More Linux Commands
EECS 2031

Song Wang
wangsong@eecs.yorku.ca
eecs.yorku.ca/~wangsong/

Acknowledgement

e Some of the covered materials are based
on previous EECS2031 offerings:

« Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

Repetition * ? + summary

o

a* 0 or more a

a? Oorl a

- -1 L

ab*c matches ac abc abbc abbbc abbbbc
ab?c matches ac abc
ab+c matches abc abbc abbbc abbbbc

* Don't get confused with filename wildcard *
Is ba* ba followed by 0 or more any char -- anything

Is a*.c a followed by 0 or more any char — anything, then .c

Regular Expression Summary

Pattern |Maning Example

} anchored

l repetition

- Any single character

R1R2 R1 followed by R2 '[st][fe]
R1|R2 R1 or R2 (egrep) 'the|The'

Regular Expressions: Repetition Ranges,

Subexpressions

« Some examples

Regular Expression

l'a* L1

Matches

ZERO or more ‘a’

llba* L

[ab]"

' b, ba, baa, baaa, baaaa,

zero or more characters, each character an 'a’

or

@, a, ab, aaa, ababb, bbb, ...
Ihl

"w [hﬁwg] e

@, A, ABC, zw$nn,
. zero or more characters, no character a digit

“ﬂ.* b* L

o, a, aaa, aaab, abbb, b, bbb, ...

. zero or more 'a’, followed by zero or more 'b’

« Don't get confused with filename wildcard *

s a.c
s ba*.c

a followed by 0 or more any char -- anything

Removing Duplicate Lines: uniq

e The uniq utility displays a file with all of its identical adjacent
lines replaced by a single occurrence of the repeated line.

* Here's an example of the use of the uniq utility:

$ cat animals # look at the test file.
cat snake

monk?y snake ~|$unig animals #filter out duplicate adjacent lines.
dolphin elephant

dolphin elephant '\ cat snake
\ | monkey snake
goat elephant

! dolphin elephant

pig pig |

= oat elephant
pigpig | T gig oig P
"’.'0”“?95’ P19 monkey pig
pig pIig

pig pig

sort

sorts a file in ascending or descending order based on
one or more fields.

Individual fields are ordered |lexicographically, which
means that corresponding characters are compared
based on their ASCII values.

-t field separator (default is blank or tab)
-r descending instead of ascending

-n numeric sort

-f ignore case

-M month sort (3 letter month abbreviation)
-k key sort on column

$ cat data.txt
John Smith

Tony Jones

John Duncan
Larry Jones

Lisa Sue

$ sort data.txt
John Duncan
John Smith
Larry Jones
Lisa Sue
Tony Jones

sort Example

1222 26 Apr 1956
1012 20 Mar 1950
2 20 Jan 1966
3223 20 Dec 1946
1222 4 Jul 1980

cat data.txt | sort | § sort -r data.txt

2 20 Jan 1966 | Tony Jones
1222 26 Apr 1956 Lisa Sue
3223 20 Dec 1946 Larry Jones
1222 4 Jul 1980 | John Smith
1012 20 Mar 1950 | John Duncan

Whole lines are ordered lexicographically

descending

1012 20 Mar 1950
1222 4 Jul 1980
3223 20 Dec 1946
1222 26 Apr 1956

2

20 Jan 1966

sort+ uniq

* uniqg is a little limited but we can combine it with sort

sort |

cat snake
monkey snake
dolphin elephant
dolphin elephant
goat elephant
Pig pig

Pig pig

monkey pig

Pig pig

uniq -c

sort

cat snake
monkey snake
dolphin elephant
dolphin elephant
goat elephant

pig pig

pig pig

pig pig

monkey pig

uniq

1 cat snhake

1 monkey snake
2 dolphin elephant
1 goat elephant

3 pig pig

1 monkey pig

Comparing Files: cmp, diff
* There are two utilities that allow you to compare the contents of two files:

* cmp, which finds the first byte that differs between two files
» diff, which displays all of the differences and similarities between two files

Comparing Files: cmp, diff
* There are two utilities that allow you to compare the contents of two files:

* cmp, which finds the first byte that differs between two files
» diff, which displays all of the differences and similarities between two files

e Testing for sameness: cmp
* The cmp utility determines whether two files are the same.

