
11

Pre-LabT: Training
Lab

Lab Objectives
This lab introduces you to the RVS RISC-V simulator and to basic assembly programming.

By the end of this lab, you should be able to:

1. Connecting to the EECS computing facilities

2. Use RVS to compile and run assembly programs.

3. Write a small straight line assembly program.

4. How to submit through eClass (Moodle)

Part 1: Connecting to the EECS servers

Open the course Moodle site in your browser and go to the Labs section. Follow the instructions

for remote access to the EECS computing facilities.

1. Make sure that your EECS account is active and ready to use

22

2. Read the REMOTE LAB (EECS) technical instructions

3. Follow the provided link to visit the EECS Remote Lab

https://remotelab.eecs.yorku.ca/#/

33

Enter your EECS credentials from step 1 in the EECS REMOTE LAB login window as shown

above. Any problems or questions with respect to the Remote Lab access should be directed

to the EECS Technical Support team - tech@eecs.yorku.ca. In the following window, click on

the Remote Desktop (EDU) (ea) link to see the list of the available workstations.

Select a free workstation and click on it to connect. The Linux Desktop shows in your browser.

mailto:tech@eecs.yorku.ca

44

You will use the above desktop to do all the course work. To start with, let’s run Firefox. Click

on the Activities menu in the top-left corner.

A column of icons is shown on the left- click on the top icon to start Firefox. Now you can open

the course Moodle site in Firefox and follow the instructions and the links provided there.

You will also use the Linux Desktop to run the RISC-V Visual Simulator (RVS). First clear the

desktop by minimizing the Firefox window. Then Right-click on the desktop to show the menu

and select Open Terminal in it. The Linux Desktop page with the terminal window should look as

follows.

55

In the Terminal window, type rvs& to start the RISC-V Visual Simulator.

Read the notice and press OK to close it. The rvs is ready to use.

Now we want to bring back the Firefox window so that we can see the RVS reference materials.

Click on the Activities menu and select the Firefox screen.

66

Right-click on the RVS User Manual link to open the manual in a New Tab

Arrange the RVS and the Firefox windows in a convenient way so that you can easily switch

between them.

77

When reading the manual, try the examples shown in it by running them in the RVS.

You can copy from the PDF file shown in Firefox (Ctrl-C) and paste into the Source window of the RVS (Ctrl-V).

Pay attention to the space and new line character that may need manual re-entry.

Part 2: Using RISC-V Visual Simulator

Syntax Errors

Before we start, let us try to run a program that contains syntax error.

Run the simulator and enter the following code in the source code window or load a text file containing the

code shown below File → Load (the file must be terminated by a newline character, which most editors do

anyway).

addi x1, x0, 5
eoi x2, x1, -1

88

The first line is addi x1, x0, 5 is a legitimate instruction, the second line is not (eori is not an

instruction in RISC-V).

Click on “compile” and check the Assembly listing window (shown within red ellipse). The first line in the

window (below “ADDRESS”) shows the memory location 0x0000 ..0 (since we did not specify where to put the

code, it starts from location zero) and the representation of the first instruction

addi x1, x0, 5

It shows the instruction type (I for Immediate) followed by the binary, hex, and text representation of the
instruction.

The following line, is memory location 0x00..04 followed by “INSTR CODE NOT RECOGNIZED”. That is a

syntax error, you have to go back and correct that instruction (eoi is xor in the ARM assembly language, easy

mistake to do if you are familiar with ARM).

Register manipulation

Launch the simulator

Then follow these steps for your first program/interaction with the simulator.

Write the following into the Assembly Source Window (or load a file contains the text below).

addi x1, x0, 5 // adds 5 + x0 and store them in x1 (x0 always is 0)
addi x2, x0, 7 // adds 7 +x0 and stores it in x2 (x2 is 7)
add x3, x1, x2 // adds x1+x2 and store the result in x3 (x3=5+7=12)

click on compile.

The simulator window will look like this

99

Note that the register window shows the contents of all the 32 registers in the CPU. The registers are initialized

to zero.

In the assembly listing window, you can see the memory addresses where the instructions are stored.

Since we did not specify the starting memory address, the default is 0 (we can change this using ORG

directive as we will see later). Three instructions are stored in locations 0, 4 and 8 respectively. If you

remember from the class, RISC-V instructions are 32-bit each (4 bytes).

Under BIN/HEX CODE you can see the binary representation of the instructions showing the different

fields as discussed in the class and the textbook. Before the representation, the instruction type is shown

(The first two instructions show I, for immediate, and the third one is R for R-type or Register- Register

ALU operation). Following that it shows the different operands for the three instructions in HEX. If you

scroll to the right, you will see the operands in decimal.

