I C Input and Output
EECS 2031

Song Wang
wangsong@eecs.yorku.ca
eecs.yorku.ca/~wangsong/

Acknowledgement

e Some of the covered materials are based
on previous EECS2031 offerings:

« Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

stdin, stdout, stderr

When vyour C program begins to execute,
input/output devices are opened automatically.

stdin
 The “standard input” device, usually your keyboard

stdout
 The “standard output” device, usually your monitor

stderr
 The “standard error” device, usually your monitor

Text terminal

#0 stdin Keyboard)

three

Formatted Console Output

* In C formatted output is created using the
printf() function.

» printf() outputs text to stdout

* The basic function call to printf() is of the
form
printf(format, argl, arg?2, ...);

where the format is a string containing
e conversion specifications
e literals to be printed

printf() conversions

Conversions specifications begin with %
and end with a conversion character.

Between the % and the conversion
character MAY be, in order
* A minus sign specifying left-justification
* The minimum field width
* A period separating the field width and
precision
* The precision that specifies

* Maximum characters for a string

* Number of digits after the decimal for a floating
point
* Minimum number of digits for an integer

* An h for “short” or an 1 (letter ell) for long

Common printf()
Conversions

%d -- the int argument is printed as a decimal
number

%u -- the int argument is printed as an unsigned
number

%s -- prints characters from the string until \0’ is
seen or the number of characters in the (optional)
precision have been printed (more on this later)

%t -- the double argument is printed as a floating
point number

%x, %X -- the int argument is printed as a
hexadecimal number (without the usual leading
llOXII)

%c - the int argument is printed as a single
character

Output formatting

%(flags)(width)
(.precision)specifier

* %2d: outputs a decimal (integer)
number that fills at least 2 character
spaces, padded with empty space. E.g.: 5
_)]| 5II’ 120 N II120II

* %8.4f: outputs a floating point number
that fills at least 8 character spaces
(including the decimal separator), with
exactly 4 digits after the ".", padded with
empty space.

Sub-
specifier

width

flags

Integer formatting

Description

Specifies the minimum number of characters to print. If the formatted value has
more characters than the width, the value will not be truncated. If the formatted
value has fewer characters than the width, the output will be padded with
spaces (or 0's if the '0’ flag is specified).

- Left aligns the output given the specified width, padding the output with
spaces.

+: Print a preceding + sign for positive values. Negative numbers are always
printed with the - sign.

0: Pads the output with 0's when the formatted value has fewer characters than
the width.

space: Prints a preceding space for positive value.

Example

printf("value: %7d", myInt);
Value: 301

printf("%+d", myInt);
+301

printf("%08d", myInt);
00000301

printf("%+08d", myInt);
+0000301

Floating-point formatting

Sub-

e Description Example
Specifies the minimum number of characters to print. If the formatted
e value has more characters than the width, the value willl not be truncatec_i. printf("value: %7.2f", myFloat);
If the formatted value has fewer characters than the width, the output will | value: 12.34
be padded with spaces (or 0's if the ‘0’ flag is specified).
printf("%.4f", myFloat);
. : 12.3400
. Specifies the number of digits to print following the decimal point. If the
.precision . . - .
precision is not specified, a default precision of 6 is used. . . .,
printf("%3.4e", myFloat);
1.2340e+01
- Left aligns the output given the specified width, padding the output
with spaces.) § . .
+: Prints a preceding + sign for positive values. Negative numbers are E:;nzjéozgf r myFloat);
flags always printed with the - sign. N i} .
0: Pads the output with 0's when the formatted value has fewer gg;?zfgq%og ety MGGkl

characters than the width.
space: Prints a preceding space for positive value.

Sub-
specifier

width

.precision

flags

String formatting

Description

Specifies the minimum number of characters to print. If the string has
more characters than the width, the value will not be truncated. If the
formatted value has fewer characters than the width, the output will be
padded with spaces.

Specifies the maximum number of characters to print. If the string has
more characters than the precision, the string will be truncated.

-: Left aligns the output given the specified width, padding the output
with spaces.

Example

printf("%20s String", myString);
Formatting String

printf("%.6s", myString);
Format

printf("%-20s String", myString);
Formatting String

Formatted Output
Example

e Use field widths to align output in
columns

int 1;

fori=1;i<5;i++)
printf("%2d %10.6f %20.15\n", i,sqrt(i),sqrt(i));

12 1234567890 12345678901234567890
1 1.000000 1.000000000000000
2 1.414214 1.414213562373095
3 1.732051 1.732050807568877
4 2.000000 2.000000000000000

Unix input redirection

By default, stdin is associated with the user’s
keyboard, but Unix allows us to redirect stdin to
read data from a file when your program is
executed. All scanf() statements in your program
read from this file instead of the user’s keyboard
with no change to your code.

