
1

LAB D: Stack, Procedures, and Recursion v0.03

D1 The stack

The stack is a fundamental data structure with LIFO (Last-In-First-Out) data policy supporting
push and pop operations. The push operation adds an element to the stack and the pop
operation removes the most recently added element. Traditionally stacks are organized to grow
downward i.e. newly added elements are placed at lower memory addresses with respect to
the earlier added elements.
The x2 register is often used as a stack pointer, so it is aliased to sp. When in use, this

register must always point to the top of the stack.
Now let’s define a stack starting at the memory address of 0x10000 and initialize the sp

accordingly.
STACK: EQU 0x100000

 lui sp, STACK>>12

Compile and run the above sequence.

Check the value of the label STACK in the Listing:
0x0000000000100000 STACK

Compare it with the value stored in the sp register:
x2 sp 0x0000000000100000 1048576

Pushing the value of 1 in the stack can be done as follows.
 addi x5, x0, 1

 sd x5, 0(sp)

 addi sp, sp, -8

Compile and run the above sequence.

Check the value in the sp register:
x2 sp 0x00000000000FFFF8 1048568

Check the values stored in the stack area of the memory:
0x0000000000100000 0x0000000000000001 1

Now let’s push 2 in the stack:
 addi x5, x0, 2

 sd x5, 0(sp)

 addi sp, sp, -8

Compile and run the above sequence.
Check the value in the sp register:
x2 sp 0x00000000000FFFF0 1048560

Check the values stored in the stack area of the memory:
0x00000000000ffff8 0x0000000000000002 2

0x0000000000100000 0x0000000000000001 1

Now let’s pop the top element of the stack:
 addi sp, sp, 8

 ld x5, 0(sp)

Compile and run the above sequence.
Check the values in the sp and the x5 registers:
x2 sp 0x00000000000FFFF8 1048568

x3 gp 0x0000000000000000 0

x4 tp 0x0000000000000000 0

x5 t0 0x0000000000000002 2

2

To illustrate the LIFO data policy of the stack we will create a program that first inputs a
sequence of FP numbers pushing them in the stack in the order of input and then outputs the
numbers in a reverse order by popping them from the stack one by one.

s1: DC "No of ints:\0"

s2: DC "Int"

s3: DC ":"

s4: DC " "

STACK: EQU 0x100000

 lui sp, STACK>>12

 addi x5, x0, s1

 ecall x1, x5, 4 ;out question

 ecall x5, x0, 5 ;inp No of ints

 addi x6, x0, 1 ;counter

loop1: ld x7, s2(x0)

 ecall x1, x7, 3 ;out Int

 ecall x1, x6, 0 ;out index

 ld x7, s3(x0)

 ecall x8, x7, 5 ;out :, in #

 sd x8, 0(sp) ;push

 addi sp, sp, -8 ;push

 addi x6, x6, 1 ;counter

 bge x5, x6, loop1

 addi x6, x0, 1 ;counter

loop2: ld x7, s2(x0)

 ecall x1, x7, 3 ;out Int

 ecall x1, x6, 0 ;out index

 ld x7, s3(x0)

 ecall x1, x7, 3 ;out :, in #

 addi sp, sp, 8 ;pop

 ld x8, 0(sp) ;pop

 ecall x0, x8, 0 ;out :, in #

 addi x6, x6, 1 ;counter

 bge x5, x6, loop2

Save the above example as a file named d1a.asm for possible future use.
Compile and run the above example. Check the result in the OUT window:
No of ints:3

Int1:1

Int2:4

Int3:5

Int1:5

Int2:4

Int3:1

Exercise dex1a: Write an assembly program that first asks the user to enter an unsigned
integer and then carries out consecutive divisions by 2 in a loop to find all the digits in the
binary representation of the entered unsigned number. Since the binary digits will be obtained
in reverse order, push each binary digit in the stack when found. Finally organize a loop to pop
from the stack and print the digits one by one on the same line thus showing all the digits of the

3

binary number in proper order. Save your solution as a file named dex1a.asm for possible
future use.

Exercise dex1b: Write an assembly program that creates and uses a stack of characters to
check if a given string is a palindrome (a sequence of characters that reads the same
backward as forward.) First ask the user to input a string. Then, starting from the first character
of the string, push one by one its characters into the stack. Finally organize a loop to compare
one by one the characters of the string with the characters popped from the stack. Save your
solution as a file named dex1b.asm for possible future use.

Exercise dex1c: Write an assembly program that evaluates expressions in post-fix notation
employing a stack. We will use simplified post-fix expressions containing only single digit non-
negative integers and the operations +, -, *, and /. Employ the following algorithm:

 Push the operands (the digits) in the stack in the order they appear

 If an operator (+, -, *, or /) is encountered pop 2 operands from the stack, apply the

operator, and push the result back in the stack

 The result will be on the top of the stack when the end of the expression is reached.
Here is a sample post-fix expression for testing:
exp: DC "12+34-*\0" ;(1+2)*(3-4)=-3

Save your solution as a file named dex1c.asm for possible future use.

