
 

 
 
 

Note: We make a RISK-V CPU in which memory architecture is 32 bit. In lecture time we 
covered a 64 bits RISK-V CPU.  Thus, the length of registers are 32 bits as well as 
memory addressing. 
Perform the following groups of tasks: 

 
 

 

1. In a previous lab we built and used memory-less, combinational components. In this 
lab we will use sequential components from a ready-made library. The first is called 
a register and has this diagram: 

 

 
 

As all sequential components, a register has an internal state, denoted by q, and 
it is made up of n bits, where n is a parameter set upon instantiation. The output z is 
equal to q at all times; i.e. you can always read the content of a register. In order to 
write (i.e. store) a value in the register, supply the value through d, set enable to 1, 
and then wait until the clk input rises from 0 to 1. 

 
2. Note that enable is so named because if it is 0 then nothing can be written to the 

register; i.e. its state (and thus its output) remains unchanged, so it is effectively dis- 
abled. Note also that even if enable is set to 1 the state won't change until the next 
leading edge of clk. Think of clk as a periodic signal that oscillates between 0 and 
1 at fixed intervals, a clock. The signal's period (measured in sec) is referred to as 
the clock cycle while its frequency (measured in Hz) is known as the clock rate. 

 
3. Our compiler is configured to locate our sequential component library. Hence, you 

can compile and run your programs as if these components are built in. 
 

4. Create the program LabM1.v that instantiates and tests a 32-bit register. In order 
to test the enable control input, we will supply it as a command-line argument. As to 
the clock and data inputs (clk and d), let us start by hard coding several test values 
for them so we can get a feel for the circuit. Here is our first attempt: 

LABM 
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z 

z = q at all times, and q becomes 
d @pos edge of clk if enable. 



2 Lab M NS/W19 
 

 
 
 

module labM; 
reg [31:0] d; 
reg clk, enable, flag; 
wire [31:0] z; 

register #(32) mine(z, d, clk, enable); 

initial 
begin 

flag = $value$plusargs("enable=%b", enable); 
 

d = 15; clk = 0; #1; 
$display("clk=%b d=%d, z=%d", clk, d, z); 

 
d = 20; clk = 1; #1; 
$display("clk=%b d=%d, z=%d", clk, d, z); 

 
d = 25; clk = 0; #1; 
$display("clk=%b d=%d, z=%d", clk, d, z); 

 
d = 30; clk = 1; #1; 
$display("clk=%b d=%d, z=%d", clk, d, z); 

 

 
end 

$finish; 

endmodule 
 

Examine the code as you type it in and predict the program's output. 
 

5. Compile and run LabM1 supplying 0 and then 1 for enable: 
 

vvp a.out +enable=1 
 

Does the register behave as expected in both cases? 
 

 
 

6. We seek to generalize the above tester. We will generate random values for d every 
two units of time: 

 
repeat (20) 
begin 

#2 d = $random; 
end 

 
7. As to the clock, let us make its cycle 5 units: 

 
always 
begin 

#5 clk = ~clk; 
end 

LabM2.v 
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8. Save LabM1 as LabM2 and modify it so it generates d and clk as above and keep 
enable as a command-line argument. Remember to initialize the clock to 0. 

 
9. In order to capture the values of the signals, it is preferable to use monitor rather 

than display in order to capture changes as they occur. Add this block: 
 

always 
initial 

$monitor("%5d: clk=%b,d=%d,z=%d,expect=%d", $time,clk,d,z, e); 
 

The e signal is the expected value of the register's output as produced by the oracle. 
You will need to add an oracle that computes e (perhaps in the always block). 

 
10. Run LabM2 with enable set to 1. Does the register behave as expected? 

 
 

 

11. The next sequential component is the register file. It is made up of 32 registers (x0 
thru x31) each of which is 32-bit. It allows us to read any two registers in it in parallel 
and to write to any one register. The rf component has this block diagram: 

 

 
 

In order to read the contents of two registers, we supply their register numbers thru 
rs1 and rs2 (5 bits each). After some delay, the corresponding contents of these 
two registers will become stable on rd1 and rd2. In order to store a 32-bit value in 
some register, we supply it on wd and supply the 5-bit register number on wn. The 
value will be written on the positive edge of clk if and only if w=1. Hence, w is in fact 
an enabler. Note that register $0 is read-only and its value is 0. 