$ cat lady1 # look at the first test file.
Lady of the night,

| hold you close to me,
And all those loving words you say are right.

$ cat lady2 # look at the second test file.
Lady of the night,

| hold you close to me,

And everything you say to me is right.

$ cmp lady1 lady2 # files differ.
lady1 lady2 differ: char 48, line 3

4 —

File Differences: diff

e The diff utility compares two files and displays a list of editing
changes that would convert the first file into the second file.

$ diff lady1 lady2 # compare lady1 and lady2.
3c3
< And all those loving words you say are right.

> And everything you say to me is right.

$

$ gcc yourCode;
$ a.out > yourOutput;
$ cmp yourOutput sampleOutput;

cut deal with fields (columns)

-d -f

» Used to split lines of a file

* Aline is split into fields

» Fields are separated by delimiters/separators

* A common case where a delimiter is a space:
» Defaultistab, (not" ") need to set it for blank
_d mmn

= cut-f3 -d""

* hello there world

| .
delimiter

$ cat data.txt # assuming tab as delimiter
John Smith 1222 26 Apr 1956
Tony Jones 1012 20 Mar 1950
John Duncan 1111 20 Jan 1966
Larry Jones 1223 20 Dec 1946
Lisa Sue 1222 15 Jul 1980

$cut-f1 datatxt # show field 1, tab as delimiter
John

Tony

John

Larry

Lisa

$ cut -f 1,3 data.txt $ cut -f 1-3 data.txt

$ cat data.txt

John Smith
Tony Jones
John Duncan
Larry Jones
Lisa Sue

$ cut -f 1 data.txt
John

Tony

John

Larry

Lisa

$ cut -f 1,3 data.txt
John 1222

Tony 101

John 1111

Larry 1223

Lisa 1222

assuming tab as delimiter

1222 26
1012 20
1111 20
1223 20
1222 15

show field 1,

Apr 1956
Mar 1950
Jan 1966
Dec 1946
Jul 1980

tab as delimiter

$ cut -f 1-3 data.txt

John Smith 1222
Tony Jones 101

John Duncan 1111
Larry Jones 1223
Lisa Sue 1222

find Utility

find pathList expression
 finds files starting at pathList
 finds files descending from there

» Allows you to perform certain actions
" e.g., copying (cp), renaming (mv), deleting (rm) the files

“Find all the c files and make a backup of them/rename to .bak®
find . —name "*.c¢" -exec mv {} {}.bak \;

“Find all the Java class files and delete them”
find . —-name "*.class" -exec rm {} \;

find Utility

-name pattern
True if file's name matches pattern, which include shell
metacharacters * 7 [|

-mtime count
True if the content of the file has been modified within count days

-atime count
True if the file has been accessed within count days

-ctime count

True if the contents of the file have been modified within count days or
any of its file attributes have been modified

-exec command
True if the exit code = 0 from executing the command.
o command must be terminated by \;

o If {} is specified as a command line argument, it is replaced by the
file name currently matched

fi

$ find / -name x.c

$ find . -mtime 14

$ find . -name "*.bak’

$ find . -name 'a?.c’
al.c
aZ2.c a2.c.bak
a3.ca3.c

nd example

search for file x.c in the entire file system

lists files modified in the last 14 days In
current and subdirectories

" bak" search for all bak files

#"a?.c" find all a?.c

find example

$ find . -name ".bak’ -execrm {}\;
remove all files that end with .bak

$ find . -name 'a2.c’ -execcp {} a2.c.bak\;
find a2.c and make a copy called a2.c.bak

$ find. -name 'a?.c’ -execmv {} {}.bak);
find ax.c and then rename it to ax.c.bak

$ find . -name ".c' -exec cp {} {}.2019W \;
find all ¢ files xx.c and then cp it to xx.c.2019W

Processes

* Each command/utility involves a process
* |s, cd, pwd, gedit, gcc ...
= Unix can execute many processes simultaneously.

