
Introduction to C
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

printf() and scanf()

printf() and scanf()

printf(a)： values of variables
scanf(&a): addresses of variables

printf() and scanf()

printf() and scanf()

If we use “a” and “b” as the input for
scanf():scanf(“%f<><>%f”, a, b);

printf() and scanf()

If we use “&a” and “&b” as the input for
printf():printf(“these are %f<><>%f”, &a, &b);

getchar, putchar
• int getchar(void)

• To read one character at a time from the standard input
• Returns the next input char each time it is called;
• Returns EOFwhen it encounters end of file.oend of file; Using < : end of

input file
• keyboard: Ctrl-D (Unix) or Ctrl-Z (Windows). “Keyboard is a file”

• EOF: an int constant defined in <stdio.h>, value is -1.

• •int putchar(int c)
• Puts the character c on the standard output
• Returns the character written (usually ignored);
• Like printf("%c", c);

• countChar.c

getchar, putchar

• countChar.c

getchar, putchar

red 309 % a.out
hello
how are you
iam good
Ctrl + D (end of the input)

of chars: 28

• Redirected from file

getchar, putchar

Statements

• Expression statement
• y = i+1; i++; x = 4;

• Function call statement
• printf("the result is %d");

• Control flow statement
• if else, for(), while(), do while, case switch

Expression
• Formed by combining operands(variable, constants

and function calls) using operators (+ -* % > <
== !=)

• Has return values

Preprocessing: # include, #define

#define directive
• Syntax #define name value No type;

• Name called symbolic constant, conventionally written in
upper case

• Value can be any sequence of characters

• Use as constant N = x + 2;

#define directive
• Syntax #define name value No type;

• Name called symbolic constant, conventionally written in
upper case

• Value can be any sequence of characters

• Use as constant N = x + 2;

C-Types, Operators, Expressions

• [Primitive/scalar] Types and sizes
• Primitive Types
• Constant values (literals)

• [Structured/aggregated] Array and
"strings“

• Expressions
• Basic operators
• Type promotion and conversion
• Other operators
• Precedence of operators

C Primitive Types
• Variables and values have types

• There are two basic types in ANSI-C: integer, and
floating point

• Integer type
• char -character, 1 byte (8 bits)
• short [int] -short integer, usually2 bytes (16 bits)
• int -integer, usually2 or 4 bytes (16 or 32 bits)
• long [int] -long integer, usually4 or 8 bytes (32 or 64 bits)

• Floating point
• float -single-precision, usually4 bytes (32 bits)
• double -double-precision, usually8 bytes (64 bits)
• long double -extended-precision

C Primitive Types and Sizes
• Variables and values have types

• There are two basic types in ANSI-C: integer, and
floating point

• Integer type
• char -character, 1 byte (8 bits)
• short (int) -short integer, usually2 bytes (16 bits)
• int -integer, usually2 or 4 bytes (16 or 32 bits)
• long (int) -long integer, usually4 or 8 bytes (32 or 64 bits)

• Floating point
• float -single-precision, usually4 bytes (32 bits)
• double -double-precision, usually8 bytes (64 bits)
• long double -extended-precision

Qualifiers (modifiers) for
integer type

• signed, unsigned qualifiers can be applied to integer type
• Signed: default. Left most bit signifies sign 0: positive 1: negative
• Unsigned: positive. Left most bit contributes to magnitude too

• [signed] char
• [signed] int
• [signed] short int
• [signed] long int

• unsigned char
• unsigned int
• unsigned short int
• unsigned long int

Qualifiers for floating points
• “long” can be used with double:

• long double

• Thus, there are three types of floating points:
• float /* single-precision floating point */
• double /* double-precision floating point */
• long double /* extended-precision floating point */

• More bits, more precise: 3.1415926535….

• printf/scanf("%f") for float, ("%lf") for double, ("%Lf") for long double

• Storage of floating point is complicated.
• float x=4.8, float y = 6.4/2+1.6; x == y may not always true.

• No unsigned. All signed

Qualifiers for floating points
• “long” can be used with double:

• long double

• Thus, there are three types of floating points:
• float /* single-precision floating point */
• double /* double-precision floating point */
• long double /* extended-precision floating point */

• More bits, more precise: 3.1415926535….

• printf/scanf("%f") for float, ("%lf") for double, ("%Lf") for long double

• Storage of floating point is complicated.
• float x=4.8, float y = 6.4/2+1.6; x == y may not always true.

• No unsigned. All signed

Character Constants

• A char in C is one byte (8-bit) in size (16-bit in Java)
• Will elaborate why 8 bits,16 bits

• A constant char is specified with single quotes:
• Regular characters: 'A', 'C', 'z', '0', '#', '$’,…
• char x = 'A';

• Special characters: invisible or control chars
• New line, tab, del ….
• Use escape sequence to represent

Special Characters

char c = '\t';
char c2 = '\n';

Internal Representation of
characters

• characters as 1/0 bits. So they are stored as (small)
integer values, interpreted according to the character
set encoding (usually ASCII, 7 bits for 128
characters),

• 'a' has encoding 97, '0' has 48, '9' has
57

• •Escape sequences are integers too
• e.g. '\n' has10 (newline character)
• '\t' has9 (horizontal tab)

• Special escape: '\0'
• has encoding 0 -the null character

Internal Representation of
Characters

Characters
• chars are treated in C (and Java) as small integers, char variables and

constants are identical to int in arithmetic expressions:
• char c is converted to its encoding (index in the character set

table)

• char aChar= 'E'; // encoding 69
 'E' + 8 //expression with value 69+8 = 77
 'E' + 'B' //expression with value 69+66 = 135
 'E' -'B' //expression with value 69-66 = 3

• Same for other expressions. In relational/logical expression, characters can
be compared directly, comparing indexes/encodings

• aChar== EOF //index == -1? expr with value 0 (false)
• aChar== 'H' //index == 72? expr with value 0 (false)
• aChar== '\n' // index == 10? expr with value 0 (false)
• aChar< 'H' //69 < 72? Earlier in table?expr with 1 (true)

Characters
• Since chars are just small integers, char variables and constants are

identical to int in arithmetic expressions. Some programming idioms
that take advantage of this:

Example

	Introduction to C EECS 2031
	Acknowledgement
	printf() and scanf()
	printf() and scanf() (2)
	printf() and scanf() (3)
	printf() and scanf() (4)
	printf() and scanf() (5)
	getchar, putchar
	getchar, putchar (2)
	getchar, putchar (3)
	getchar, putchar (4)
	Statements
	Expression
	Preprocessing: # include, #define
	#define directive
	#define directive (2)
	C-Types, Operators, Expressions
	C Primitive Types
	C Primitive Types and Sizes
	Qualifiers (modifiers) for integer type
	Qualifiers for floating points
	Qualifiers for floating points (2)
	Character Constants
	Special Characters
	Internal Representation of characters
	Internal Representation of Characters
	Characters
	Characters (2)
	Example

