
Introduction to C
EECS 2031

Gias Uddin
guddin@yorku.ca

https://giasuddin.ca

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Song Wang, Uyen Trang (UT) Nguyen, Pooja
Vashisth, Hui Wang, Manos Papagelis

Origins of C
• K&R C:

• C was developed at Bell Laboratories by mainly Ken
Thompson & Dennis Ritchie

• Brian Kernighan and Dennis Ritchie wrote The C
Programming Language (1978)

• C89/C90:
• ANSI standard X3.159-1989 (completed in 1988; formally

approved in December 1989)
• International standard ISO/IEC 9899:1990

• C99:
• International standard ISO/IEC 9899:1999
• Incorporates changes from Amendment 1 (1995)

Applications
C programming language is widely used in various applications
due to its efficiency, portability, and low-level control.

1.Operating Systems Development: C is often used in the development
of operating systems like Unix, Linux, and Windows. Its low-level
memory manipulation capabilities make it suitable for managing system
resources.

2.Embedded Systems: C is the primary language for programming
embedded systems, such as microcontrollers and drone controllers,
where efficiency and low-level control are critical.

3.System Software: C is used to develop system software components like
device drivers, file systems, and system utilities.

4.Compilers and Interpreters: C is often used to implement compilers
and interpreters for other programming languages. The C language
itself is typically compiled.

5.Game Development: C and C++ are common choices for game
development due to their performance and the ability to access
hardware directly.

C basics

• The first program –what it looks like
• Compile and run C program
• Basic syntax

• Comments
• Variables
• Functions
• Basic IO functions
• Expression
• Statements
• Preprocessing: #include, #define
• …

The first program –what it
looks like

hello.c, first.c, any_name.c

Compiling and running a C
program

• C programs (source code) are in files ending with .c e.g.,
hello.c

• To compile a C program, naturally in Unix, we use gcc to
compile c:

• % gcc hello.c
• If no syntax error, complier returns silently and creates an

executable program named a.out (in the current directory)

• To run
• % ./a.out or a.out

• % gcc hello.c –o hello
• create an executable program named hello (in the current

directory)

Compiling and running a C
program

• C programs (source code) are in files ending with .c e.g.,
hello.c

• To compile a C program, naturally in Unix, we use gcc to
compile c:

• % gcc hello.c
• If no syntax error, complier returns silently and creates an

executable program named a.out (in the current directory)

• To run
• % ./a.out or a.out

• % gcc hello.c –o hello
• create an executable program named hello (in the current

directory)

• C program with arguments

Compiling and running a C
program

GNU Compiler Collection (gcc)

• GCC is a set of compilers for various languages. It
provides all of the infrastructure for building software
in those languages from source code to assembly.

• The compiler can handle compiling everything on its
own, but you can use various flags to breakdown the
compilation steps.

• Default: C89/90 + some C99 features

• Example:
• gcc [flags] [infile(s)]
• To compile using C99: gcc –std=c99 hello.c

Common GCC Flags
-o [EXECUTABLE NAME] : names executable file

-Ox : Code optimization
-O0 : Compile as fast as possible, don’t optimize [this is the default]
-O1, -O2, -O3: Optimize for reduced execution time [higher numbers
are more optimized]
-Os : Optimize for code size instead of execution time.
-Og : Optimize for execution time, but try to avoid making interactive
debugging harder.

-g : produce “debug info”: annotate assembly so gdb can find variables
and source code

-Wall : enable many “warning” messages that should be on by default

-Werror : turns all warnings into errors

-std=c99 : use the 1999 version of the C standard and disable some (not
all!) extensions

Compilation: transformation of
program code to machine

understandable code

● Pre-Processor
○ $ gcc -E [flags] [filenames]

● Compiler
○ $ gcc -S [flags] [filenames]

● Assembler
○ $ gcc -c [flags] [filenames]
○ $ objdump -d [filenames]

● Linker
○ $ gcc -o [exename] [flags]

[filenames]

Compilation: transformation of
program code to machine

understandable code

● Pre-Processor
○ $ gcc -E [flags] [filenames]

● Compiler
○ $ gcc -S [flags] [filenames]

● Assembler
○ $ gcc -c [flags] [filenames]
○ $ objdump -d [filenames]

● Linker
○ $ gcc -o [exename] [flags]

[filenames]

C basics

• The first program –what it looks like
• Compile and run C program
• Basic syntax

• Comments
• Variables
• Functions
• Basic IO functions
• Expression
• Statements
• Preprocessing: #include, #define
• …

Comments

• ANSI-C (C89) /* comment */
• •Span multiple lines /* …..

