
Linux Introduction
EECS 2031

Gias Uddin
guddin@yorku.ca

https://giasuddin.ca

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis, Song Wang

What is Operating
System?

• OS is system software that
manages computer hardware
and software resources and
provides common services for
computer programs.

• From app. programmer’s point
of view:

– O.S. manages hardware resources
– O.S. provides user programs with a

simpler interface, i.e. system calls
• cnt=read(fd, buffer,nbytes)
• getc() etc.

User –level applications

Operating System

Hardware: processor(s),
main memory, disks,
printers, keyboard, display,
network interface, etc.

System calls

Physical machine interface

Kernel of Operating
System

4

• Operating system:

• The entire package consists of central
software managing a computer’s resources
and the accompanying standard software
tools, such as command-line interpreters,
graphical user interfaces, file utilities, and
editors.

• kernel: central software that manages and
allocates computer resources (i.e., CPU,
RAM, and devices).

Kernel Functionalities: Process
scheduling

• Managing one or more central processing units
(CPUs)

• A process is essentially running software.

• Unix: a preemptive multitasking operating system
• multiple processes (i.e., running programs) can

simultaneously reside in memory and each may receive
use of the CPU(s).

• Preemptive: scheduler can preempt (or interrupt) a
process, and resume its execution later => to support
interactive responses

• the processors are allowed to spend finite chunks of
time (quanta, or timeslices) per process

Kernel Functionalities: Memory
management

Manage physical memory (RAM) to be shared
among processes in an equitable and efficient
fashion

Virtual memory management:
 Processes are isolated from one another and from the

kernel so that one process can’t read or modify the
memory of another process or the kernel.

 Only part of a process needs to be kept in memory, thereby
lowering the memory requirements of each process and
allowing more processes to be held in RAM simultaneously.

 better CPU utilization, since it increases the likelihood
that, at any moment in time, there is at least one process
that the CPU(s) can execute.

Other OS functionalities …

• The kernel provides a file system on disk, allowing
files to be created, retrieved, updated, deleted, and
so on.

• Creation and termination of processes
• Peripheral device: standardizes and simplifies access

to devices, arbitrates access by multiple processes to
each device

• Networking: transmits and receives network packets
on behalf of user processes.

• Support system call interfaces: processes can request
the kernel to perform various tasks using kernel entry
points known as system calls.

• Second part of this course: Unix system call API

Layers in UNIX/Linux
System

Hardware (CPU, memory, disks, terminals, etc)

Unix/Linux kernel
 (process management, memory

management, file system, I/O, etc)

Standard library
(open, close, read, write, fork,

etc)

Standard utility
programs

(shell, editors,
compilers)

Users

System
call
interface

library
interface

POSIX

POSIX 1003.2

POSIX, "Portable Operating System Interface", is a family
of standards specified by IEEE for maintaining compatibility between Unix
systems.

Timeline of Unix/Linux,
GNU

Dennis
Ritchie PDP-11

Ken Thompson

Windows 3X

Windows NT

1993

• Linux is a Unix clone written from scratch by
Linus Torvalds with assistance from a loosely-
knit team of hackers across the Net.

• Unix is a multitasking, multi-user computer
operating system originally developed in 1969
by a group of AT&T employees at Bell Labs.

• Linux and Unix strive to be POSIX compliant.

• >60% of the world’s servers run some
variant of Unix or Linux. The Android
phone and the Kindle run Linux.

What is Linux?

Linux Has Many
Distributions

• Linux is an O/S core
written by Linus
Torvalds and others
AND

• a set of small programs
written by Richard
Stallman and others. They
are the GNU utilities.

http://www.gnu.org/

What is Linux?
Linux + GNU Utilities = Free Unix

GNU history

• GNU: a free UNIX-like operating system
• Richard Matthew Stallman (author of Emacs, and many
other utilities, ls, cat, …, on linux)

– 1983: development of a free UNIX-
like operating system
– Free Software Foundation (100s of
Programmers)

• Free software:
– freedom to run the program, for any purpose.
– freedom to study how the program works and adapt it to your

needs.
– freedom to redistribute copies so you can help others.
– freedom to improve the program and release your

improvements to the public, so that everyone benefits.

GPL License
• GNU General Public License is a free, copyleft

license for software and other kinds of works…
• “The licenses for most software and other practical

works are designed to take away your freedom to share
and change the works. By contrast, the GNU General
Public License is intended to guarantee your
freedom to share and change all versions of a
program--to make sure it remains free software for all
its users.”

• Manual pages for commands include copyright info:
COPYRIGHT
 Copyright © 2011 Free Software Foundation, Inc. License GPLv3+:

GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
 This is free software: you are free to change and redistribute it.

 There is NO WARRANTY, to the extent permitted by law.

