
Computer Science and Engineering 2021.03

Sample Final Test

Answer all questions in the space provided

Student Last Name: ___________________________

Student Given Name: __________________________

Student Id. No: ________________________________

Question Value Score

1 30

2 20

3 50

1

Question 1. [30 points, 10 such questions]

1. [3 points] In the standard carry-lookahead we make use of two sig-
nals g and p. What is their proper name?
g for generate

p for propagate

2. [3 points] What is the disadvantage of one-bit branch prediction.
mispredicts twice the branch in an inner for-loop

3. [3 points] What are the three types of hazards in pipelines.
Structural hazards

Data hazards

Control hazards

4. [3 points] What is the simplest hardware technique to reduce the

stalls due to hazards like

slli x5, x5, 3

add x5, x5, x10
forwarding (aka bypassing)

5. [3 points] What is the basic principle that guides the design of
memory hierarchies
Make the common case fast

6. [3 points] Inside what Verilog contruct can we have a repeat
statement.
inside an always or an initial

7. [3 points]

8. [3 points]

9. [3 points]

10. [3 points]

2

Question 2.

[20 points]

1. [7 points]

2. [7 points] Write the truth table for the following logic function

F = A + BC + B′C ′
ABC F

000 1

001 0

010 0

011 1

100 1

101 1

110 1

111 1

3

Question 3.

[50 points]

1. [20 points] Assume you are given a module called incr that im-

plements a combinational circuit that has a four bit input and a four

bit output. The output is the input plus one. Write a simple Verilog

module that has an one bit input C, another one bit input pulse and

a four bit output Z. The output is normally zero when the input C is

zero, but when the input C becomes one, then at the next sixteen puls-

es (pulse) the circuit counts from zero to fifteen and back to zero
(i.e. 0, 1, 2, ..., 14, 15, 0, 1...)
module cntr(C, pulse, Z);

input C, pulse;

output reg [3:0] Z;

wire [3:0] Zin;

incr myincr(Zin,Z);

always @(posedge pulse)

if (C)

Z <= Zin;

always @(posedge C)

Z <= 4’b0000;

endmodule // cntr

4

2. [7 points] Write three versions of a module that implements a half

adder using

(1) the always construct of Verilog

(2) the assign construct

(3) the primitive gates AND, OR, NOT.
module hadd1(S, Cout, a, b);

output S, Cout;

input a, b;

assign S = aˆb;

assign Cout = a&b;

endmodule // hadd1

module hadd2(S, Cout, a, b);

output S, Cout;

input a, b;

xor (S, a, b);

and (Cout, a, b);

endmodule // hadd1

module hadd3(S, Cout, a, b);

output reg S, Cout;

input a, b;

always @(a,b)

begin

S = aˆb;

Cout = a&b;

end

endmodule // hadd1

5