 …..*/
• May not be nested /* /* */ */
• Good practice to comment things. But don’t write trivial

ones

• C99 feature // ("single-line" comment)

gcc hello.c –default C89 + some C99.

C variables
• Store data, whose value can change.

• Declaration and initialization.
• int x;
• int x =5;

• Variable names
• combinations of letters (including underscore character _),

and numbers.
• that do not start with a number; avoid starting with _;
• are not a keyword.
• uppercase and lowercase letters are distinct (x ≠ X).

• Examples: Identify valid and invalid variable
names

• abc, aBc, abc5, aA3_ , my_index
• 5sda, _360degrees, _temp, char, struct, while

C variables
• Store data, whose value can change.

• Declaration and initialization.
• int x;
• int x =5;

• Variable names
• combinations of letters (including underscore character _),

and numbers.
• that do not start with a number; avoid starting with _;
• are not a keyword.
• uppercase and lowercase letters are distinct (x ≠ X).

• Examples: Identify valid and invalid variable
names

• abc, aBc, abc5, aA3_ , my_index
• 5sda, _360degrees, _temp, char, struct, while

C variables (keyword)

char--characters

int--integers

float --single precision
floating point numbers

double--double precision
floating point

functions
return_type functionName(parameter type name, ……)
{body block}

functions

int main(){…}

int sum (int i, int j){
int s = i+ j;
return s; /* return i+j; */

}

void display (double i){
printf("this is %f", i);

}

return_type functionName(parameter type name, ……)
{body block}

functions
#include <stdio.h>

/* function definition*/

int sum (int i, int j){

return i+j;

}

int main()

{

int x = 2, y = 3;

int su= sum(x , y);

printf("Sum is %d\n", su);

}

/* Contains declaration
(prototype) of printf() */

Point of function call

Point of function call (from
stdio.h)

functions
#include <stdio.h>

int main()

{

int x = 2, y = 3;

int su= sum(x , y);

printf("Sum is %d\n", su);

}

/* Contains declaration
(prototype) of printf() */

Point of function call

Point of function call (from stdio.h)

/* function definition*/

int sum (int i, int j){

return i+j;

}

Not Defined or
Declared before

function call

functions
#include <stdio.h>

/* function declaration*/
int sum(int, int); /* intsum(inta, intb) */

int main(){

int x = 2, y = 3;

int su= sum(x , y);

printf("Sum is %d\n", su);

}

/* function definition*/

int sum (int i, int j){

return i+j;

}

Declared before function call

Basic I/O functions
• Every program has a Standard Input: keyboard
• Every program has a Standard Output: console/terminal/screen …
• Can be redirected in Unix

• < inputFile
• > outputFile

• int printf(char *format, arg1, ….); Formats and prints
arguments on standard output

• printf("This is a test %d \n", x)

• int scanf(char *format, arg1, ….); Formatted input from
standard input

• scanf("%d %d", &x, &y)

• int getchar();Reads and returns the next char on standard input

• int putchar(int c)Writes the character c on standard output

<stdio.h>

printf

functions
#include <stdio.h>

/* function declaration*/
Int sum(int, int); /* intsum(inta, intb) */

int main(){

int x = 2, y = 3;

int su= sum(x , y);

printf("Sum of %d and %d is %d\n", x, y, su);

}

/* function definition*/

int sum (int i, int j){

return i+j;

}

scanf()
• int x;
• •scanf("%d", &x)

• opposite to printf()
• formatted input from standard input
• return number of successful scans/conversions (usually discarded)

or EOF
• Wait for standard input, then converts input to int, and assign value

to x

• Format string contains: 1) regular chars 2)
conversion specifications

• %d convert input to an integer –decimal
• %c convert input to a character
• %f convert input to a floating-point number (%lf for double)
• %s convert input to a "string"

• &x -> memory address of x.

scanf() example I

• &a  memory address of a. Details later. Take as it is

scanf() example II

	Introduction to C EECS 2031
	Acknowledgement
	Origins of C
	Applications
	C basics
	The first program –what it looks like
	Compiling and running a C program
	Compiling and running a C program (2)
	Compiling and running a C program (3)
	GNU Compiler Collection (gcc)
	Common GCC Flags
	Compilation: transformation of program code to machine understa
	Compilation: transformation of program code to machine understa (2)
	C basics (2)
	Comments
	C variables
	C variables (2)
	Slide 18
	functions
	functions (2)
	functions (3)
	functions (4)
	functions (5)
	Basic I/O functions
	printf
	functions (6)
	scanf()
	scanf() example I
	scanf() example II