¢ \When a process ends, there is a return value aka exit code
associated with the process outcome

= a non-negative integer. =20

0 means success Opposite to C A

> (0 represents various Kinds of failure
= The return value is passed to the parent process

Stored in system variable $7? (Usually used in shell script)

Process communication: Unix
Pipes

« A special mechanism called a “pipe” built into the heart
of UNIX to support cascading utilities.

« A pipe allows a user to specify that the output of one
process Is to be used as the input to another process.

« Two or more processes may be connected in this fashion,
resulting in a “pipeline” of data flowing from the first
process through to the last.

results

— Process 2 » Process 3

Process 1

Pipeline Example

« Autility called who outputs an unsorted list of current

users. Another utility called sort outputs a sorted version
of Its Iinput.

$ who
$ sortinput.txt or sort <input.txt

« These two utilities may be connected together with a
“pipe” so that the output from who passes directly into

sort, resulting in a sorted list of users. | does this job.

who = » sort == » terminal

$ who | sort l/E—S./AE

Shell Variables

 Different types of variables
 Environment variables: HOME, PATH...
« Parameter variables: $1, $2, ...
 User-defined variables: student, file, x, ..

 Set PATH variable

PATH=$PATH:.:~/eecs2031/bin

export PATH # make PATH an environment variable,
which is inherited by all subprocesses

 Example:
[indigo 301] % bash #run bash
[indigo 301]$ x=1
[indigo 301]$ echo $x

Shell parameter variables

e If your script is invoked with parameters,
shell sets parameter variables

* $#: number of parameters

* $0, $1, ...: command/script name, first/second
parameters

* $*, $@: Represents all command-line arguments
at once. They can be used to pass command-line
arguments to a program being run by a script
or function.

Shell parameter variables

(2)

e “$*”. all command-line arguments as a
single string. Equivalent to "$1$2 ...".

e printf "The arguments were %s\n" "$*"

* "$@": all command-line arguments as
separate, individual strings. Equivalent to

"$1" 2" ...

* best way to pass arguments on to another
program, since it preserves any whitespace
embedded within each argument.

e lpr "$@" #print each

Positional Parameter

$0
$#
G*
$@

ll$* L]
ll$@ll
$1

set

Positional Parameters

.. ${10}

What It References

References the name of the script

Holds the value of the number of positional parameters
Lists all of the positional parameters

Means the same as $*, except when enclosed in double
quotes

Expands to a single argument (e.g., "$1 $2 $3")
Expands to separate arguments (e.g., "$1" "$2" "$3")

References individual positional parameters

Command to reset the script arguments

Set command

* set command, a shell builtin command
 display current variables, “set”
* set shell options, “set -f”, “set -n” ..

e set position parameters (no options),
[indigo 301] $ set Hello world;
[indigo 301] $ echo $1, $2
Hello world

« Combine command substitution and set command
[indigo 301]$ set who am i
[indigo 301] $ echo Welcome, $1! You logged in from $5.
[indigo 301] $ set date’
[indigo 301] $ echo The year is $6
The year is 2023

Set command

When we run the set command without any arguments, it returns a list
of all shell settings

indigo 7 $ set

BASH=/cs/local/bin/bash
BASHOPTS=cmdhist:complete fullquote:expand aliases:extquote:force fignore:hostco
mplete:interactive comments:progcomp:promptvars:sourcepath

BASH ALIASES=()

BASH ARGC=()

BASH ARGV=()

BASH CMDS5=()