 
12. You can instantiate a register file using the statement 

 
rf myRF(rd1, rd2, rs1, rs2, wn, wd, clk, w); 

 
As in the register, writing involves setting w and waiting for the rising edge of clk. 
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MEM 

 
 

13. Write the program LabM3.v such that it starts by setting each register to the square 
of its register number. Something like this: 

 
flag = $value$plusargs("w=%b", w); 
for (i = 0; i < 32; i = i + 1) 
begin 

clk = 0; 
wd = i * i; 
wn = i; 
clk = 1; 
#1; 

end 
 

The program must then generate random values for rs1 and rs2 and then output 
the corresponding contents of rd1 and rd2. Do this in a loop that repeats 10 times. 

 
14. Compile the program and run it with w set. Does it behave as expected? 

 
15. Repeat with w cleared. Does the register file behave as expected? 

 
 

 

16. The last sequential component is mem and it simulates memory: 
 
 

clk 

1 

 
memRead 

1 

 
memWrite 

1 

 
address     32 

 
memIn 

32 

 

memOut 
32 

 
 

This sequential component is made up of many 32-bit words. In order to read a word, 
set its address on address and set memRead. After some delay, the word's content 
will become stable on memOut. To write, set the data to be written on memIn, set the 
destination address on address, and set memWrite. The data will be written on the 
destination at the next positive edge of clk. 

 
17. Note that mem stores 32-bit words, not bytes, and hence, it assumes word addresses 

(i.e. divisible by 4). If the supplied address is not a word address, mem will display the 
message "unaligned address" and ignore the read or write request. 

 
18. Create the program LabM4.v that instantiates mem as follows: 

 
mem data(memOut, address, memIn, clk, read, write); 

 
To get a feel for this component, let’s store some numbers in it. 

LabM4.v 
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19. Write the value 32'h12345678 at address 16 and the value 32'h89abcdef at 
address 24. Note that both are word addresses. 

 
20. Read and display the contents of three words beginning at 16; i.e. 

 
write = 0; read = 1; address = 16; 

 
repeat (3) 
begin 

#1 $display("Address %d contains %h", address, memOut); 
address = address + 4; 

end 
 

Predict the output of the program before proceeding. 
 

21. Compile and run LabM4.v. Ignoring the error message about “ram.dat”, does your 
program behave as expected? 

 
22. Add a few lines to the program in which you attempt a read or a write using an un- 

aligned address. Run the modified program and explain its output. 
 

 
 

23. The mem component has a handy feature that allows us to initialize memory from a 
text file named “ram.dat”. When the component is first instantiated, it looks (in the 
current working directory) for that file, and if present, it reads its content to initialize 
the memory words. Each record in the file holds an address, content pair: 

 
@a c // optional comment 

 
The address a must be prefixed with @ and is followed by the content c. Both values 
must be in hex and are separated by whitespace. The record may end with an in-line 
comment using the // separator. 

 
24. Let us create such a file so it represents the memory map of the following program: 

 
 
 

ARRAY: 
  DW 1, 3, 5, 7, 9, 11, 0 
SUM-ORRED: 
  DW 0, 0 
START:  
  add t5, x0, x0       # index 
  add s0, x0, x0       # sum 
  add a0, x0, x0       # or reduction 
LOOP:  
  lw t0, 0(t5)         # loop: t0 = array[t5] 
  beq t0, x0, DONE     # if (t0 == 0) done 
  add s0, s0, t0 
  or a0, a0, t0 
  addi t5, t5, 4       # t5++ 
  jal x0, LOOP 
DONE:  
  sw s0, 0x20(x0)      # done: save s0 
  sw a0, 0x24(x0)      # save a0