D2 Leaf and non-leaf procedures (jalr,jal)

Another very common use of the stack is in function and procedure calls. We will begin with
writing some procedures for redacting texts. The following template program defines a sample

text as a string (a NULL-terminated sequence of characters) using the DC assembler command,

outputs it, and finishes the execution by ebreak:
str1: DC "sampled text\0"

 addi x6, x0, str1 ;output

 ecall x0, x6, 4

 ebreak x0, x0, 0 ;finish

Save the above example as a file named d2a.asm for possible future use.
Compile and run the above example. Check the result in the OUT window:
sampled text

We will use the above program as a placeholder when developing and testing the character
manipulation procedures that follow.
Now let us consider removing the final “d” in the first word of our sample strung. To do this we
can write a procedure that deletes a single character in a string.

(jalr)
When the procedure accomplishes its task it can use the jalr instruction to jump back to the

return address stored in register x1 at call time. Here is the implementation of a simple

delch1 procedure that deletes a character at a specified position in a string:
delch1: lb x5, 0(a2)

loop1: beq x5, x0, end1

 lb x5, 1(a2)

 sb x5, 0(a2)

 addi a2, a2, 1

 jal x0, loop1

4

end1: jalr x0, 0(x1) ;return

The above procedure takes a single argument from the register a2 which holds the address of

the character to be removed. Note that we have to loop through all the characters after the one
designated for deletion and move them forward by one position to fill the gap.

(jal)
We have prepared a placeholder program that defines the test string str1, then loads the

address of the character to delete in register a2, and finally employs the jal (jump and link)

instruction to store the return address in register x1 and jump to the first instruction of the

delch1 procedure. You can insert the following placeholder program in front of the procedure

for testing:
str1: DC "sampled text\0"

 addi a2, x0, str1+6 ;chaddr

 jal x1, delch1

 addi x6, x0, str1 ;output

 ecall x0, x6, 4

 ebreak x0, x0, 0 ;finish

Save the above example as a file named d2b.asm for possible future use.
Compile and run the above example. Check the result in the OUT window:
sample text

We can write a more generic delch procedure that is not limited to deleting a single character.

In this case a2 register can again hold the address of the character to be deleted and the

register a3 can hold the number of characters to be deleted. As delch1 fills the gap after every

deletion of a character, the address of the next-to-be-deleted character will remain the same.
Therefore, in the delch procedure we just call delch1 the number of times indicated in a3:
delch: jal x1, delch1

 addi a3, a3, -1

 bne a3, x0, delch

 jalr x0, 0(x1) ;return

The above procedure, however, is not going to work properly. The reason is that it is a non-leaf
procedure (a procedure that calls one or more other procedures) and thus needs to save and
restore certain values. One obvious problem is that in the last line we attempt to use the return
address provided in x1 at call time, but it has been overwritten in the first line of the code.

Another problem is that delch1 changes the value in a2 so this value must be saved before

each call and restored afterwards.
The first thought that comes to mind is to try to use some of the other registers for saving and
restoring the values. While this might be fairly easy to do in our simple case (try it as an
exercise), the available registers will soon be exhausted when nested procedure calls with
more parameters are employed.
The fundamental solution to this problem is to save and restore to the RAM where we have
much more space. Using a stack (LIFO memory access policy) is particularly suitable for this
purpose since each procedure needs the temporary storage only while active (since invocation
until return.) To streamline the use of the registers and their store and restore a calling
convention has been established (see the table REGITER NAME, USE, CALLING
CONVENTION in the Green Card.)
Here is the stack version of the delch procedure:
delch: sd x1, 0(sp) ;push

 sd s0, -8(sp) ;push

 sd s1, -16(sp) ;push

 addi sp, sp, -24 ;push

5

 addi s0, a2, 0

 addi s1, a3, 0

 bge x0, s1, end2

loop2: jal x1, delch1

 addi a2, s0, 0

 addi s1, s1, -1

 bne s1, x0, loop2

end2: addi sp, sp, 24 ;pop

 ld x1, 0(sp) ;pop

 ld s0, -8(sp) ;pop

 ld s1, -16(sp) ;pop

 jalr x0, 0(x1) ;return

In the above procedure we use the stored registers s0 and s1 to hold the values the

parameters a2 and a3. As s0 and s1 are saved registers, by convention, the callee must

preserve their values. Therefore, delch1 must preserve the values in s0 and s1 (so that the

caller delch can count on them staying intact) but delch itself must also preserve those

values (so that the callers of delch can count on them staying intact.) Similarly, the callee is

responsible by convention for saving and restoring the return address in x1. Following the

convention we push the values of x1, s0 and s1 into the stack at the beginning of delch and

pop them back at the end.
You can insert the following placeholder program in front of the procedure for testing:
str1: DC "sampled text\0"