BASH LINENO= ()

BASH SOURCE=()

BASH VERSINFO=([0]="4" [1]="4" [2]="20" [3]="1" [4]="release" [5]="x86_
—linux-gnu")

BASH VERSION='4.4.20(1)-release’

COLUMNS=80

DBUS SESSION BUS ADDRESS=unix:path=/run/user/20800/bus

DEBUGINFOD URLS=https://debuginfod.centos.org/

DIRSTACK= ()

EDITOR=vi

GROUP=faculty

GROUPS= ()
HISTFILE=/cs/home/wangsong/.bash history
HISTFILESIZE=500

HISTSIZE=500

HOME=/cs/home/wangsong

HOST=indigo

Set -f

e -fprevents us from using wildcards to search
for filenames or strings.

file or directory

set -X

e print each command or pipeline before executing it,
preceded by a special prompt (usually +)

#!/bin/bash
set -x
n=3
L n —-gt & 1;
n=$[$n-1]
echo $n
sleep 1

set -X

* print each command or pipeline before executing it,
preceded by a special prompt (11suallv +)

#!/bin/bash
set —-x
n=3

[0 —gt B
n=$[$n-1]

echo Sn
sleep 1

S

+ + @ + + + + P + + + + N+ + + +

bash debugging.sh
n=3

'[" 3 -gt o ']
n=2

echo 2

sleep 1
'[r2-gte ']
n=1

echo 1

sleep 1

'[''1 -gt o ']
n=0Q

echo 0

sleep 1
'"["e -gto "]

2023-11-24 15:21 (130.63.230.55)

$ set -- hello "hi there" greetings #Set new
positional parameters

$ echo there are $# total arguments
Print the count

there are 3 total arguments

$ for i in $* #Loop over arguments
individually

> do echo i is $i

> done

1 1S hello #Note that embedded whitespace was lost
1 1S hi

| IS there

| IS greetings

$ set -- hello "hi there" greetings #Set new
positional parameters

$ foriin "$*" # With quotes, $* is one string
> do echo i is $i

> done

| IS hello hi there greetings

$ foriin "$@" #with quotes, $@ preserves exact
argument values

> do echo i is $i
> done

1 1S hello

1 1S hi there

| IS greetings

$

User defined variables

e Declare variables by using them, e.qg.,

[indigo 301]$ for letterin a b c
> do

> echo "Letter $letter"

> done

Letter a

Letter b

Letter c

Read variable value from input

[indigo 301] $ read timeofday

Morning

[indigo 301] $ echo Good $timeofday!

Good Morning!

[indigo 301] $ read greeting

Good morning # don’t need to quote
iIndigo 301] $ echo $greeting

'indigo 301] $ Good morning

'indigo 301] $ echo “$greeting” is \$greeting

What will be the output ?

Command Substitution

« Command substitution: substitute output of a
command (a string) into another context, i.e.,
command

e Syntax: enclose command using backquote, or $()

 As an argument for another command
e rm Is *.0 ## same as rm *.0

 To set a variable

 timel=$(date); echo $timesl ## set the output of date to
variable times

* To be used in “for” construct

for file in 'Is **; do ## for every file in current directory, do
something

done

Variable’s detault type:
string

* Variables values are stored as strings
l[indigo 301] $ number=7+5
[indigo 301] $ echo $number
7+5

[indigo 301] $ x=2; y=3
[indigo 301] $ z1=x+y; z2=$x+$y

[indigo 301] $ echo $z1 $z2
1#

Arithmetic Evaluation

» arithmetic expression:

[indigo 301] $ x=1

[indigo 301] $ x=$[$x+1] ## x now has value
of 2

l[indigo 301] $ y=$((2*$x+16)) ## y now has
value of 20

* Note: spaces around operators optional
 Complex expressions supported

* No spaces around equals sign, as with any
bash variable assignment

Table 6-4. Arithmetic operators

Operator

++ --
+- 1~
* /%
¥ -

£L 2

4= 2 2=

]