LabM5.v 
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It is important that we understand all aspects of this program because we will use it 
as a test bed for all our circuits in this and the following lab. Given a null-terminated 
array of words at address 0x18, the program computes the sum and the OR of all its 
elements and stores them at addresses 0x20 and 0x24, respectively. In order to allo- 
cate room for these two words, your ram.dat file must contains: 

 
@20 00000000 // the sum 
@24 00000000 // the or reduction 

 
25. We also need to store the array itself beginning at 0x30. Add this to ram.dat: 

 

@00 00000001 // array[0] 
@04 00000003 // array[1] 
@08 00000005 // array[2] 
@0C 00000007 // array[3] 
@10 00000009 // array[4] 
@14 0000000B // array[5] 
@18 00000000 // null terminator 

 

Note that the array elements add up to 36 (decimal) and their OR reduction is 15 
(decimal). The correct execution of the code should store these at 0x20 and 0x24. 

 
26. In order to store the program itself (in machine language) load the code in the RISK-

V simulator and capture the machine encoding of each statement. We will load the 
entry point main at address 0x00. Here are the first few lines to be appended to 
your ram.dat: 

 
@00 00000001 // array[0] 
@04 00000003 // array[1] 
@08 00000005 // array[2] 
@0C 00000007 // array[3] 
@10 00000009 // array[4] 
@14 0000000B // array[5] 
@18 00000000 // null terminator 
@20 00000000 // the sum 
@24 00000000 // the or reduction 
@28 00000F33 // add     x30, x0, x0         # index 
@2C 00000433 // add     x8, x0, x0          # sum 
@30 00000533 // add     x10, x0, x0         # or reduction 
@34 000F2283 // lw      x5, 0(x30)          # loop: x5 = array[x30] 
@38 00028563 // beq     x5, x0, DONE        # if (x5 == 0) done 
... 

 
The machine encoding is simply transferred from the RISK-V simulator. 
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27. Create LabM5.v to display the program in ram.dat along the following lines: 

 
module labM; 
reg clk, read, write; 
reg [31:0] address, memIn; 
wire [31:0] memOut; 

mem data(memOut, address, memIn, clk, read, write); 

initial 
begin 

address = 16'h28; write = 0; read = 1; 
repeat (11) 
... 

endmodul 
 

28. Complete LabM5.v and run it. It should output the program in machine language. 
 

 
29. Save LabM5.v as LabM6.v and modify it so that it displays memory content in a 

format that is instruction-aware. For example, if the instruction is an I-type, then 
output the contents of its opCode, two registers, and immediate, as four separate 
outputs. Here is the correct output of the sought program: 

 
00   00   00   0   1e   33 // R-Type 
00   00   00   0   08   33 // R-Type 
00   00   00   0   0a   33 // R-Type 
000   1e   2   05   03       // I-Type 
00   00   05   0   0a   63 // SB-Type 
00   05   08   0   08   33 // R-Type 
00   05   0a   6   0a   33 // R-Type 
004   1e   0   1e   13       // I-Type  
ff7ff   00   6f                  // UJ-Type 
01   08   00   2   00   23 // S-Type 
01   0a   00   2   04   23 // S-Type 
 

30. You can use the part-select operator to easily extract sub-fields from the instruction 
word. For example, here is how R-type can be detected: 

 
if (memOut[6:0] == 7'h33) 

 
Similarly, you can detect the UJ-type as follows: 

 
       if (memOut[6:0] == 7'h6F) 
 
 

For I-Type: 
 
       if (memOut[6:0] == 7'h3 || memOut[6:0] == 7'h13) 
 

LabM6.v 
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For S-Type: 
 
       if (memOut[6:0] == 7'h23) 
 

And for SB-Type: 
 
       if (memOut[6:0] == 7'h63) 
 
 

 
 

31. As a first step toward building the datapath of the CPU, let us implement a circuit for 
instruction fetch from memory. Here is its block diagram: 

 
 

 
 
 
 

PCin 
ins 
PCp4 

 
 
 
 

Given a memory address PCin, this circuit fetches from memory the instruction ins 
stored at that address and makes it available. The circuit also computes and outputs 
PCp4 = PCin + 4 in anticipation of fetching the physically-following instruction. 