STACK: EQU 0x100000 ;stack

 lui sp, STACK>>12

 addi a2, x0, str1+6 ;chaddr

 addi a3, x0, 6 ;#ch

 jal x1, delch

 addi x6, x0, str1 ;output

 ecall x0, x6, 4

 ebreak x0, x0, 0 ;finish

In the above example we deleted 6 characters starting from the ending 'd' of the first word. Try
deletions starting at different positions and with different lengths.
Save the above example as a file named d2c.asm for possible future use.
In a similar way we can create a procedure insch1 that inserts a character at a give address

in a string. The procedure can have two arguments, the insertion address in a2 and the

character in a3.
insch1: lb x5, 0(a2)

 sb a3, 0(a2)

 addi a3, x5, 0

 addi a2, a2, 1

 bne a3, x0, insch1

 sb a3, 0(a2)

 jalr x0, 0(x1)

Note how the procedure loops to the end of the string moving all the characters at and after the
insertion point backward by one position in order to open space for the inserted character.

A more generic insch procedure that inserts a NULL-terminated sequence of characters at a

specified position in a string can be implemented by calling insc1 in a loop as follows:
insch: sd x1, 0(sp) ;push

 sd s0, -8(sp) ;push

6

 sd s1, -16(sp) ;push

 addi sp, sp, -24 ;push

 addi s0, a2, 0

 addi s1, a3, 0

loop3: lb a3, 0(s1)

 beq a3, x0, end3

 jal x1, insch1

 addi s0, s0, 1

 addi a2, s0, 0

 addi s1, s1, 1

 beq x0, x0, loop3

end3: addi sp, sp, 24 ;pop

 ld x1, 0(sp) ;pop

 ld s0, -8(sp) ;pop

 ld s1, -16(sp) ;pop

 jalr x0, 0(x1) ;return

You can use the following placeholder program for testing the procedure:
str1: DC "sampled text\0 "

str2: DC " new\0 "

STACK: EQU 0x100000 ;stack

 lui sp, STACK>>12

 addi a2, x0, str1+7 ;chaddr

 addi a3, x0, str2 ;chaddr

 jal x1, insch

 addi x6, x0, str1 ;output

 ecall x0, x6, 4

 ebreak x0, x0, 0 ;finish

In the above example we inserted the word "new" after the first word. Try insertions starting at
different positions and with different strings.
Save the above example as a file named d2d.asm for possible future use.
What other procedures for operations on strings might be useful?
For example, do we need a procedure to replace a character? In fact, replacing a character in
a string takes just one instruction:
 sb a3, 0(a2)

The above example assumes that the address of the character to replace is in a2 and the new

character is in a3. We can also empty a string by setting its first character to 0:
 sb x0, 0(a2)

Note that directly replacing a sequence of characters in a string with another sequence of
characters is not so trivial, especially when the two substrings have different lengths. It is much
easier to implement this by deleting the first substring by delch and then inserting the second

substring by insch as illustrated below:
repch: sd x1, 0(sp) ;push

 addi sp, sp, -8 ;push

 jal x1, delch

 addi a3, a4, 0

 jal x1, insch

 addi sp, sp, 8 ;pop

 ld x1, 0(sp) ;pop

 jalr x0, 0(x1) ;return

7

The above procedure takes the address of the first character to replace from a2, the number of

characters to be replaced from a3, and the address of the replacement string from a4. The

values of a2 and a4 need to be preserved for the call to insch and by convention the callee

repch has to save them before calling delch and restore them afterwards:
repch: sd x1, 0(sp) ;push

 sd s0, -8(sp) ;push

 sd s1, -16(sp) ;push

 addi sp, sp, -24 ;push

 addi s0, a2, 0

 addi s1, a4, 0

 jal x1, delch

 addi a2, s0, 0

 addi a3, a4, 0

 jal x1, insch

 addi sp, sp, 24 ;pop

 ld x1, 0(sp) ;pop

 ld s0, -8(sp) ;pop

 ld s1, -16(sp) ;pop

 jalr x0, 0(x1) ;return

Copying strings is quite straightforward- empty the target string by making its first character 0

then call repch to insert the string to be copied:
str1: DC "sampled text\0 "

str2: DC "new text\0"

STACK: EQU 0x100000 ;stack

 lui sp, STACK>>12

 addi a2, x0, str1 ;chaddr (pos 1)

 addi a3, x0, 0 ;#ch

 addi a4, x0, str2 ;chaddr

 sb x0, 0(a2) ;emty str1

 jal x1, repch

 addi x6, x0, str1 ;output

 ecall x0, x6, 4

Save the above example as a file named d2e.asm for possible future use.
Compile and run the above example. Check the result in the OUT window:
new text

Other useful procedures could be provided, for example, to concatenate strings, e.g. when one
string is appended to another, to search for sequences of characters or substrings in a given
string, and so on.

