
Linux Introduction
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

Unix File

3

• Files: store information
• a sequence of 0 or more bytes containing

arbitrary information

• What's in a filename?
• Case matters; the limitation is 255 bytes

• Special characters such as -, and spaces are
allowed, but you shouldn’t use them in a
filename

• Can you think of the reasons ?

• Dot files are hidden, i.e., normally not listed by
command ls

• To display all files, including hidden files, use ls -a

What’s in a file?

4

• So far, we learnt that files are organized in
a hierarchical directory structure

• Each file has a name, resides under a
directory, is associated with some admin info
(permission, owner)

• Contents of file:
• Text (ASCII) file (such as your C/C++ source

code)
• Executable file (commands)
• A link to other files, …
• Virtual file:

• /proc: a pseudo-filesystem, contains user-accessible
objects on runtime state of kernel and executing
processes

• To check the type of file: “file <filename>”

File Viewing Commands
• cat: concatenate files and display on standard

output (i.e., the terminal window)
– cat [option] … [file] …
– cat proj1.c
– cat proj1.c proj2.c
– cat –n proj1.c // display the file with line #

• more: file perusal filter (i.e., displaying file one
screen at a time)

– more proj1.cpp

• head, tail: display the beginning or ending lines of
a file

– tail -f output // display the file, append more lines as the file grows

[] means the argument is optional
… means there can be multiple
 arguments of this type

• First n (on default 10) line

• Last n (on default 10) line

File manipulation
commands

• rm: remove one or multiple files or directories
– rm [option] … FILE …
– rm temp
– rm temp1 temp2

• Wildcards (metacharacter) can be used in the
command line

– Letter * matches with any string
• rm *.o: remove all .o files (be careful !!!)

– ?: match any one character
– [abc]: match with letter a or b or c

• rm –r: remove directories and their sub-dirs recursively
• rm –i : confirm with user before removing files

File manipulation commands
(2)

• cp: copy file or directory
• cp [OPTION] SOURCE DESTINATION

• To make a backup copy of your program
before dramatic change

• cp proj1.c proj1.c.bak

• To make a backup copy of a whole
directory

• cp –r lab1_dir lab1_dir_backup
• -R, -r, --recursive: copy directories recursively

File manipulation commands
(3)

• mv: move (rename) files/directories
• mv [OPTION] SOURCE DEST

• Rename SOURCE to DEST
• mv proj1.c lab1.c

• mv [OPTION]… SOURCE… DIRECTORY
• Move SOURCE to DIRECTORY
• mv lab1.c lab2.c EECS2031

Hierarchical file system

15

• Directory: a file that can hold other files
• Advantages of hierarchical file system:

• Files can have same names, as long as they
are under different directories

• Easier for protection
• Organized files

/ (root)

home

staff

bin

songwang

etc

passwd

dev

cdrom tty24

lib

group

/bin
• Essential ready-to-run programs (binaries), include the

most basic commands such as ls and cp.

/lib
• Contains kernel modules and those shared library images

(the C programming code library) needed to boot the
system and run the commands in the root filesystem, ie.
the binaries in /bin and /sbin.

/etc
• It stores storage system configuration files, executables

required to boot the system, and some log files.

/home
• Personal directories for users, holds your documents, files,

settings, etc.

Absolute pathname, path

/ (root)

home

staff

bin

songwang

etc

passwd

dev

cdrom tty24

lib

 Pathname of a file/directory: location of file/directory in the file
system
 How do you tell other where your prog. Is located ?

 Absolute pathname: path name specified relative to root, i.e.,
starting with the root (/)
 e.g., /home/staff/songwang
 What’s the absolute pathname for the “passwd” file?

Home directory

• Every user has a home directory created
for him/her

• When you log in, you are in your home
directory

• In home directory, a user usually has
permission to create files/directories, remove
files ..