Linux history
• Linus Torvalds

– 1991: “hobby” operating system for
i386-based computer, while study in Univ. of Helsinki

• 1996: Linux becomes a GNU software
component

• GNU/Linux: A fairer name than Linux?
• “Most operating system distributions based on Linux

as kernel are basically modified versions of GNU
operating system. We began developing GNU in
1984, years before Linus Torvalds started to write
his kernel. Our goal was to develop a completely free
operating system. Of course, we did not develop all
the parts ourselves—but we led the way. We
developed most of the central components, forming
the largest single contribution to the whole system.
The basic vision was ours too. “ --- RMS

https://www.gnu.org/gnu/gnu-linux-faq.en.html

16

Linux kernel versions

Use “uname –a” to check system information
(including kernel version).

Understanding your Linux
details

17

$ uname -a
Linux indigo1 4.18.0-513.9.1.el8_9.x86_64 #1 SMP Wed Nov 29

18:55:19 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

Kernel name: Linux
• Hostname: indigo1
• Kernel release: 4.18.0-513.9.1.el8_9.x86_64
• Kernel version: #1 SMP Wed Nov 29

18:55:19 UTC 2023
• Machine hardware name: x86_64
• Processor:x86_64
• Operating system: GNU/Linux

Shell

18

• Shell: a special-purpose program, command
line interpreter, reads commands typed by a
user and executes programs in response to
entered commands

• Many different shells:
• Bourne Shell (sh): oldest,

• I/O redirection, pipelines, filename generation (globbing), variables,
environment variables, command substitution, background command
execution, function

• C Shell (csh): syntax of flow-control similar to C, command
history, command-line editing, job control, aliases

• Korn Shell (ksh): “csh”, compatible with sh
• Bourne again Shell (bash): GNU’s reimplementation of

Bourne shell, supports features added in C shell, and Korn
shell

Shell and Utilities

Check/Change Login Shell

20

• To check the shell you are using
• echo $SHELL
• echo $0

• login shell: default shell for a user,
specified in /etc/passwd

• To change your login shell, use the
command

• chsh

Check/Change Login Shell

21

• To check the shell you are
using

• echo $SHELL
• echo $0

• login shell: default shell for
a user, specified in
/etc/passwd

• To change your login shell,
use the command

• chsh

Shell: interactive mode

22

• A shell session (a dialog between user and shell)
1. Displays a prompt character, and waits for user to type in

a command line
• Prompt depends on shell: sh, ksh, bash: $ csh: % tcsh: >
• May be customized (with current directory, host, ...)

2. On input of a command line, shell extracts command
name and arguments, searches for the program, and
runs it.

3. When program finishes, shell continues to step 1

4. The loop continues until user types “exit” or “ctrl-d” to
end

UNIX command line
• Command name and arguments:
command [[-] option (s)] [option argument (s)]

[command argument (s)]

– Command arguments are mostly file or
directory names

• cp prog1.c prog1.c.bak

– Options: used to control the behavior of the
command

• head -20 lab1A.c
• wc –w lab2.c // count how many words
• Some options come with option argument

– sort –k 1 data.txt
– // use the first column of data.txt as the key to sort

The most important command !!!

24

• man: displaying online manuals
– Press q to quit, space to scroll down, arrow keys to roll

up/down

man ls

Correcting type mistakes

25

• Shell starts to parse command line only
when Enter key is pressed

• Delete the whole line (line-kill): Ctrl-u
• Erase a character: Ctrl-h or backspace

key
• Many more fancy functionalities:

– Auto-completion: press Tab key to ask
shell to auto-complete command, or
path name

– History (repeat command): use arrow (up
and down) keys to navigate past commands

– …

Shell: batch/scripting
mode

26

• In batch mode, shell can interpret and
execute shell scripts

#!/bin/bash
count number of files/directories in curr.

directory
ls –l | wc –l

• Shell constructs:
• variables,
• Loop and conditional statements
• I/O commands (read from keyboard, write to

terminal)
• Function, arrays …

Unix File

27

• Files: store information
• a sequence of 0 or more bytes containing

arbitrary information

• What's in a filename?
• Case matters; the limitation is 255 bytes

• Special characters such as -, and spaces are
allowed, but you shouldn’t use them in a
filename

• Can you think of the reasons ?

• Dot files are hidden, i.e., normally not listed by
command ls

• To display all files, including hidden files, use ls -a

What’s in a file?