Now, click on START or RUN, the program runs and the register values changes as shown in the

following Figure.

Only the registers that we modified in the program have changed values (x1=5, x2=7, and x3=12).

10
10

Memory manipulation

Launch the simulator

Enter the following code (or put it in a file and open it in the simulator)

ORG 96

DD 12, 36, 87
addi x1, x0, 96
ld x4, 0(x1)
ld x5, 8(x1)
add x6, x4, x5
sd x6, 16(x1)

Compile and run the program. The window should look like this

Show the value in decimal

Let us us take a close look at the simulator.

1. The first line

ORG 96

States that you start at location 96 (hex = 0x60). That basically means the memory assignment will

11
11

start at location 96. So, the next line data or instruction will be in location 96.

2. The second statement

DD 12, 36, 87

Define three double words 12, 36, and 87 and stores them in locations 96, 96+8=104,

104+8=112 (in hex 0x60, 0x68, 0x70).

Now, look at the memory contents window, it shows the contents of the memory.

0x0000000000000060 12

In memory location 0x60 (decimal 96) the contents is the integer value 12. The next two lines

shown the two integers 36 and 87 in memory location 0x68 and 0x70 (decimal 104 and 112). The

above figure does not show the value 87, since it has changed in the program as we will see soon.

The values is shown in decimal since we clicked the INT box, if you click on HEX, the value will be

shown both in decimal and hex

3. The next line is

addi x1, x0, 96
It adds the contents of x0 (by definition 0) to the integer 96 and stores the result in x1. The register

window shows the content of x1 to be 96. sine the value of x1 is 96, we can say that x1 is pointing

to the memory where we started storing data (96 or 0X60).

4. The following line is

ld x4, 0(x1)
It loads a doubleword from location 0+contents of X1 REG(x1) that is 96, to register x4. The

instruction loads the contents of memory location 96 (0x60) into register x4. From statement 2

above, we stored 12 in location 96. Now x4 contains 12.

5. The following line is

ld x5, 8(x1)
it loads from location 8+REG(x1), i.e. 8+96=104 (in hex 0x68) into register x5. If you look at the

memory window, in location 0x96 there is 36. now x5 contains 36 (check the register window to be

sure it contains 36, if not, you made a mistake. Find out your mistake and correct it).

6. The following line is

add x6, x4, x5
Adds REG(x4), that is 12, to REG(x5), that is 36, and the result is stored in x6. If you check the

contents of register x6 in the register memory, you find it 48.

7. The following line is

sd x6, 16(x1)
Stores the contents of x6 (that is 48) in memory location pointed to by the contents of x1 + 16

(REG(x1)+16 = 96+16 = 112, in hex 0x70). Now check location 0x70 (or 112 decimal) in the

memory window it is 48.

12
12

Part 2: Submitting your work

Go back to the Labs section in Moodle and read the LAB REPORTS part. Following the

instructions click on the LabT Report link then start the quiz which will include a link for the Lab

book for the lab and a possible Quiz.

Upload the completed the file part of the lab work.

Locate the files in the appropriate folder in Remote Lab then drag and drop it to the blue arrow

in the file drop area. You should see the following screen:

13
13

Alternatively you can click on the Add... icon in the top left corner of the file drop window

(encircled in red) and use the File Picker interface shown below.

With Upload a file selected, you can click on the Browse... button and select your file using

the graphical interface shown below.

The submission is automatic and happens every few minutes but problems may arise if your

network connection is unstable as indicated by the following message:

To avoid such problems you can initiate an immediate submit of the current content by clicking

on the Finish attempt ... button. Then click on the Return to attempt button to get back to the

previous screen and continue with the preparation of your lab report.

With this, the explanation of the submit procedure is complete. Please follow this procedure

whenever you are instructed in the lab book to submit a file.

14

At the end of each lab you should submit your completed Lab Report by clicking on the Finish attempt ... button

and then on the Submit all and finish ... button. The following small confirmation window will show up:

Clicking on the Submit all and finish button will finalize your lab report submission. Right afterwards you will be

given a chance to review your final submission. Check the content and the attachments of your lab report and

click on the Finish review link to complete your review.

Important: While multiple submissions are possible, your most recently submitted report for each

lab will be the one that is eligible for consideration. Therefore you must do your final lab report

submission before the submission deadline for each of the labs.

	Lab Objectives
	Part 1: Connecting to the EECS servers
	Part 2: Using RISC-V Visual Simulator
	Syntax Errors
	Register manipulation
	Memory manipulation

	Part 2: Submitting your work

