
Page 1 of 8

RVS (RISC-V Visual Simulator)

Input/Output System Calls Manual v0.08

1. Outline

The Risk-V Visual Simulator (RVS) supports user communications (data input and

output) with the executed assembly code through the I/O window in the bottom left of

the main RVS window as shown below enclosed in a red rectangle.

All user communications are carried out through the ecall instructions in the format

ecall rd, rs, imm. The first two parameters rs and rd can be either integer or float

point registers irrespectively of the immediate value imm. The interpretation of the

values in rs and rd, however depends on the syscall value placed in imm as explained

below.

The I/O syscalls are blocking which means that the code execution will be suspended

while there is input or output in progress. The user interactions with other components

of the RVS main window are also blocked so the user can only interact with the I/O

window.

Page 2 of 8

2. Output (Print Services)

Output system calls are carried out through ecall instructions in the following format:

 ecall rd, rs, imm.

The three parameters rd, rs, and imm must be supplied but only the values of two of

them, namely the source register rs, and the immediate value imm will be used. The

value of the destination register rd will not be changed. The register supplied in the RD

field, however, is used to control the movement to a new line after the print. For newline

specify x0 as a destination register.

The following print services are available:

 print_integer (ecall rd, rs, 0) The value in the source register rs is printed

as a 64-bit signed integer. The value of the destination register rd is not

changed. The syscall code is 0. For newline specify x0 as a destination register.

 print_float (ecall rd, rs, 1) The value in the source register rs is printed as

a 64-bit floatin point number. The value of the destination register rd is not

changed. The syscall code is 1. For newline specify x0 as a destination register.

 print_hexadecimal (ecall rd, rs, 2) The value in the source register rs is

printed as a 64-bit hexadecimal. This is a convenient way to explore the

internal representation of any data including integer and floating point

numbers. The value of the destination register rd is not changed. The syscall

code is 2. For newline specify x0 as a destination register.

 print_characters (ecall rd, rs, 3) The value in the source register rs is

printed as a sequence of characters, each character corresponding to one byte,

in little endian order. The printing stops if a null (0) character is encountered.

Note that the sequence of characters does not have to be null-terminated as the

maximum number of characters is limited to 8. The value of the destination

register rd is not changed. The syscall code is 3. For newline specify x0 as a

destination register.

 print_string (ecall rd, rs, 4) The value in the source register rs is an

address of the beginning of a null terminated string. The sequence of

characters in the string is printed in little endian order until the null character

is encountered. Note that the string must be null-terminated as otherwise the

printing may continue past the string end. The value of the destination register

rd is not changed. The syscall code is 4. For newline specify x0 as a destination

Page 3 of 8

register.

An output example. The following assembly language code has been compiled and

executed in RVS:

;output data

d0: DD 2 ;integer

d1: DF 2.0 ;float

d2: DD 0x1234 ;hexadecimal

d3: DC "chars" ;characters

d4: DC "a longer string¥0" ;string

;output instructions

 ld x1,d0(x0)

 ecall x0,x1,0 ;int

 fld f1,d1(x0)

 ecall x0,f1,1 ;float

 ld x1,d2(x0)

 ecall x0,x1,2 ;hexadecimal

 ld x1,d3(x0)

 ecall x0,x1,3 ;chars

 addi x1,x0,d4

 ecall x0,x1,4 ;string

The resulting RVS window is shown in the following snapshot.

Page 4 of 8

Page 5 of 8

3. Input (Read Services)

Input system calls are carried out through ecall instructions in the following format:

 ecall rd, rs, imm.

The three parameters rd, rs, and imm must be supplied although only two of them,

namely the destination register rd, and the immediate value imm are sufficient for

input. The value of the source register rs is ignored if 0. Otherwise it is interpreted as a

sequence of characters that is displayed as an input prompt.