Redirecting input from a file is useful for
debugging -- you don’t have to continually retype
your input.

Suppose your program’s name is Projectl and you
wish to get your input from a file named datal. To
redirect stdin to read from datal, use this
command at the Unix prompt

indigo 346 % Projectl < datal

Unix output redirection

By default, stdout is associated with the user’s console,
but Unix allows us to redirect stdout to output text to a
file when your program is executed. All printf()
statements in your program output to this file instead of
the user’s console, otherwise your program is unaffected.

 Suppose your program’s name is Project]l and you wish
to write your output to a file named logfilel. To redirect
stdout to write to logfilel, use this command at the Unix
prompt

indigo 346 % Projectl > logfile

* Can you redirect both input and output?

int fprintf(FILE *stream, const char
*format, ...)
int dprintf(int fd, const char

*format, ...);
’)’ Text terminal

Keyboard)

Displa)a

fprintf(stdout, "a regular message on stdout\
nll);
fprintf(stderr, “an error message on stderr\n");

#0 stdin

#1 stdout

dprintf(1, "a regular message on stdout\n");

#include <stdio.h=>
int main(void)
" q
printf("A regular message on stdout\n");
/* Using streams with fprintf() */
fprintf(stdout, "Also a regular message on stdoutin"),
fprintf(stderr, "An error message on stderr\n");
- dprintf(1, "A regular message, printed to "
"fd 1\n");
B dprintf(2, "An error message, printed to
"fd 2\n");
return 0;

mr

1
2
3
4
5
b
I
8
9
0
1
2
3
4

'
$> ./output
A regular message on stdout
Also a regular message on stdout
An error message on stderr
A regular message, printed to fd 1
An error message, printed to fd 2

1 #include <stdio.h=
2 int main(wvoid)

374

4 printf("A regular message on stdout\n");

5 /* Using streams with fprintf() */

6 fprintf(stdout, "Also a regular message on stdoutin");
7 fprintf(stderr, "An error message on stderr\n");
8

9~ dprintf(1, "A regular message, printed to "

0 “fd 1\n");

1~ dprintf(2, "An error message, printed to "

2 "fd 2\n");

3 return 0;

4 }

5> ./output 2> error.log

A regular message on stdout

Also a regular message on stdout
A regular message, printed to fd 1

Text File I/O

Reading and writing from/to a text file is similar to getting
input from stdin (with scanf) and writing to stdout (with
printf).

Reading data from a text file is accomplished with the
function fscanf(). This function works the same as
scanf(), but requires an additional parameter which is a
“handle” to the file.

Reading a line from a text file is accomplished using the
fgets() function. This function is similar to gets() but
requires a “handle” to a file and a maximum character
count.

Similarly, writing to a text file is accomplished with the
function fprintf () which works the same as printf(),
but also requires a “handle” to the file to be read.

Opening and Closing

To read or write from a text file using
fscanf(), fegets() or fprintf(),
the file must first be opened using
fopen(). The file should be closed

using fclose() when all I/O Is
complete.

fopen() returns a handle to the file as
the type FILE* (a pointer to a FILE struct)
which is then used as the argument to

fscanf(), fgets(), fprintf() and
fclose().

The return value from fopen() should be
checked to insure that the file was in fact

f\l’\f\lﬁ\f\’\l

FILE

* FILE *fp; /* file pointer */
 FILE Is a structure in C

struct IO FILE {
char * IO read ptr; /* Current read pointer */
char * IO read_end; /* End of get area. */
char * IO read base; /* Start of putback and get area. */
char * IO write_base; /* Start of put area. */
char * IO write_ptr; /* Current put pointer. */
char * IO write_end; /* End of put area. */
char * IO buf_base; /* Start of reserve area. */
char * IO buf_end; /* End of reserve area. */
int _fileno;
int _blksize;

};

typedef struct IO FILE FILE;

fopen()

* fopen(char *name, char *mode) requires two
parameters
 The name of the text file to be opened

* The text file open “mode”

“r" - open the file for reading only

“w"” - create the file for writing; if the file exists, discard the
its contents

“a” - append; open or create the file for writing at the end
“r+"” - open the file for reading and writing

“w+" - create the file for reading and writing; if the file
exists, discard its contents

“a+" - open or create the file for reading or writing at the
end

Modes

* fp = fopen(name, "r");
 Returns NULL if file does not exist, or has no
read permission.

fp = fopen(name, “w");
* If file does not exist, one will be created for
writing.
* If file already exists, the content will be
erased when the file is opened. So be careful!

 Returns NULL if file has no write permission.