• ~ to refer to current user’s home directory
• ~username to refer to username’s home

directory

Current directory & Relative
Pathname

• Tiring to specify absolute pathname each
time

• To make life easier: working directory
• User can move around the file system, shell

remembers where the user is (i.e., current
directory)

• To check your current directory, use
command:

• pwd

Getting around in the file
system

• To create a subdirectory:
– mkdir [option]… directory…
– cd
– mkdir labtest2
– cd labtest2
– mkdir question

• To remove a directory:
– rmdir [option]… directory…
– Report failure if directory is not empty

• Can use rm –rf to remove non-empty directory

Relative pathname

24

• Absolute pathname: specified relative to root
• Relative pathname: specified relative to current

directory
• . (current directory), .. (parent directory, one

level up)
• If current directory is at

/home/staff/wangsong, what is the relative
pathname of the file passwd?

• ../../../etc/passwd: go one level up, go one level up,
go one level up, go to etc, passwd is there

/ (root)

home

staff

bin

wangsong

etc

passwd

dev

cdrom tty24

lib

• Path1: /eecs/home/wangsong/eecs2031
• Path2: /eecs/home/wangsong/eecs3311

• Assume your “pwd” is
• /eecs/home/wangsong/eecs2031/lab1/

feedback

• How to navigate to?
• /eecs/home/wangsong/eecs3311/lab2

Users
Unix/Linux is a multi-user operating system.

• Every program/process is run by a user.
• Every file is owned by a user.
• Every user has a unique integer ID number (UID).

• Different users have different access permissions,
allowing users to:

• read or write a given file
• browse the contents of a directory
• execute a particular program
• install new software on the system
• change global system settings
• ...

Groups

• group: A collection of users, used as a target of
permissions.

• a group can be given access to a file or resource
• a user can belong to many groups

• Every file has an associated group.
• the owner of a file can grant permissions to the group

• Every group has a unique integer ID number (GID).
• Exercise: create a file, see its default group, and change

it

comma
nd

description

 groups list the groups to which a user
belongs

 chgrp change the group associated
with a file

Groups

• group: A collection of users, used as a target of
permissions.

• a group can be given access to a file or resource
• a user can belong to many groups
• see who’s in a group using grep <groupname> /etc/group

• Every file has an associated group.
• the owner of a file can grant permissions to the group

• Every group has a unique integer ID number (GID).
• Exercise: create a file, see its default group, and change

it

comma
nd

description

 groups list the groups to which a user
belongs

 chgrp change the group associated
with a file

File permissions

• types: read (r), write (w), execute (x)
• people: owner (u),group (g), others (o)

• on Windows, .exe files are executable programs;
on Linux, any file with x permission can be executed

• permissions are shown when you type ls -l
 is it a directory?
 owner (u)
 group (g)
 others (o)

 drwxrwxrwx

comma
nd

description

 chmod change permissions for a file
 umask set default permissions for

new files

People & Permissions
• People: each user fits into only one of three permission

sets:
 owner (u) – if you create the file you are the owner, the owner can

also be changed (using chown)
 group (g) – by default a group (e.g. student, faculty) is associated

with each file
 others (o) – everyone other than the owner and people who are in

the particular group associated with the file
You are in the most restrictive set that applies to you – e.g. if you are the owner, those permissions apply to you.

• Permissions: For regular files, permissions work as follows:
 read (r) – allows file to be open and read
 write (w) – allows contents of file to be modified or truncated
 execute (x) – allows the file to be executed (use for executables or

scripts)
* Directories also have permissions (covered later). Permission to delete or rename a file is
controlled by the permission of its parent directory.

File permissions Examples
Permissions are shown when you type ls –l:

-rw-r--r-- 1 wangsong faculty 319 Sep 6 16:43
myfile.txt

-rw--w---- 1 wangsong faculty 203 Oct 3 13:06
grades.dat

myfile.txt:
 owner of the file (wangsong) has read & write permission
 group (faculty) members have read permission
 others have read permission

grades.dat:
 owner of the file (wangsong) has read & write permission
 group (faculty) members have write permission (but no read permission – can add things to the file but cannot cat it)
 others have no permissions (cannot read or write)

Changing permissions
• letter codes: chmod who(+-)what filename

chmod u+rw myfile.txt (allow owner to read/write)
chmod +x banner (allow everyone to execute)
chmod ug+rw,o-rwx grades.dat (owner/group can read
and
 note: -R for recursive write; others nothing)

• octal (base-8) codes: chmod NNN filename
• three numbers between 0-7, for owner (u), group (g), and

others (o)
• each gets +4 to allow read, +2 for write, and +1 for

execute
chmod 600 myfile.txt (owner can read/write (rw))
chmod 664 grades.dat (owner rw; group rw; other r)
chmod 751 banner (owner rwx; group rx; other x)

Note, no space after the comma!