A

I
&&

||
7

= 4= _= *= ,u'r: %: &: M CE= = I:

Meaning

Increment and decrement, prefix and postfix
Unary plus and minus; logical and bitwise negation
Multiplication, division, and remainder
Addition and subtraction

Bit-shift left and right

Comparisons

Equal and not equal

Bitwise AND

Bitwise Exclusive OR

Bitwise OR

Logical AND (short-circuit)

Logical OR (short-circuit)

Conditional expression
Assignment operators

Associativity
Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right

Right to left
Right to left

From highest precedence to lowest

Relational operators (<, <=, ...) produces a numeric result that acts as a truth value

Arithmetic Evaluation (2)

* Or use command expr (less efficient)
[indigo 301] $ x=expr $x + 1 #
increment x by 1

[indigo 301] $ x=%$(expr $x * 2) ## need to

escape *, (,)

 No spaces around equals sign, as with any
bash variable assignment

 E.g., convert 38 F to Celsius degree
 Rule: (N -32)*5/9

Declare variable

* One can explicitly declare a variable:
declare OPTION(s) VARIABLE=value

e Option
e -a: variable is an array
 -f : use function names only

 -1: variable is to be treated as an integer; arithmetic
evaluation is performed when variable is assigned a
value

 -I: when assigned a value, all upper-case characters
are converted to lower-case.

 -r Make names readonly. These names cannot then
be assigned values by subsequent assignment
statements or unset.

Example of numerical
variable

[indigo 301] $ declare -i x ## x will be an integer not a
string

[indigo 301] $ x=10
[indigo 301] $ x=x+1
[indigo 301] $ echo $x
11

[indigo 301] $ x=30
30

[indigo 301] $ x=x*2
[indigo 301] $ echo $x
60

Control ostructures
Conditions

e Control structures in bash
e if ...then ... i
e if ...then ... else ... fi
o if ...then ...elif ... else ... i
e for...in ... do ... done
 while ... do ... done
 until ... do ... done
e case ... 1In ... esac
 break, continue

e Conditions (tests): used in if structures, while,
until structures, similar to boolean expression in
C/C++

* Dots shown in red are to be replaced with conditions

Example

echo -n "Enter your age: "
read age

it [$age -1t 18]

then

echo "You need to be 18 or older to apply for
account”

else

echo "Choose your preferred account
name"

fi

[f-statement

if condition if condition1
e then
commands1
commands _ . N
elif condition2
fi — Can be repeated. ..
commands2
if condition clse
then commands3
commands1 fi
else
CDII]l’IlaIldSZ cdsc ... 11l ...
f esac

Conditions in shell

» exit status of a command, script or shell function,

e.d.,
if diff filel file2 >& /dev/null # if filel and file2 are the
same

* test command: used to perform a variety of test, e.qg.,
test file attributes, compares strings and numbers.
if test -e tmp.o ## if there is file named test.o

« Compound condition: combine above using ! (negation),
&& (and), || (or)

if !grep pattern myfile > /dev/null

Exit status
command/script/function

« Exit Status: every command (built-in, external, or shell
function) returns a small integer value when it exits, to the
program invoked it.

e Convention: command/program returns a zero when it
succeeds and some other status when it fails

 How to return value from shell script?
e exit command, syntax
exit [exit-value]
 Return an exit status from a shell script to its caller

« If exit-value is not given, exit status of last command
executed will be returned.

« ? A special variable stores exit status of previous
command.

Table 6-5. POSIX exit statuses

Value
0

>0

1-125

126
127
>128

Meaning
Command exited successfully.

Failure during redirection or word expansion (tilde, variable, com-
mand, and arithmetic expansions, as well as word splitting).

Command exited unsuccessfully. The meanings of particular exit
values are defined by each individual command.