 
 

32. Note that the circuit has a clock input clk that allows us to exercise precise control 
over its timing. Specifically, the circuit should initiate its fetch at the positive edge of 
clk. At any other time, the circuit should do nothing, and its outputs should remain 
unchanged even if PCin changed. 

 
 

LabM7.v 
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3 

 
 
 

33. In order to implement this circuit, we will use a register named PC (program counter) 
to store the memory address from which the instruction is to be fetched. The register 
is enabled at all times and has clk as its clock, as shown below: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We connect the output of the PC register to the address input port of our mem unit. 
Since we always read instructions from memory and never write, the memIn port of 
mem is left unconnected and the signals memRead and memWrite are set to 1 and 0 
respectively. Argue that the clk input of mem is irrelevant and can be left dangling. 

 
34. Copy cpu.v that was created in Lab-L to the directory of this lab and add the follow- 

ing component to it: 
 

module yIF(ins, PCp4, PCin, clk); 
output [31:0] ins, PCp4; 
input [31:0] PCin; 
input clk; 

 
// build and connect the circuit 

endmodule 

Complete the development of this module by instantiating the needed components 
and connecting them as shown in the diagram. Note that fixed signals, such as 010 
for the ALU) can be hard-coded parameters in the instantiation. 

 
35. Create LabM7.v to test your yIF component as follows: 

010 

4 

 

 1  1 0 

 PC REG  
MEM 

ALU
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yID 

 
 

module labM; 
reg [31:0] PCin; 
reg clk; 
wire [31:0] ins, PCp4; 

yIF myIF(ins, PCp4, PCin, clk); 

initial 
begin 

//------------------------------------Entry point 
PCin = 16'h28; 
//------------------------------------Run program 
repeat (11) 
begin 

//---------------------------------Fetch an ins 
clk = 1; #1; 
//---------------------------------Execute the ins 
clk = 0; #1; 
//---------------------------------View results 
$display("instruction = %h", ins); 
// Add a statement to prepare for the next instruction 

 
 

end 

end 
$finish; 

endmodule 
 

Compile and run LabM7 as shown below. The output should be instructions in your 
ram.dat file. 

 
iverilog LabM7.v cpu.v 
vvp a.out 

 

 
 

36. Next, we build a component for instruction decoding. Here is its block diagram: 
 
 
 
 
 
 

 
 

ins 
rd1 
rd2 

 

imm 
wd jTarget 

32 
 

In fact, this component plays two roles: instruction decoding and data write-back. 
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37. In the decoding role, this component extracts the various fields of ins and looks 
up the needed registers. It produces in rd1 and rd2 the contents of the two 
registers rs and rt; in imm the sign-extended immediate; and in jTarget the 
(20-bit) jump target. Not all these outputs will be meaningful for a given instruction; 
e.g. some ins- tructions do not address two registers and some do not have 
immediates. The jump target is meaningful only if this is a jump-type instruction. 

 
38. The write-back role of this component is used in a later stage of the execution. In it, 

the value of wd must be written to the register rd of the instruction. Recall that rd is 
determined by bits 11:7 of ins. In addition, writing is only to be done if the RegWrite 
signal is set and then only at the positive edge of clk. 

