Introduction to C
EECS 2031

Gias Uddin

guddin@yorku.ca
https://giasuddin.ca

Acknowledgement

e Some of the covered materials are based
on previous EECS2031 offerings:

 Song Wang, Uyen Trang (UT) Nguyen, Pooja
Vashisth, Hui Wang, Manos Papagelis

Origins of C

« K&R C:

« C was developed at Bell Laboratories by mainly Ken
Thompson & Dennis Ritchie

 Brian Kernighan and Dennis Ritchie wrote The C
Programming Language (1978)

* C39/C90:

 ANSI standard X3.159-1989 (completed in 1988; formally
approved in December 1989)

e International standard ISO/IEC 9899:1990

 (C99:
 International standard ISO/IEC 9899:1999
 Incorporates changes from Amendment 1 (1995)

Applications

C programming language is widely used in various applications
due to its efficiency, portability, and low-level control.

10perating Systems Development: C is often used in the development
of operating systems like Unix, Linux, and Windows. Its low-level
memory manipulation capabilities make it suitable for managing system
resources.

2Embedded Systems: C is the primary language for programming
embedded systems, such as microcontrollers and drone controllers,
where efficiency and low-level control are critical.

3System Software: C is used to develop system software components like
device drivers, file systems, and system utilities.

4 Compilers and Interpreters: C is often used to implement compilers
and interpreters for other programming languages. The C language
itself is typically compiled.

5Game Development: C and C++ are common choices for game
development due to their performance and the ability to access
hardware directly.

UNIVERSITE
UUUUUUUUUU

C basics

 The first program -what it looks like
 Compile and run C program

e Basic syntax
e Comments
Variables
Functions
Basic IO functions
Expression
Statements
Preprocessing: #include, #define

The first program -what it
looks like

#include <stdio.h> #include <stdio.h>
/* import standard io header */ /* import standard io header */
/* salute the world */ /* salute the world */
int main () int main (int argc, char*¥* argv)
{ {
printf("Hi, world\n"); printf("Hi, world\n");
return 9; return ©;
h)

hello.c, first.c, any name.c YORK

UNIVERSITE
UUUUUUUUUU

Compiling and running a C
program

 C programs (source code) are in files ending with .c e.q.,
hello.c

 To compile a C program, naturally in Unix, we use gcc to
compile c:

* % gcc hello.c

« If no syntax error, complier returns silently and creates an
executable program named cjilistshks oG NRIE-SNs (ololN s T-N N Ns I o
indigo 317 % 1ls
d.0UtcC
indigo 3
Hi, world
indigo 319 %

Compiling and running a C
program

 C programs (source code) are in files ending with .c e.q.,
hello.c

 To compile a C program, naturally in Unix, we use gcc to
compile c:
* % gcc hello.c

* If no syntax error, complier returns silently and creates an
executable program named l_:l'Ell-%j:- :Iltl ;:;. -:Iliu: hello.c tory-)

e TOo run
e % ./a.out or a.out

UNIVERSITY

Compiling and running a C
program

e C program with arguments

% gcc hello.c -o hello-arg
./hello-arg "Tom"
Hi gy WOT 1d r Tom
indigo 359 % |}

GNU Compiler Collection (gcc)

* GCC is a set of compilers for various languages. It
provides all of the infrastructure for building software
in those languages from source code to assembly.

 The compiler can handle compiling everything on its
own, but you can use various flags to breakdown the

compilation steps.

e Default: C89/90 + some C99 features

 Example:
» gcc [flags] [infile(s)]
 To compile using C99: gcc -std=c99 hello.c

Common GCC Flags

-0 [EXECUTABLE NAME] : names executable file

-Ox : Code optimization
-00 : Compile as fast as possible, don’t optimize [this is the default]
-01, -02, -03: Optimize for reduced execution time [higher numbers
are more optimized]
-Os : Optimize for code size instead of execution time.
-Og : Optimize for execution time, but try to avoid making interactive
debugging harder.

-g : produce “debug info”: annotate assembly so gdb can find variables
and source code

-Wall : enable many “warning” messages that should be on by default

-Werror : turns all warnings into errors

-std=c99 : use the 1999 version of the C standard and disable g;%%m

UUUUUUUU

A1T11)Y A~ FANnN T AN

Compilation: transformation of
program code to machine
understandable code

Pre-Processor

© $ gcc -E [flags] [filenames]
Compiler

O $ gcc -S [flags] [filenames]
Assembler

O $ gcc -c [flags] [filenames]

O $ objdump -d [filenames]
Linker

© $ gcc -0 [exename] [ﬂagm

Source Code (.c, .cpp, .h) file

Pre-Processor

Compiler

Include Header, Expand
Macro (.i, .ii)

L

Assembler

T
|
BT
|
T

Assembly Code (.s)

B
-

"

[filenames]

Machine Code (.0, .obj)

Executable Machine YO R K

Code (.exe)

Compilation: transformation of
program code to machine
understandable code

Source Code (.c, .cpp, .h) file

. : glﬂbl main Pre-Processor
malin. .

ll Include Header, Expan

pUShl $. LC8 l Macro (.i, .ii)

call puts
addl $4, %esp
xorl %eax, %eax l

Assembly Code (.s)

r Et Assembler

.string "Hello world" m il —.

Machine Code (.0, .obj)

. Executable Machine YO R K '
Code (.exe) '

.LCO:

C basics

* The first program -what it looks like
 Compile and run C program

 Basic syntax
e Comments
Variables
Functions
Basic IO functions
Expression
Statements
Preprocessing: #include, #define

Comments

ANSI-C (C89) /* comment */
e Span multiple lines /*

May not be nested /* /* */ */

Good practice to comment things. But don’t write trivial
ones

C99 feature // ("single-line" comment)

gcc hello.c -default C89 + some C99.

