
C Input and Output
EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/



Acknowledgement

• Some of the covered materials are based 
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth, 
Hui Wang, Manos Papagelis



stdin, stdout, stderr
• When your C program begins to execute, three 

input/output devices are opened automatically.
• stdin

• The “standard input” device, usually your keyboard
• stdout

• The “standard output” device, usually your monitor
• stderr

• The “standard error” device, usually your monitor



Formatted Console Output

• In C formatted output is created using the 
printf( ) function.

• printf( ) outputs text to stdout

• The basic function call to printf( ) is of the 
form
 printf( format, arg1, arg2, … );
where the format is a string containing
• conversion specifications
• literals to be printed



printf( ) conversions
Conversions specifications begin with % 

and end with a conversion character.
Between the % and the conversion 

character MAY be, in order
• A minus sign specifying left-justification
• The minimum field width
• A period separating the field width and 

precision
• The precision that specifies

• Maximum characters for a string
• Number of digits after the decimal for a floating 

point
• Minimum number of digits for an integer

• An h for “short” or an l (letter ell) for long



Common printf( ) 
Conversions

• %d -- the int argument is printed as a decimal 
number

• %u -- the int argument is printed as an unsigned 
number

• %s -- prints characters from the string until ‘\0’ is 
seen or the number of characters in the (optional) 
precision have been printed (more on this later)

• %f -- the double argument is printed as a floating 
point number

• %x, %X -- the int argument is printed as a 
hexadecimal number (without the usual leading 
“0x”)

• %c - the int argument is printed as a single 
character

• %p - the pointer argument is printed 
(implementation dependent)



• %2d: outputs a decimal (integer) 
number that fills at least 2 character 
spaces, padded with empty space. E.g.: 5 
→ " 5", 120 → "120" 

• %8.4f: outputs a floating point number 
that fills at least 8 character spaces 
(including the decimal separator), with 
exactly 4 digits after the ".", padded with 
empty space.

Output formatting

%(flags)(width)
(.precision)specifier



Integer formatting



Floating-point formatting



String formatting



Formatted Output 
Example

• Use field widths to align output in 
columns

int i;
for (i = 1 ; i < 5; i++)
  printf("%2d %10.6f %20.15f\n", i,sqrt(i),sqrt(i));

12 1234567890 12345678901234567890
 1   1.000000    1.000000000000000
 2   1.414214    1.414213562373095
 3   1.732051    1.732050807568877
 4   2.000000    2.000000000000000



Unix input redirection

• By default, stdin is associated with the user’s 
keyboard, but Unix allows us to redirect stdin to 
read data from a file when your program is 
executed.  All scanf( ) statements in your program 
read from this file instead of the user’s keyboard 
with no change to your code.
• Redirecting input from a file is useful for 

debugging -- you don’t have to continually retype 
your input.
• Suppose your program’s name is Project1 and you 

wish to get your input from a file named data1.  To 
redirect stdin to read from data1, use this 
command at the Unix prompt

 indigo 346 % Project1 < data1



Unix output redirection
• By default, stdout is associated with the user’s console, 

but Unix allows us to redirect stdout to output text to a 
file when your program is executed.  All printf( ) 
statements in your program output to this file instead of 
the user’s console, otherwise your program is unaffected.

• Suppose your program’s name is Project1 and you wish 
to write your output to a file named logfile1.  To redirect 
stdout to write to logfile1, use this command at the Unix 
prompt

 indigo 346 % Project1 > logfile

• Can you redirect both input and output?



int fprintf(FILE *stream, const char 
*format, ...)

fprintf(stdout, "a regular message on stdout\
n"); 
fprintf(stderr, “an error message on stderr\n");

dprintf(1, "a regular message on stdout\n"); 
dprintf(2, “an error message on stderr\n");

int dprintf(int fd, const char 
*format, ...);







Text File I/O
• Reading and writing from/to a text file is similar to getting 

input from stdin (with scanf) and writing to stdout (with 
printf).

• Reading data from a text file is accomplished with the 
function fscanf( ).  This function works the same as 
scanf( ), but requires an additional parameter which is a 
“handle” to the file.

• Reading a line from a text file is accomplished using the 
fgets( ) function.  This function is similar to gets( ) but 
requires a “handle” to a file and a maximum character 
count.