• chmod 600 myfile.txt (owner can read/write
(rw))

-rw-------
-110000000

chmod
chmod u+rw myfile.txt (allow owner to

read/write)
Note: leaves “group” and “other” permissions as they were.

chmod 664 grades.dat (owner rw; group rw; other r)
Note: sets permissions for “owner”, “group” and “other” all at once.

Umask (user file-creation mode)

• When creating a new file or directory, Linux applies the default
set of permissions. The umask command lets you change these
default permissions.

umask [-p] [-S] [mask]

Umask (user file-creation mode)

A mask can have the following numeric, and the
corresponding symbolic, values:

How to Calculate Umask Values

• The system default permission values are 777
(rwxrwxrwx) for folders and 666 (rw-rw-rw-) for
files.

• The default mask for a non-root user is 002,
changing the folder permissions to 775 (rwxrwxr-
x), and file permissions to 664 (rw-rw-r--).

• The default mask for a root user us 022,
changing the folder permissions to 755 (rwxr-xr-
x), and file permissions to 644 (rw-r--r--).

 final permission value is the result of subtracting the umask value
form the default permission value (e.g., 777 or 666)

Exercises
• Change the permissions on myfile.txt so

that:
 Others cannot read it.
 Group members can execute it.
 Others cannot read or write it.
 Group members & Others can read and write

it.
 Everyone has full access.

Exercises (Solutions)

• Change the permissions on myfile.txt so that:
 Others cannot read it. chmod o-r myfile.txt
 Group members can execute it. chmod g+x

myfile.txt
 Others cannot read or write it. chmod o-rw

myfile.txt
 Group members & Others

can read and write it. chmod go+rw myfile.txt
 Everyone has full access. chmod ugo+rwx myfile.txt

• Now try this:
 Deny all access from everyone. chmod ugo-rwx

myfile.txt

Directory Permissions
• Read, write, execute a directory?

 Read - permitted to read the contents of directory (view files
and sub-directories in that directory, run ls on the directory)

 Write - permitted to write in to the directory (add, delete, or
rename & create files and sub-directories in that directory)

 Execute - permitted to enter into that directory (cd into that
directory)

• It is possible to have any combination of these
permissions:
Try these:

 Have read permission for a directory, but NOT execute
permission

• ????
 Have execute permission for a directory, but NOT read

permission
• ???

*Note: permissions assigned to a directory are not inherited by the files within that directory

Directory Permissions
• Read, write, execute a directory?

 Read - permitted to read the contents of directory (view files
and sub-directories in that directory, run ls on the directory)

 Write - permitted to write in to the directory (add, delete, or
rename & create files and sub-directories in that directory)

 Execute - permitted to enter into that directory (cd into that
directory)

• It is possible to have any combination of these
permissions:

 Have read permission for a directory, but NOT execute
permission

• Can do an ls from outside of the directory but cannot cd into it,
cannot access files in the directory

 Have execute permission for a directory, but NOT read
permission

• Can cd into the directory, can access files in that directory if you
already know their name, but cannot do an ls of the directory

*Note: permissions assigned to a directory are not inherited by the files within that directory

Permissions don’t travel
• Note in the previous examples that

permissions are separate from the file
• If I disable read access to a file, I can still look

at its permissions
• If I upload a file to a directory, its permissions

will be the same as if I created a new file
locally

• Takeaway: permissions, users, and groups reside
on the particular machine you’re working on. If
you email a file or throw it on a thumb drive, no
permissions information is attached.

• Why? Is this a gaping security hole?

Careful with -R
• Say I have a directory structure, with lots of .txt

files scattered
• I want to remove all permissions for Others on

all of the text files
• First attempt:

• chmod –R o-rwx *.txt
• What happened?

This command will:
- change permissions on all the files that end with .txt in the

current directory, AND
- it will recursively change the permissions on all files in

directories whose name end in .txt
(you probably do not have any directories whose names end
that way!)