Command found, but file was not executable.
Command not found.
Command died due to receiving a signal.

test command

* Used to perform a variety of test in shell
scripts, e.qg., test file attributes, compares
strings and numbers.

* Provide no regular output, used exclusively
for its exit status

e Syntax:

test expression
| expression |

Note: space between [, | and expression ...

Operator Trueif ...

string stringisnotnull

-bfile fileisablock devicefile.
-cfile fileisa character device file,
-dfile fileisadirectory.

-efile file exists.

-ffile fileisareqularfile.
-gfile filehasits setgid bit set.
-hfile fileisasymboliclink.

-Lfile fileisasymbolic link. (Same as -h.)

-nstring stringisnon-null.

-pfile fileisanamed pipe (FIFOfile).

-1 file fileisreadable.

-Sfile fileisasocket.

-sfile fileisnotempty.

-tn File descriptor n points to a terminal.

-ufile filehasits setuid bit set.

-Wfile fileiswritable.

-Xfile fileisexecutable, or f1leisa directory that can be searched.

-z string stringisnull.

S1=52
s1l=s2
ni-eqn2
ni-nen2
ni-ltnz
ni-gtn2
ni-len2
ni-gen2

Strings s1 and s2 are the same.
Strings s1 and s2 are not the same.
Integers n1 and n2 are equal.

Integers n1 and n2 are not equal.
n1 is less than n2.

n1isqreaterthan n2.
n1 s less than or equal to n2.

n1 s greater than or equal to n2.

Numerical tests work on integers only.

Test status of file: file conditionals

* File conditionals: unary expressions examining
status of a file

if test -e /etc/.bashrc # same as if [-e /etc/.bashrc]
do something if /etc/.bashrc exists
then
do something else if it doesn’t
fi

* More testing

-d file: true if the file is a directory

-e file: true if the file exists

-f file: true if the file is a regular file.
-s file: true if the file has nonzero size

1f control structure

* Single-line Syntax

if TEST-COMMANDS; then CONSEQUENT-COMMANDPS; fi

 Multi-line Syntax

Iif TEST-COMMANDS
then
CONSEQUENT-COMMANDS

Testing in interactive shell

 Write a script that reads from standard input a
string, and check if it’s the same as your secret
password “secret”; if yes, print out “welcome!”;
print out “Go away” if not.

e test it out in interactive shell:
[indigo 301] $ read string
Secret

[indigo 301] $ if [$string == "secret"]; then echo
"Welcome"; else echo "Go away"; fi

[indigo 301] $ Welcome

Bash Script

[indigo 301]$ vim ps.sh
#!/bin/bash
echo -n "Enter your password: "
read password
If [$password == "secret"]
then

echo "Welcome!"
else

echo "Go away!"

digo 305 % 1s -1s ps.sh

———— 1 wangsong faculty 140

chmod u+x ps.sh

Enter your passSw

Welcome !
indigo 309 % I

if ... then ... elif ... then ...

else
if[["$op" == "+"]I elif ["$op" == "*"]]
then then

result=%$(($x +
$y))

echo $x $op $y =
$result

elif [["$op" == "-"1]]
then
result=$(($x - $y))

echo $x $op $y =
$result

result=$(($x * $vy))
echo $x * $y = $result
elif [["$op" == "/"1]
then
result=$(($x / $y))

echo $x $op $y =
$result

else
echo "Unknow operator

PaniPggy | |
$op
"

if... statements can be nested

#!/bin/bash
This script will test if we're in a leap year or not.

year="date +%Y # shows the year only

It [$[$year % 400] -eq O]; then

echo "This is a leap year. February has 29 days."
elif [$[$year % 4] -eq 0]; then
if [$[$year % 100] -ne O |;

then echo "This is a leap year, February has 29
days."

else echo "This is not a leap year. February has 28
days."

fi
else echo "This is not a leap year. February has 28 days."
fi

Loop structure: while loop

 Multi-line Syntax:

while condition

do
commands
done

* Single-line Syntax (useful in interactive
mode)

while condition do commands,; done

 Note: condition and commands terminated with

while loop

declare -1 1=1 # an integer variable |
while [$i -le 10]
do

echo "loop $i"
I=i1+1 # can use this since i is integer
done

If 1 Is not declared as integer ...
I=%$(($i+1))
I=$[$i+1]

#!/bin/bash
echo -n "Enter your password: "
read password
If [$password == "secret"]
then
echo "Welcome!"
else
echo "Go away!"
fi

* How to modify this to allow user to
try until the password matches?