 
39. The circuit diagram of yID is shown below. 

 

 
 

40. Add the following module to your cpu.v file.  We will improve this module in Lab N. 
 

module yID(rd1, rd2, immOut, jTarget, branch, ins, wd, RegWrite, 
clk); 
output [31:0] rd1, rd2, immOut; 
output [31:0] jTarget; 
output [31:0] branch; 
 
input [31:0] ins, wd; 
input RegWrite, clk; 
 
wire [19:0] zeros, ones;   // For I-Type and SB-Type 
wire [11:0] zerosj, onesj; // For UJ-Type 
wire [31:0] imm, saveImm;  // For S-Type 
 
rf myRF(rd1, rd2, ins[19:15], ins[24:20], ins[11:7], wd, clk, 
RegWrite); 
 
assign imm[11:0] = ins[31:20]; 
assign zeros = 20'h00000; 
assign ones = 20'hFFFFF; 
yMux #(20) se(imm[31:12], zeros, ones, ins[31]); 

19:15 
 
 

24:20 
 
 
 

11:7 
 
31:12 

 
 

RF 
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32 

 
32 
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5 32 
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assign saveImm[11:5] = ins[31:25]; 
assign saveImm[4:0] = ins[11:7]; 
yMux #(20) saveImmSe(saveImm[31:12], zeros, ones, ins[31]); 
 
yMux #(32) immSelection(immOut, imm, saveImm, ins[5]); 
 
assign branch[11] = ins[31]; 
assign branch[10] = ins[7]; 
assign branch[9:4] = ins[30:25]; 
assign branch[3:0] = ins[11:8]; 
yMux #(20) bra(branch[31:12], zeros, ones, ins[31]); 
 
assign zerosj = 12'h000; 
assign onesj = 12'hFFF; 
assign jTarget[19] = ins[31]; 
assign jTarget[18:11] = ins[19:12]; 
assign jTarget[10] = ins[20]; 
assign jTarget[9:0] = ins[30:21]; 
yMux #(12) jum(jTarget[31:20], zerosj, onesj, jTarget[19]); 
 
endmodule 

 
 

41. Next, we build a component for executing the instruction. Here is its block diagram: 
 
 
 
 
 

3 
 
 

rd1 

rd2 

imm 

 
z 

zero 

 

This unit performs the operation specified via the op signal. We assume the same 3- 
bit operation codes used by the ALU. The operands are rd1 and either rd2 or imm 
depending on whether ALUSrc is 0 or 1. 

 
42. The circuit diagram of yEx is shown below. 
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The circuit follows directly from the definition of yEX. 
 

43. Add the following module to your cpu.v file: 
 

module yEX(z, zero, rd1, rd2, imm, op, ALUSrc); 
output [31:0] z; 
output zero; 
input [31:0] rd1, rd2, imm; 
input [2:0] op; 
input ALUSrc; 

 
44. Complete the development of yEX. 
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45. Save LabM7.v as LabM8.v and modify it to test yID and yEX as follows: 
 

module labM; 
reg [31:0] PCin; 
reg RegWrite, clk, ALUSrc; reg 
[2:0] op; 
wire [31:0] wd, rd1, rd2, imm, ins, PCp4, z; 
wire [25:0] jTarget; 
wire zero; 

 
yIF myIF(ins, PCp4, PCin, clk); 
yID myID(rd1, rd2, imm, jTarget, branch, ins, wd, RegWrite, clk);  
yEX myEx(z, zero, rd1, rd2, imm, op, ALUSrc); 
assign wd = z; 

 
initial 
begin 

//------------------------------------Entry point 
PCin = 16'h28; 

 
//------------------------------------Run program 
repeat (11) 
begin 

//---------------------------------Fetch an ins 
clk = 1; #1; 

 
//---------------------------------Set control signals 
RegWrite = 0; ALUSrc = 1; op = 3'b010; 
// Add statements to adjust the above defaults 

 
//---------------------------------Execute the ins 
clk = 0; #1; 

 
//---------------------------------View results 
... 

 

 
 

end 

//---------------------------------Prepare for the next ins 
PCin = PCp4; 

 
end 

$finish; 

endmodule 
 

Notice that we connected the yEX output z back to the wd input of yID. This allows 
us to test the write-back functionality. 