Modes

 fp = fopen(name, “a"); /* append */
* If file does not exist, one will be created for writing.
e If file already exists, the content will be preserved.
« Returns NULL if file has no write permission.

* fp = fopen(name, "rw");
* File may be read first, but the old content will be
erased as soon as something is written to the file.

* fp = fopen(name, "ra");
« fp = fopen(name, “aw"); /* same as “a” */

Using topen()

* Open the file named “bob.txt” for reading
FILE * myFile = fopen(“bob.txt”, “r”);

* If fopen() fails, the special value NULL is
returned. All calls to fopen should be
checked

FILE *myFlle = fopen (“bob.txt”, “r"”)
If (myFile == NULL)
{

/* handle the error */

}

Closing Files

int fclose(FILE *fp)

fclose(ifp) ;
fclose(ofp);

> Most operating systems have some limit on the number of files that a program
may have open simultaneously = free the file pointers when they are no longer
needed.

» fclose is called automatically for each open file when a program terminates
normally.

> For output files: £close flushes the buffer in which pute is collecting output.

fscanf.c

1 #include =stdio.h=
2 #include <stdlib.h= /* fTor "exit"” */
3 1int main ()

4+ {
5 double x ;

b FILE *ifp ;

7

8 f* try to open the file for reading, check if successful */

9 f* 1f it wasn't opened exit gracefully */
10 ifp = fopen("test_data.dat”, "r") ;
11~ 1if (ifp == NULL) {

12 printf ("Error opening test_data.datin");

13 exit (-1);

14 }

15 fscanf(ifp, "%1f", &x) ; /* read one double from the file */
16 fclose(ifp); /* close the file when finished */

17

18 /* check to see what you read */

19 printf("x = %.2f\n", x) ;
20 return 0;

Detecting end-of-file with
fscanft

 When reading an unknown number of
data elements from a file using
fscanf(), we need a way to determine
when the file has no more data to read,
I.e, we have reached the “end of file”.

* Fortunately, the return value from
fscanf() holds the key. fscanf()
returns an integer which is the number of
data elements read from the file. If end-
of-file is detected the integer return value
IS the special value EOF

1~

b N o T SR S S By L

10
I
12
13
14
15
16
17

EOF example code

/* code snippet that reads an undetermined number of
integer student ages from a file and prints them out
as an example of detecting EOF

*/
FILE *inFile;
int age;

inFile = fopen(“myfile”, “r");

if (inFile == NULL) {
printf ("Error opening myFile\n");
exit (-1);
}

while (fscanf(infile, "%d", &age) != EOF)
printf(“%d\n", age),

fclose(inFile);

00 =] On W s) g =
4

Bl M= OO 00 s N B W = O WD
|

fprintf.c
/* fprintf.c */
#include <stdio.h=
#include <stdlib.h> /* exit */
int main ()

P

double pi = 3.14159 ;
FILE *ofp ;

/* try to open the file for writing, check if successful */
f* 1f 1t wasn't exit gracefully */
ofp = fopen("test.out”, "w") ;
if (ofp == NULL) {
printf ("Error opening test.out\n");

exit (-1);

/* write to the file using printf formats */
fprintf(ofp, “Hello World\n");
fprintf(ofp, “PI is defined as %6.51f\n", pi);

fclose(ofp); /* close the file when finished reading */

return 0;

e

fprintf vs printf
fscanf vs scant

* Function prototypes are identical except that
fprintf and fscanf require FILE* parameter

 Format strings identical

 fscanf, fprintf are more general

* printf can be written using fprintf
o fprintf(stdout,)

e Similarly, scanf can be written using fscanf
» fscanf(stdin,)

Errors to stderr

e Errors should be output to stderr using fprintf rather
to stdout using printf()

* Do this
« fprintf(stderr, “this is the error message\n”);

instead of this
 printf(“this is the error message\n”);

 For example
ofp = fopen("test.out", “w") ;
if (ofp == NULL) {
fprintf (stderr, "Error opening test.out\n");
exit (-1),

	C Input and Output EECS 2031
	Acknowledgement
	stdin, stdout, stderr
	Formatted Console Output
	printf() conversions
	Common printf() Conversions
	Output formatting
	Slide 8
	Slide 9
	Slide 10
	Formatted Output Example
	Unix input redirection
	Unix output redirection
	int fprintf(FILE *stream, const char *format, ...)
	Slide 15
	Slide 16
	Text File I/O
	Opening and Closing
	FILE
	fopen()
	Modes
	Modes (2)
	Using fopen()
	Closing Files
	fscanf.c
	Detecting end-of-file with fscanf
	EOF example code
	fprintf.c
	fprintf vs printf fscanf vs scanf
	Errors to stderr