C variables

e Store data, whose value can change.
* Declaration and initialization.
e int x;
e int x =5;

 Variable names

« combinations of letters (including underscore character),

and numbers.
 that do not start with a number; avoid starting with ;
» are not a keyword.
* uppercase and lowercase letters are distinct (x # X).

C variables

e Store data, whose value can change.
* Declaration and initialization.
e int x;
e int x =5;

 Variable names

« combinations of letters (including underscore character),
and numbers.

 that do not start with a number; avoid starting with ;
» are not a keyword.
* uppercase and lowercase letters are distinct (x # X).

 Examples: Identify valid and invalid variable
names

« abc, aBc, abc5, aA3_ , my_index
« 5sda, _360degrees, _temp, char, struct, while

C variables (keyword)

char--characters
int--integers

float --single precision
floating point numbers

double--double precision
floating point

auto
break
case
char
const
continue
default
do
double
else

enum

extern
float
for
goto
if
inline
int
long
register
restrict

return

1, a

1,

d

short
signed
sizeof
static
struct
switch
typedef
union
unsigned
void

volatile

YORKI

v |wn
[
<Im

c|=
z|z
=<
m{m
o |3

functions

return_type functionName(parameter type name, ...)
{body block}

functions

return_type functionName(parameter type name, ...)
{body block}

int main(){..}

int sum (int i, int j){
int s = i+ j;
return s; /* return i+j; */

}

void display (double 1){
printf("this is %f", 1);
}

([]
functions
* Contains declaration
#include <stdio.h> _ (prototype) of printf() */

/* function definition*/
int sum (int i, int j){
return 1i+j;

}

int main()

{
int x = 2, y = 3;
’ Point of function call
int su= sum(x , y);

printf("Sum is %d\n", su) ;’ Pé)épt }cl);f function call (from
stdio.

functions

_ _ /* Contains declaration
#include <stdio.h> _ (prototype) of printf() */

int main() Not Defined or
{ Declared before
function call

int x = 2, y = 3;
’ Point of function call x

int su= sum(x , y);
printf("sum is %d\n", su) ;’ Point of function call (from stdio.h)

}

/* function definition*/
int sum (int i, int j){

return 1i+j;

functions

#include <stdio.h>

/* function declaration*/
int sum(int, 1int); /* intsum(inta, intb) */

int main(){ Declared before function call

int x = 2, y = 3;
int su= sum(x , y);
printf("Sum is %d\n", su);
}
/* function definition*/
int sum (int i, int j){

return i+j;

Basic I/0O functions

<stdio.h>

Every program has a Standard Input: keyboard
Every program has a Standard Output: console/terminal/screen ...

Can be redirected in Unix
¢ < inputFile
* > outputFile

int printf(char *format, argl,); Formats and prints
arguments on standard output
o printf("This is a test %d \n", x)

int scanf(char *format, argl,); Formatted input from
standard input
* scanf("%d %d", &x, &y)

int getchar();Reads and returns the next char on standard input

int putchar(int c)Writes the character ¢ on standard output YORK

UNIVERSITY

printf

/* conversion
specification */

formqt string

prlntf(”Thls is day $d—of Sep\n” X)

» Formats and prints arguments on standard output °
» Returns number of chars printed (often discarded)

Format string contains: 1) regular chars 2) conversion specifications
» %d to be replaced/filled with an integer — decimal “place holders
* %c to be replaced/filled with a character
» %f to be replaced/filled with a floating point number (float, double)
» %s to be replaced/filled with a "string" (array of chars)

printf ("Hello World\n") ; Hello World

prlntf{"%s\n" "Hello World") ; Hello World
printf ("%s World\n” "ﬂello"); Hello World

-

int a = 15; int b = 3;
printf ("This is day " + a + " of Jan.\n"); This is day 15 of Jan.

printf("This is day " + a + ", week " + b + "of Jan.\n");

This is dav 15. week 3 of Jan.

functions

#include <stdio.h>

/* function declaration*/
Int sum(int, 1int); /* intsum(inta, 1intb) */
int main(){
int x = 2, y = 3;
int su= sum(x , y);
printf("Sum of %d and %d is %d\n", Xx, y, su);
}

/* function definition*/
int sum (int i, int j){

return i+j;

scanf()

e int x;

o escanf("%d", &x)

e opposite to printf()
« formatted input from standard input

* return number of successful scans/conversions (usually discarded)
or EOF

 Wait for standard input, then converts input to int, and assign value
to x

 Format string contains: 1) regular chars 2)
conversion specifications
* %d convert input to an integer -decimal
* %c convert input to a character
* %f convert input to a floating-point number (%lIf for double)
* %s convert input to a "string"

« &x -> memory address of x.

scanf() example I

main () {

a;
printf (

scanf (

 &a [] memory address of a. Details later. Take as itis

JCC 3can.c -0 Scan

scanf() example II

(i,
return i +

indigo 315 % gcc sum.c -0 sum

indigo 316 % ./sum

Please enter two integers separated by blank: 5 10
Entered 5 and 10. Sum is 15

indigo 317 %

	Introduction to C EECS 2031
	Acknowledgement
	Origins of C
	Applications
	C basics
	The first program –what it looks like
	Compiling and running a C program
	Compiling and running a C program (2)
	Compiling and running a C program (3)
	GNU Compiler Collection (gcc)
	Common GCC Flags
	Compilation: transformation of program code to machine understa
	Compilation: transformation of program code to machine understa (2)
	C basics (2)
	Comments
	C variables
	C variables (2)
	Slide 18
	functions
	functions (2)
	functions (3)
	functions (4)
	functions (5)
	Basic I/O functions
	printf
	functions (6)
	scanf()
	scanf() example I
	scanf() example II

