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printf() and scanf()
 



printf() and scanf()
 

printf(a)： values of variables
scanf(&a): addresses of variables



printf() and scanf()
 



printf() and scanf()
 

If we use “a” and “b” as the input for 
scanf():scanf(“%f<><>%f”, a, b);
  



printf() and scanf()
 

If we use “&a” and “&b” as the input for 
printf():printf(“these are %f<><>%f”, &a, &b);
  



getchar, putchar
• int getchar(void)

• To read one character at a time from the standard input
• Returns the next input char each time it is called;
• Returns EOFwhen it encounters end of file.oend of file; Using < : end of 

input file
• keyboard: Ctrl-D (Unix) or Ctrl-Z (Windows).    “Keyboard is a file”

• EOF: an int constant defined in <stdio.h>, value is -1.

• •int putchar(int c)
• Puts the character c on the standard output
• Returns the character written (usually ignored);
• Like printf("%c", c);



• countChar.c

getchar, putchar



• countChar.c

getchar, putchar

red 309 % a.out
hello 
how are you
iam good
Ctrl + D (end of the input)

# of chars: 28



• Redirected from file

getchar, putchar



Statements

• Expression statement 
• y = i+1;  i++;  x = 4;

• Function call statement     
• printf("the result is %d");

• Control flow statement
• if else, for(), while(), do while, case switch



Expression
• Formed by combining operands(variable, constants 

and function calls) using operators (+ -* % > <  
== != )

• Has return values



Preprocessing: # include, #define



#define directive
• Syntax   #define name value No type;

• Name called symbolic constant, conventionally written in 
upper case

• Value can be any sequence of characters

• Use as constant N = x + 2;



#define directive
• Syntax   #define name value No type;
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C-Types, Operators, Expressions

• [Primitive/scalar] Types and sizes
• Primitive Types
• Constant values (literals)

• [Structured/aggregated]  Array and 
"strings“

• Expressions
• Basic operators
• Type promotion and conversion
• Other operators
• Precedence of operators



C Primitive Types
• Variables and values have types

• There are two basic types in ANSI-C:  integer, and 
floating point

• Integer type
• char -character,        1 byte (8 bits)
• short [int]  -short integer,  usually2 bytes (16 bits)
• int         -integer,  usually2 or 4 bytes (16 or 32 bits)
• long [int]  -long integer, usually4 or 8 bytes (32 or 64 bits)

• Floating point
• float                                     -single-precision, usually4 bytes (32 bits)
• double                               -double-precision, usually8 bytes (64 bits)
• long double                      -extended-precision



C Primitive Types and Sizes
• Variables and values have types

• There are two basic types in ANSI-C:  integer, and 
floating point

• Integer type
• char -character,        1 byte (8 bits)
• short (int)  -short integer,  usually2 bytes (16 bits)
• int         -integer,  usually2 or 4 bytes (16 or 32 bits)
• long (int)  -long integer, usually4 or 8 bytes (32 or 64 bits)

• Floating point
• float                                     -single-precision, usually4 bytes (32 bits)
• double                               -double-precision, usually8 bytes (64 bits)
• long double                      -extended-precision



Qualifiers (modifiers) for 
integer type

• signed, unsigned qualifiers can be applied to integer type
• Signed: default. Left most bit signifies sign 0: positive  1: negative
• Unsigned: positive.  Left most bit contributes to magnitude too

• [signed] char
• [signed] int
• [signed] short int     
• [signed] long  int     

• unsigned char
• unsigned int
• unsigned short int     
• unsigned long  int



Qualifiers for floating points
• “long” can be used with double:

• long double

• Thus, there are three types of floating points:
• float       /* single-precision floating point */
• double      /* double-precision floating point */
• long double /* extended-precision floating point */

• More bits, more precise: 3.1415926535….

• printf/scanf("%f") for float, ("%lf") for double,           ("%Lf") for long double

• Storage of floating point is complicated.    
• float x=4.8,  float y = 6.4/2+1.6; x == y may not always true.

• No unsigned. All signed
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Character Constants

• A char in C is one byte (8-bit) in size  (16-bit in Java)
• Will elaborate why 8 bits,16 bits

• A constant char is specified with single quotes:
• Regular characters:  'A', 'C', 'z', '0', '#', '$’,…
• char x = 'A';

• Special characters: invisible or control chars
• New line, tab, del  ….
• Use escape sequence to represent



Special Characters

char c  = '\t';
char c2 = '\n';



Internal Representation of 
characters

• characters as 1/0 bits. So they are stored as (small) 
integer values, interpreted according to the character 
set encoding (usually ASCII, 7 bits for 128 
characters),

• 'a' has encoding 97, '0' has 48,  '9' has 
57 

• •Escape sequences are integers too
• e.g.  '\n'  has10 (newline character)
• '\t'  has9  (horizontal tab)

• Special escape: '\0'
• has encoding 0     -the null character



Internal Representation of 
Characters



Characters
• chars are treated in C (and Java) as small integers, char variables and 

constants are identical to int in arithmetic expressions:
• char c is converted to its encoding (index in  the character set 

table) 

• char aChar= 'E';   // encoding 69
  'E' + 8      //expression with value 69+8 = 77 
  'E' + 'B'      //expression with value 69+66 = 135
  'E' -'B'      //expression with value 69-66 = 3

• Same for other expressions. In relational/logical expression, characters can 
be compared directly, comparing indexes/encodings

• aChar== EOF    //index == -1?  expr with value 0 (false)
• aChar== 'H'    //index == 72?  expr with value 0 (false)
• aChar== '\n'   // index == 10?  expr with value 0 (false)
• aChar< 'H' //69 < 72? Earlier in table?expr with 1 (true)



Characters
• Since chars are just small integers, char variables and constants are 

identical to int in arithmetic expressions. Some programming idioms 
that take advantage of this:



Example
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