- This is not really recursive in the way you meant it to be! (see
next slide…)

Careful with –R (fix)
• Say I have a directory structure, with

lots of .txt files scattered
• I want to remove all permissions for Others

on all of the text files
• First attempt:

• chmod –R o-rwx *.txt
• What happened?

• Try and fix this using find and xargs!
• find –name "*.txt"
• find –name "*.txt" | xargs chmod o-rwx

Super-user (root)

• super-user: An account used for system
administration.

• has full privileges on the system
• usually represented as a user named root

• Most users have more limited permissions than
root

• protects system from viruses, rogue users, etc.
• if on your own box, why ever run as a non-root user?

• Example: Install the valgrind tool on the CSE VM.
sudo yum install valgrind

comma
nd

description

 sudo run a single command with root privileges (prompts for
password)

 su start a shell with root privileges (so multiple commands
can be run)

Playing around with
power…

• Create a file, remove all permissions
• Now, login as root and change the owner and group to root
• Bwahaha, is it a brick in a user’s directory?

• Different distributions have different approaches
• Compare Fedora to Ubuntu in regards to sudo and su…

• Power can have dangerous consequences
• rm * might be just what you want to get rid of everything in

a local directory
• but what if you happened to be in /bin… and you were

running as root…

tar files

• Originally used to create “tape archive” files
• Combines multiple files into a single .tar file
• You probably always want to use –f option and IT SHOULD

COME LAST
• To create a single file from multiple files:

$ tar -cf filename.tar stuff_to_archive
 -c creates an archive
 -f read to/from a file
 stuff_to_archive - can be a list of filenames or a directory

• To extract files from an archive:
$ tar -xf filename.tar

 -x extracts files from an archive

description
 tar create or extract .tar archives (combines multiple files

into one .tar file)

Compressed files

• To compress a file:
$ gzip filename produces: filename.gz

• To uncompress a file:
$ gunzip filename.gz produces: filename

Similar for zip, bzip2. See man pages for more details.

command description
 zip, unzip create or extract .zip compressed archives
 gzip, gunzip GNU free compression programs (single-file)
 bzip2,
bunzip2

slower, optimized compression program
(single-file)

.tar .gz archives
• Many Linux programs are distributed as .tar.gz

archives (sometimes called .tgz)
• You could unpack this in two steps:

1. gzip foo.tar.gz produces: foo.tar
2. tar –xf foo.tar extracts individual

files
• You can also use the tar command to

create/extract compressed archive files all in one
step:

$ tar -xzf filename.tar.gz
 -x extracts files from an archive
 -z filter the archive through gzip

(compress/uncompress it)
 -f read to/from a file

Handy tip: You can use the “file” command to see what type a file is,
just changing the file extension on a file does not change its type.

tar examples
You can combine options (-v, -z, etc.) various ways:
Create a single .tar archive file from multiple files
(without compression):
$ tar -cvf filename.tar stuff_to_archive

 -c creates an archive file called filename.tar
 -v verbosely list the files processed
 -f read to/from a file (as opposed to a tape

archive)
 stuff_to_archive - can be filenames or a directory

Add –z option and use filename.tar.gz to use
compression:

$ tar -cvzf filename.tar.gz stuff_to_archive

	Linux Introduction EECS 2031
	Acknowledgement
	Unix File
	What’s in a file?
	Slide 5
	File Viewing Commands
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	File manipulation commands
	File manipulation commands (2)
	File manipulation commands (3)
	Hierarchical file system
	/bin
	/lib
	/etc
	/home
	Absolute pathname, path
	Home directory
	Current directory & Relative Pathname
	Getting around in the file system
	Relative pathname
	Slide 25
	Users
	Groups
	Groups (2)
	File permissions
	People & Permissions
	File permissions Examples
	Changing permissions
	Slide 33
	chmod
	Umask (user file-creation mode)
	Umask (user file-creation mode) (2)
	How to Calculate Umask Values
	Slide 38
	Slide 39
	Exercises
	Exercises (Solutions)
	Directory Permissions
	Directory Permissions (2)
	Permissions don’t travel
	Careful with -R
	Careful with –R (fix)
	Super-user (root)
	Playing around with power…
	tar files
	Compressed files
	.tar .gz archives
	tar examples