• Similarly, writing to a text file is accomplished with the 
function fprintf() which works the same as printf( ), 
but also requires a “handle” to the file to be read.



Opening and Closing
To read or write from a text file using 
fscanf( ), fegets( ) or fprintf( ), 
the file must first be opened using 
fopen( ). The file should be closed 
using fclose( ) when all I/O is 
complete.

fopen( ) returns a handle to the file as 
the type FILE* (a pointer to a FILE struct) 
which is then used as the argument to 
fscanf(), fgets( ), fprintf( ) and 
fclose( ).

The return value from fopen( ) should be 
checked to insure that the file was in fact 
opened.



FILE 

• FILE *fp; /* file pointer */
• FILE is a structure in C



fopen( )

• fopen(char *name, char *mode) requires two 
parameters
• The name of the text file to be opened

• The text file open “mode”
• “r” - open the file for reading only
• “w” - create the file for writing; if the file exists, discard the 

its contents
• “a” - append; open or create the file for writing at the end
• “r+” - open the file for reading and writing
• “w+” - create the file for reading and writing; if the file 

exists, discard its contents
• “a+” - open or create the file for reading or writing at the 

end



Modes

• fp = fopen( name, "r" ); 
• Returns NULL if file does not exist, or has no 

read permission.

fp = fopen( name, “w" ); 
• If file does not exist, one will be created for 

writing. 
• If file already exists, the content will be 

erased when the file is opened. So be careful! 
• Returns NULL if file has no write permission.



• fp = fopen( name, “a" ); /* append */ 
• If file does not exist, one will be created for writing. 
• If file already exists, the content will be preserved. 
• Returns NULL if file has no write permission.

• fp = fopen( name, "rw" ); 
• File may be read first, but the old content will be 

erased as soon as something is written to the file. 

• fp = fopen( name, "ra" ); 
• fp = fopen( name, “aw" ); /* same as “a” */

Modes



Using fopen( )
• Open the file named “bob.txt” for reading

FILE * myFile = fopen( “bob.txt”, “r”);

• If fopen( ) fails, the special value NULL is 
returned.  All calls to fopen should be 
checked

FILE *myFIle = fopen (“bob.txt”, “r”)
If (myFile == NULL)
{

/* handle the error */
}



Closing Files



fscanf.c



Detecting end-of-file with 
fscanf

• When reading an unknown number of 
data elements from a file using 
fscanf( ), we need a way to determine 
when the file has no more data to read,  
i.e, we have reached the “end of file”.

• Fortunately, the return value from 
fscanf( ) holds the key.  fscanf( ) 
returns an integer which is the number of 
data elements read from the file.  If end-
of-file is detected the integer return value 
is the special value EOF



EOF example code



fprintf.c



fprintf vs printf
fscanf vs scanf

• Function prototypes are identical except that 
fprintf and fscanf require FILE* parameter

• Format strings identical

• fscanf, fprintf are more general
• printf can be written using fprintf
• fprintf( stdout, ....)

• Similarly, scanf can be written using fscanf
• fscanf( stdin, .... )



Errors to stderr
• Errors should be output to stderr using fprintf rather 

to stdout using printf( )
• Do this

• fprintf( stderr, “this is the error message\n” );
instead of this
• printf( “this is the error message\n” );

• For example
ofp = fopen("test.out", “w") ;

  if (ofp == NULL) {
    fprintf (stderr, "Error opening test.out\n");
    exit (-1);
  }


	C Input and Output EECS 2031
	Acknowledgement
	stdin, stdout, stderr
	Formatted Console Output
	printf( ) conversions
	Common printf( ) Conversions
	Output formatting
	Slide 8
	Slide 9
	Slide 10
	Formatted Output Example
	Unix input redirection
	Unix output redirection
	int fprintf(FILE *stream, const char *format, ...)
	Slide 15
	Slide 16
	Text File I/O
	Opening and Closing
	FILE
	fopen( )
	Modes
	Modes (2)
	Using fopen( )
	Closing Files
	fscanf.c
	Detecting end-of-file with fscanf
	EOF example code
	fprintf.c
	fprintf vs printf fscanf vs scanf
	Errors to stderr