 
46. Complete LabM8 by adding statements to detect the instruction being executed and 

accordingly change the default control signals (we are only concerned with the ins- 
tructions in our ram.dat). Here is an example of what needs to be done: 

 
if (ins[6:0] == 7'h33) // R-Type 

       begin 
RegWrite = 1; ALUSrc = 0; 

end 
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47. In the "View results" section, display the following signals: 
 

ins, rd1, rd2, imm, jTarget, z, zero 
 

48. Compile and run LabM8 as follows: 
 

iverilog LabM8.v cpu.v 
vvp a.out 

 
Note that our datapath does not have data memory and has no support for 
branches of jumps. 

 
 
 

 
 

49. To complete our datapath we need the two more components: 

- yDM (data memory): a data memory unit that reads from address z or writes rd2 
to that address based on two control signals and a clock. 

- yWB (write back): a 2-to-1 mux that selects either memOut or z based on whether 
the control signal Mem2Reg is 1 or 0, respectively. 

Here are the block diagrams of these components: 
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50. Add the following two modules to your cpu.v file and supply the missing lines: 
 

module yDM(memOut, exeOut, rd2, clk, MemRead, MemWrite); 
output [31:0] memOut; 
input [31:0] exeOut, rd2; 
input clk, MemRead, MemWrite; 

 
// instantiate the circuit (only one line) 

endmodule 

//--------------------------------------------------------------- 
 

module yWB(wb, exeOut, memOut, Mem2Reg); 
output [31:0] wb; 
input [31:0] exeOut, memOut; 
input Mem2Reg; 

 
// instantiate the circuit (only one line) 

endmodule 

51. We now have all the pieces needed to build our datapath. These components fit to- 
gether like a jigsaw puzzle as shown in the diagram below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

52. Save LabM8.v as LabM9.v and modify it so it instantiates as follows: 
 

yIF myIF(ins, PCp4, PCin, clk); 
yID myID(rd1, rd2, imm, jTarget, branch, ins, wd, RegWrite, clk);  
yEX myEx(z, zero, rd1, rd2, imm, op, ALUSrc); 
yDM myDM(memOut, z, rd2, clk, MemRead, MemWrite); 
yWB myWB(wb, z, memOut, Mem2Reg); 
assign wd = wb; 
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53. You will need to upgrade the "Set control signals" section in order to issue three new 
signals MemRead, MemWrite, and Mem2Reg. Again, focus only on the instructions in 
our program in ram.dat. 

 
54. Have the program output the results as follows: 

 
$display("%h: rd1=%2d rd2=%2d z=%3d zero=%b wb=%2d", 

ins, rd1, rd2, z, zero, wb); 
 

55. Compile and run your program. Check the output of your code. 
 

 
 

56. Save LabM9.v as LabM10.v and modify its "Prepare for the next ins" section to 
incorporate branches and jumps: rather than always setting PCin to PCp4, it should 
set it based on the instruction and its results: 

 
//---------------------------------Prepare for the next ins 
if (beq && zero == 1) 

PCin = PCin + imm shifted left twice; 
else if (jal) 

PCin = PCin + jTarget shifted left 
twice; else 

PCin = PCp4; 
 

57. Argue that the loop must now repeat 43 times rather than 11. 
 

58. Compile and run your program. Print the memory contents of 0x20 9 (sum) and 0x24 (or 
reduction). Did you get the 0x24 for sum and 0xF for or reduction?   
If not, trace the error back to the source by examining earlier output lines and then 
determining if the problem is control-signal or datapath related. Your code should 
create the following output. 

