
Operators &
Expressions

EECS 2031

Song Wang
wangsong@eecs.yorku.ca

eecs.yorku.ca/~wangsong/

Acknowledgement

• Some of the covered materials are based
on previous EECS2031 offerings:

• Uyen Trang (UT) Nguyen, Pooja Vashisth,
Hui Wang, Manos Papagelis

“An operator is a symbol (+,-,*,/) that directs the
computer to perform certain mathematical or
logical manipulations and is usually used to
manipulate data and variables”

Ex: a+b

Definition

Operators in C
1. Arithmetic operators

2. Relational operators

3. Logical operators

4. Assignment operators

5. Increment and decrement operators

6. Conditional operators

7. Bitwise operators

8. Special operators

Arithmetic operators

Operat
or

exampl
e

Meaning

+ a + b Addition –unary

- a – b Subtraction- unary

* a * b Multiplication

/ a / b Division

% a % b Modulo division-
remainder

Relational Operators

Operator Meaning
< Is less than

<= Is less than or equal to
> Is greater than

>= Is greater than or equal
to

== Equal to
!= Not equal to

Logical Operators

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

Logical expression or a compound relational expression

An expression that combines two or more relational
expressions

Ex: if (a==b && b==c)

Truth Table

a b
Value of the expression

a && b a || b

F F F F

F T F T

T F F T

T T T T

Shows truth value of a compound statement for all
possible truth values of the component statements

If there are n component statements, then the truth
table has 2n rows

Connectives and Symbols

Connective Symbol Type of
Statement

and &&, & conjunction

or ||, | disjunction

not !, ~ negation

Conjunction

p q p & q

T T T

T F F

F T F

F F F

Disjunction

p q p | q

T T T

T F T

F T T

F F F

Negation

p ~p

T F

F T

Assignment operators

Syntax:
v op = exp;

Where v = variable,
 op = shorthand assignment
operator

 exp = expression
Ex: x=x+3

 x+=3

Shorthand Assignment
operators

Simple assignment
operator Shorthand operator

a = a+1 a + =1

a = a-1 a - =1

a = a* (m+n) a * = m+n

a = a / (m+n) a / = m+n

a = a %b a %=b

Increment & Decrement
Operators

C supports 2 useful operators namely

1. Increment ++

2. Decrement - - operators

The ++ operator adds a value 1 to the operand
The - - operator subtracts 1 from the operand
++a or a++
--a or a- -

Rules for ++ & -- operators

1. These require variables as their operands

2. When postfix either ++ or - - is used with
the variable in a given expression, the
expression is evaluated first and then it is
incremented or decremented by one

3. When prefix either ++ or - - is used with
the variable in a given expression, it is
incremented or decremented by one first
and then the expression is evaluated with
the new value

Examples for ++ & --
operators

Let the value of a =5 and b=++a then
a = b =6
Let the value of a = 5 and b=a++ then
a =6 but b=5
i.e.:
1. a prefix operator first adds 1 to the

operand and then the result is assigned
to the variable on the left

2. a postfix operator first assigns the
value to the variable on left and then
increments the operand.

Conditional operators

Syntax:

exp1 ? exp2 : exp3

Where exp1,exp2 and exp3 are expressions

Working of the ? Operator:

Exp1 is evaluated first, if it is nonzero(1/true) then the
expression2 is evaluated and this becomes the value of
the expression,

If exp1 is false(0/zero) exp3 is evaluated and its value
becomes the value of the expression

Ex: m=2;

 n=3

 r=(m>n) ? m : n;

Bitwise operators
These operators allow manipulation of data at the bit level

eXclusive OR

• XOR compares two input bits and
generates one output bit. If the bits are
the same, the result is 0. If the bits are
different, the result is 1.

Misc Operators

Rules for evaluation of
expression

1. First parenthesized sub expressions from left to right are evaluated.

2. If parentheses are nested, the evaluation begins with the innermost
sub-expression

3. The precedence rule is applied in determining the order of application
of operators in evaluating sub-expressions

4. The associative rule is applied when 2 or more operators of the same
precedence level appear in a sub expression.

5. Arithmetic expressions are evaluated from left to right using the rules
of precedence

6. When parentheses are used, the expressions within parentheses
assume highest priority

Order of operators

Operator Description Associativity

(), [] Function call, array
element reference

Left to Right

+, -, ++,
--,!,~,*,&

Unary plus, minus,
increment, decrement,
logical negation, 1’s
complement, pointer
reference, address

Right to Left

*, / , % Multiplication,
division, modulus

Left to Right

Expression Tree

• A binary tree in which each internal node
corresponds to the operator and each leaf
node corresponds to the operand

• 3 + ((5+9)*2)

Example

Evaluate x1=(-b+ sqrt (b*b-4*a*c))/(2*a) @ a=1, b=-5,
c=6

=(-(-5)+sqrt((-5)*(-5)-4*1*6))/(2*1)

=(5 + sqrt((-5)*(-5)-4*1*6))/(2*1)

=(5 + sqrt(25 -4*1*6))/(2*1)

=(5 + sqrt(25 -4*6))/(2*1)

=(5 + sqrt(25 -24))/(2*1)

=(5 + sqrt(1))/(2*1)

=(5 + 1.0)/(2*1)

=(6.0)/(2*1)

=6.0/2 = 3.0

	Slide 1
	Acknowledgement
	Slide 3
	Operators in C
	Arithmetic operators
	Relational Operators
	Slide 7
	Truth Table
	Connectives and Symbols
	Conjunction
	Disjunction
	Negation
	Assignment operators
	Slide 14
	Shorthand Assignment operators
	Increment & Decrement Operators
	Rules for ++ & -- operators
	Examples for ++ & -- operators
	Conditional operators
	Bitwise operators
	eXclusive OR
	Slide 22
	Misc Operators
	Rules for evaluation of expression
	Order of operators
	Expression Tree
	Example