The following read services are available:

 read_integer (ecall rd, rs, 5) The value entered by the user is converted to

a 64-bit signed integer and is stored in the destination register rd. The value of

the source register rs is used as an input prompt if not 0. The syscall code is 5.

 read _float (ecall rd, rs, 6) The value entered by the user is converted to a

64-bit floating point number and is stored in the destination register rd. The

value of the source register rs is used as an input prompt if not 0. The syscall

code is 6.

 read _hexadecimal (ecall rd, rs, 7) The value entered by the user is

converted to a 64-bit unsigned integer and is stored in the destination register

rd. The value of the source register rs is used as an input prompt if not 0. The

syscall code is 7.

 read _characters (ecall rd, rs, 8) The value entered by the user is converted

to a sequence of characters, each character corresponding to one byte, in little

endian order. If the obtained sequence of bytes is shorter than 8 it is padded

with zero bytes on the most significant side to complement it to 8 bytes. Note

that the sequence of entered characters does not have to be null-terminated as

the maximum number of characters is limited to 8 (the entered sequence of

characters is trimmed on its right side if longer than 8 bytes.) The final

sequence of 8 bytes is stored in the destination register rd. The value of the

source register rs is used as an input prompt if not 0. The syscall code is 8.

 read _string (ecall rd, rs, 9) The value entered by the user is converted to

a sequence of characters, each character corresponding to one byte, in little

endian order. A null character (a 0-byte) is automatically appended to the

entered string. The final sequence of characters is then copied to the memory

starting at the address provided in the destination register rd. Note that it is

Page 6 of 8

the responsibility of the user to ensure that there is enough memory space for

storing the entire entered string including the trailing null character. RVS will

silently allow overwriting of data areas but will issue an error message and

stop if overwriting of code is about to happen. The value of the source register

rs is used as an input prompt if not 0. The syscall code is 9.

An input example. The following assembly language code has been compiled and

executed in RVS:

;reserve memory for the input string

s: DM 3 ;3*8=24 bytes

;input prompts

p5: DC "int:"

p6: DC "float:"

p7: DC "hex:"

p8: DC "chars:"

p9: DC "string:"

;load prompts in registers

 ld x5,p5(x0)

 ld x6,p6(x0)

 ld x7,p7(x0)

 ld x8,p8(x0)

 ld x9,p9(x0)

;input instructions

 ecall x10,x5,5 ;integer

 ecall f11,x6,6 ;float

 ecall x12,x7,7 ;hexadecimal

 ecall x13,x8,8 ;chars

 addi x14,x0,s

 ecall x14,x9,9 ;string

The resulting RVS window is shown in the following snapshot.

Page 7 of 8

An active input is indicated by a blinking rectangle (its color will be altering from gray

to red and vise versa.) The rectangle is denoted by a red circle in the screen snapshot

above.

The data can be entered in any of the formats explained in section "3.Constants" of the

RVS-Assembler manual. For example the integer value of 10 can be entered as 0b1010

(binary) or 012 (octal) or 10 (decimal) or 0xA (hexadecimal).

To complete the input process, press the Enter key or click on the Enter button in the

bottom of the I/O window. If your input cannot be converted to the desired data type an

error message will be displayed and the execution of your code will be stopped. Click

ether on the Run or on the Next button in the bottom of the Listing window to restart

the last input syscall and enter your data again.

If you click on the Cancel button the input process will be cancelled, the execution of

your program will be suspended, and all components of the GUI will become accessible.

You can restart the cancelled input syscall by clicking ether on the Run or on the Next

button in the bottom of the Listing window.

Page 8 of 8

RVS Input/Output System Calls

ecall rd rs1 imm I/O System Call

Print Services Destination Source Code Function

print_integer x0:newline int64 0 rs1 holds the integer to print

print_ float x0:newline float64 1 rs1 holds the float to print

print_hexadecimal x0:newline hex64 2 rs1 holds the value to print as hex

print_characters x0:newline char64

(max 8)

3 rs1 holds up to 8 (padded with
nulls) characters to print

print_string x0:newline addr64 4 rs1 holds the address of the
null-terminated string to print

Read Services Destination Source Code Function

read_integer int64 prompt 5 an integer is read and stored in rd

read _float float64 prompt 6 a float is read and stored in rd

read _hexadecimal hex64 prompt 7 a hexadecimal value is read and
stored in rd

read _characters char64

(max 8)

prompt 8 up to 8 characters are read and
stored in rd padded with nulls

read _string addr64 prompt 9 a string is read and stored in a
buffer starting at the memory
address provided in rd

Notes: The Read Services use as a prompt up to 8 (padded with nulls) characters from rs1.
The Print Services move to a new line after the print when x0 is specified as rd.