#!/bin/bash

while test $password = "secret" #as long as the password is not
same as “secret”

do
echo -n "Enter your password: "
read password

done

echo "Welcome!”

* What if we give the user at most 3 tries?
1. use a variable to keep track of the
number of tries ...
2. modify condition ...

until loop

 Tests for a condition and keeps looping as
long as that condition is false (opposite of
while loop).

until condition

do
command(s)...

done

¢ e.0.:

$until [$passwd -eq "secret"] ; do echo -n "Try again: “; read
passwd; done

For loops

* For loop: iterates over a list of objects, executing loop body for
each individual object in the list

for variable in a_list_of objects
do
do something on $variable
commands ..
done

e.g., for filename in labl.cpp lab2.cpp lab3.cpp
do
indent $filename
done

Using for loop

» Use for loop to print out 2’'s power
« Command seq: print out a sequence of number

#!/bin/bash
print out 2’'s powers
forain 'seql 10
do
echo 27 %$a=%((2**a))
done
Note: ** Is the exponent operator

case construct: branching

e case construct is analogus to switch in C/C++.

case "$variable" in
shellpatternl)
command...

ghellpatternZ)
command ...

s'h'ell pattern n)
command...

77

esac

Quoting variables is not
mandatory
Each pattern can contain
shell wildcard (*,?,[a-2]),
ends with a)

Each condition block ends
with ;;

If a condition tests true, then
associated commands
execute and the case block
terminates.
entire cacse block ends with

Calculator using case
block

case "$op"in
"+1) result=%$(($x + $vy))
echo $x $op $y = $result;;
") result=$(($x - $y))
echo $x $op $y = $result;;
k) result=%$(($x * $y))
echo $x * $y = $result;;
"I") result=$(($x / $y))
echo $x $op $y = $result;;
*) echo Unknow operator $op;;
esac

	More Linux Commands EECS 2031
	Acknowledgement
	Repetition * ? + summary
	Slide 4
	Regular Expressions: Repetition Ranges, Subexpressions
	Removing Duplicate Lines: uniq
	sort
	sort Example
	sort+ uniq
	Comparing Files: cmp, diff
	Comparing Files: cmp, diff (2)
	File Differences: diff
	cut deal with fields (columns)
	Slide 14
	Slide 15
	find Utility
	find Utility (2)
	find example
	find example (2)
	Processes
	Process communication: Unix Pipes
	Pipeline Example
	Shell Variables
	Shell parameter variables
	Shell parameter variables (2)
	Positional Parameters
	Set command
	Set command (2)
	Set -f
	set -x
	set –x
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	User defined variables
	Read variable value from input
	Command Substitution
	Variable’s default type: string
	Arithmetic Evaluation
	Slide 41
	Arithmetic Evaluation (2)
	Declare variable
	Example of numerical variable
	Control Structures & Conditions
	Example
	If-statement
	Conditions in shell
	Exit status command/script/function
	Slide 50
	test command
	Slide 52
	Slide 53
	Slide 54
	Test status of file: file conditionals
	if control structure
	Testing in interactive shell
	Slide 58
	Slide 59
	if … then … elif … then …else
	Slide 61
	Loop structure: while loop
	while loop
	Slide 64
	Slide 65
	until loop
	For loops
	Using for loop
	case construct: branching
	Calculator using case block