 
00000f33: rd1= 0 rd2= 0 z=  0 zero=1 wb= 0 
00000433: rd1= 0 rd2= 0 z=  0 zero=1 wb= 0 
00000533: rd1= 0 rd2= 0 z=  0 zero=1 wb= 0 
000f2283: rd1= 0 rd2= 0 z=  0 zero=1 wb= 1 
00028563: rd1= 1 rd2= 0 z=  1 zero=0 wb= 1 
00540433: rd1= 0 rd2= 1 z=  1 zero=0 wb= 1 
00556533: rd1= 0 rd2= 1 z=  1 zero=0 wb= 1 
004f0f13: rd1= 0 rd2= x z=  4 zero=0 wb= 4 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1= 4 rd2= 0 z=  4 zero=0 wb= 3 
00028563: rd1= 3 rd2= 0 z=  3 zero=0 wb= 3 
00540433: rd1= 1 rd2= 3 z=  4 zero=0 wb= 4 
00556533: rd1= 1 rd2= 3 z=  3 zero=0 wb= 3 
004f0f13: rd1= 4 rd2= x z=  8 zero=0 wb= 8 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1= 8 rd2= 0 z=  8 zero=0 wb= 5 
00028563: rd1= 5 rd2= 0 z=  5 zero=0 wb= 5 
00540433: rd1= 4 rd2= 5 z=  9 zero=0 wb= 9 
00556533: rd1= 3 rd2= 5 z=  7 zero=0 wb= 7 
004f0f13: rd1= 8 rd2= x z= 12 zero=0 wb=12 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1=12 rd2= 0 z= 12 zero=0 wb= 7 
00028563: rd1= 7 rd2= 0 z=  7 zero=0 wb= 7 
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00540433: rd1= 9 rd2= 7 z= 16 zero=0 wb=16 
00556533: rd1= 7 rd2= 7 z=  7 zero=0 wb= 7 
004f0f13: rd1=12 rd2= x z= 16 zero=0 wb=16 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1=16 rd2= 0 z= 16 zero=0 wb= 9 
00028563: rd1= 9 rd2= 0 z=  9 zero=0 wb= 9 
00540433: rd1=16 rd2= 9 z= 25 zero=0 wb=25 
00556533: rd1= 7 rd2= 9 z= 15 zero=0 wb=15 
004f0f13: rd1=16 rd2= x z= 20 zero=0 wb=20 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1=20 rd2= 0 z= 20 zero=0 wb=11 
00028563: rd1=11 rd2= 0 z= 11 zero=0 wb=11 
00540433: rd1=25 rd2=11 z= 36 zero=0 wb=36 
00556533: rd1=15 rd2=11 z= 15 zero=0 wb=15 
004f0f13: rd1=20 rd2= x z= 24 zero=0 wb=24 
ff7ff06f: rd1= x rd2= x z=  x zero=x wb= x 
000f2283: rd1=24 rd2= 0 z= 24 zero=0 wb= 0 
00028563: rd1= 0 rd2= 0 z=  0 zero=1 wb= 0 
02802023: rd1= 0 rd2=36 z= 32 zero=0 wb=32 
02a02223: rd1= 0 rd2=15 z= 36 zero=0 wb=36 
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• The rf module is in fact parameterized by a debugging parameter named DEBUG. If 
you set this parameter to 1 (0) then it turns debugging on (off). In debug mode, every 
register that is read from or written to is displayed on the screen, which can be very 
helpful in diagnosing problems. To activate this mode, instantiate rf as follows: 

 
rf #(1) myRF(rd1, rd2, rs1, rs2, wn, wd, clk, RegWrite); 

 
 
• The mem module is in fact parameterized by the memory size. If a parameter is not 

supplied upon instantiation, the size defaults to 16'hffff, i.e. to 65,535 words. If 
you need to instantiate mem with a different size, say 100 bytes, do this: 

 
mem #(100) data(memOut, address, memIn, clk, read, write); 

 
 
• The datapath built in this lab can handle the following instructions: 

and, or, add, sub, slt, addi, lw, sw, beq, and jal. 
 
 
• The CPU built in this lab cannot self-adapt depending on the instruction. Its datapath 

has all the computational units needed for executing the above instructions but must 
rely on an external agent to supply the correct control signals for each instruction. 

 
 
• The next lab will add a control unit to the CPU so that control signal generation will 

be automated. The resulting CPU will be able to execute programs without needing 
any signal other than a clock. 

LABM 

Notes 


	PCin
	module yIF(ins, PCp4, PCin, clk);

	ins
	rd1 rd2 imm
	z zero

