
 command...
 ;;
esac

69

• Quoting variables is not
mandatory

• Each pattern can contain
shell wildcard (*,?,[a-z]),
ends with a)

• Each condition block ends
with ;;

• If a condition tests true, then
associated commands
execute and the case block
terminates.

• entire case block ends with
an esac

Calculator using case
block

case "$op" in
"+") result=$(($x + $y))
 echo $x $op $y = $result;;
"-") result=$(($x - $y))
 echo $x $op $y = $result;;
"*") result=$(($x * $y))
 echo $x * $y = $result;;
"/") result=$(($x / $y))
 echo $x $op $y = $result;;
*) echo Unknow operator $op;;
esac

70

	More Linux Commands EECS 2031
	Acknowledgement
	Repetition * ? + summary
	Slide 4
	Regular Expressions: Repetition Ranges, Subexpressions
	Removing Duplicate Lines: uniq
	sort
	sort Example
	sort+ uniq
	Comparing Files: cmp, diff
	Comparing Files: cmp, diff (2)
	File Differences: diff
	cut deal with fields (columns)
	Slide 14
	Slide 15
	find Utility
	find Utility (2)
	find example
	find example (2)
	Processes
	Process communication: Unix Pipes
	Pipeline Example
	Shell Variables
	Shell parameter variables
	Shell parameter variables (2)
	Positional Parameters
	Set command
	Set command (2)
	Set -f
	set -x
	set –x
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	User defined variables
	Read variable value from input
	Command Substitution
	Variable’s default type: string
	Arithmetic Evaluation
	Slide 41
	Arithmetic Evaluation (2)
	Declare variable
	Example of numerical variable
	Control Structures & Conditions
	Example
	If-statement
	Conditions in shell
	Exit status command/script/function
	Slide 50
	test command
	Slide 52
	Slide 53
	Slide 54
	Test status of file: file conditionals
	if control structure
	Testing in interactive shell
	Slide 58
	Slide 59
	if … then … elif … then …else
	Slide 61
	Loop structure: while loop
	while loop
	Slide 64
	Slide 65
	until loop
	For loops
	Using for loop
	case construct: branching
	Calculator using case block