28

• So far, we learnt that files are organized in
a hierarchical directory structure

• Each file has a name, resides under a
directory, is associated with some admin info
(permission, owner)

• Contents of file:
• Text (ASCII) file (such as your C/C++ source

code)
• Executable file (commands)
• A link to other files, …
• Virtual file:

• /proc: a pseudo-filesystem, contains user-accessible
objects on runtime state of kernel and executing
processes

• To check the type of file: “file <filename>”

File Viewing Commands
• cat: concatenate files and display on standard

output (i.e., the terminal window)
– cat [option] … [file] …
– cat proj1.c
– cat proj1.c proj2.c
– cat –n proj1.c // display the file with line #

• more: file perusal filter (i.e., displaying file one
screen at a time)

– more proj1.cpp

• head, tail: display the beginning or ending lines of
a file

– tail -f output // display the file, append more lines as the file grows

[] means the argument is optional
… means there can be multiple
 arguments of this type

• First n (on default 10) line

• Last n (on default 10) line

File manipulation
commands

• rm: remove one or multiple files or directories
– rm [option] … FILE …
– rm temp
– rm temp1 temp2

• Wildcards (metacharacter) can be used in the
command line

– Letter * matches with any string
• rm *.o: remove all .o files (be careful !!!)

– ?: match any one character
– [abc]: match with letter a or b or c

• rm –r: remove directories and their sub-dirs recursively
• rm –i : confirm with user before removing files

File manipulation commands
(2)

• cp: copy file or directory
• cp [OPTION] SOURCE DESTINATION

• To make a backup copy of your program
before dramatic change

• cp proj1.c proj1.c.bak

• To make a backup copy of a whole
directory

• cp –r lab1_dir lab1_dir_backup
• -R, -r, --recursive: copy directories recursively

File manipulation commands
(3)

• mv: move (rename) files/directories
• mv [OPTION] SOURCE DEST

• Rename SOURCE to DEST
• mv proj1.c lab1.c

• mv [OPTION]… SOURCE… DIRECTORY
• Move SOURCE to DIRECTORY
• mv lab1.c lab2.c EECS2031

Hierarchical file system

39

• Directory: a file that can hold other files
• Advantages of hierarchical file system:

• Files can have same names, as long as they
are under different directories

• Easier for protection
• Organized files

/ (root)

home

staff

bin

songwang

etc

passwd

dev

cdrom tty24

lib

group

Absolute pathname, path

/ (root)

home

staff

bin

guddin

etc

passwd

dev

cdrom tty24

lib

 Pathname of a file/directory: location of file/directory in the file
system
 How do you tell other where your prog. Is located ?

 Absolute pathname: path name specified relative to root, i.e.,
starting with the root (/)
 e.g., /home/staff/songwang
 What’s the absolute pathname for the “passwd” file?

Home directory

• Every user has a home directory created
for him/her

• When you log in, you are in your home
directory

• In home directory, a user usually has
permission to create files/directories, remove
files ..

• ~ to refer to current user’s home directory
• ~username to refer to username’s home

directory

Current directory & Relative
Pathname

• Tiring to specify absolute pathname each
time

• To make life easier: working directory
• User can move around the file system, shell

remembers where the user is (i.e., current
directory)

• To check your current directory, use
command:

• pwd

Getting around in the file
system

• To create a subdirectory:
– mkdir [option]… directory…
– cd
– mkdir labtest2
– cd labtest2
– mkdir question

• To remove a directory:
– rmdir [option]… directory…
– Report failure if directory is not empty

• Can use rm –rf to remove non-empty directory

Relative pathname

44

• Absolute pathname: specified relative to root
• Relative pathname: specified relative to current

directory
• . (current directory), .. (parent directory, one

level up)
• If current directory is at /home/staff/zhang,

what is the relative pathname of the file
passwd?

• ../../../etc/passwd: go one level up, go one level up,
go one level up, go to etc, passwd is there / (root)

home

staff

bin

guddin

etc

passwd

dev

cdrom tty24

lib

	Linux Introduction EECS 2031
	Acknowledgement
	What is Operating System?
	Kernel of Operating System
	Kernel Functionalities: Process scheduling
	Kernel Functionalities: Memory management
	Other OS functionalities …
	Layers in UNIX/Linux System
	Timeline of Unix/Linux, GNU
	What is Linux?
	Linux Has Many Distributions
	What is Linux? Linux + GNU Utilities = Free Unix
	GNU history
	GPL License
	Linux history
	Linux kernel versions
	Understanding your Linux details
	Shell
	Shell and Utilities
	Check/Change Login Shell
	Check/Change Login Shell (2)
	Shell: interactive mode
	UNIX command line
	The most important command !!!
	Correcting type mistakes
	Shell: batch/scripting mode
	Unix File
	What’s in a file?
	Slide 29
	File Viewing Commands
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	File manipulation commands
	File manipulation commands (2)
	File manipulation commands (3)
	Hierarchical file system
	Absolute pathname, path
	Home directory
	Current directory & Relative Pathname
	Getting around in the file system
	Relative pathname