Exercise dex2a: Implement non-stack versions of the delch and insch procedures that still

call delch1 and insch1 respectively. How many additional registers have you used in your

implementation to compensate for the lack of a stack? Save your solution as a file named
dex2a.asm for possible future use.

Exercise dex2b: Does the subch procedure make the previously implemented procedures

delch1, delch, insch1, and insch obsolete, in sense that we can use subch instead of

calling them directly? Write and run some examples of calls to subch that i) delete 1 character,

ii) delete more than 1 character, iii) insert one character, and iv) insert more than 1 character.
Save your solution as a file named dex2b.asm for possible future use.

8

Exercise dex2c: Implement a string concatenation procedure appch that appends a string at

the end of another string. Create and use a utility procedure lench that finds the length of a

given string. Save your solution as a file named dex2c.asm for possible future use.

D3 Recursion

Recursive procedures are non-leaf procedures as they call themselves by definition. We will,
therefore, use the stack for saving and restoring the return addresses and other values as
necessary. Note that we initialize the stack this time differently. We write the value of 0 into the

sp register and will assume that sp points to the last used address in the stack (this is different

from our previous examples where we assumed that the sp points to the first empty/available

address in the stack.)
One of the simplest possible recursive procedures is perhaps the one that calculates the
factorials as shown below.
 n 0,1,2,3, 4, 5, 6, 7, 8, 9, 10

 fact(n) 1,1,2,6,24,120,720,5040,40320,362880,3628800

The sample assembly program could be as follows:
 addi sp, x0, 0 ;sp initialization

 addi a0, x0, 5 ;n=5

 jal x1, fact ;call fact

 ebreak x0, x0, 0

fact: blt x0, a0, recu ;if(0<a0) recursion

 addi a0, x0, 1 ;if(a0<=0)return 1

 jalr x0, 0(x1) ;return

recu: sd x1, -8(sp) ;push ra

 sd a0, -16(sp) ;push a0

 addi sp, sp, -16 ;adjust sp

 addi a0, a0, -1 ;a0=a0-1

 jal x1, fact ;recursive call

 addi sp, sp, 16 ;adjust sp

 ld x1, -8(sp) ;pop ra

 ld x5, -16(sp) ;pop a0

 mul a0, x5, a0 ;fact(a0)=a0*fact(a0-1)

 jalr x0, 0(x1) ;return

Save the above example as a file named d3a.asm for possible future use.
The fact procedure in the above example either returns the value of 1 for a0<=0 or calls itself

recursively with the value of a0 decreased by 1. Note how we calculate the return value in a0

by multiplying the current value of a0 restored from the stack to x1 with the returned from the

recursive call value in a0. For better understanding, here is the pseudo code of the above

procedure:
 fact (n) {

 if (n <= 0) return 1;

 return n * fact (n - 1);

 }

The above procedure is not tail recursive since the call to itself is not the last thing it does (in
fact it multiplies the result from the recursive call by n.) We can, however rewrite the procedure
as follows:
 fact (n, accumulator) {

9

 if (n == 0) return accumulator;

 return fact (n - 1, n * accumulator);

 }

Now the above fact procedure returns the value of the recursive call to itself with no further

calculations so it is tail recursive. The assembly version of the above pseudo code could be as
follows:
 addi sp, x0, 0 ;sp initialization

 addi a1, x0, 1 ;accumulator

 addi a0, x0, 5 ;n=5

 jal x1, fact ;call fact

 ebreak x0, x0, 0

fact: blt x0, a0, recu ;if(0<a0) recursion

 addi a0, x0, 1 ;if(a0<=0)return 1

 jalr x0, 0(x1) ;return

recu: sd x1, -8(sp) ;push ra

 addi sp, sp, -8 ;adjust sp

 mul a1, a1, a0 ;fact(a0)=a0*fact(a0-1)

 addi a0, a0, -1 ;a0=a0-1

 jal x1, fact ;recursive call

 addi sp, sp, 8 ;adjust sp

 ld x1, -8(sp) ;pop ra

 jalr x0, 0(x1) ;return

Save the above example as a file named d3b.asm for possible future use.
Note that the use of the stack in the above procedure is minimal as we only need to store in it
the return address.
Our next example will illustrate the recursive calculation of the Fibonacci numbers as shown
bellow.
 n 0,1,2,3,4,5,6, 7, 8, 9,10,11, 12, 13, 14, 15

 fib(n) 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610

The recursive Fibonacci procedure is defined by the following pseudo code:
 fib (n) {

 if (n < 1) return 0;

 if (n <= 2) return 1;

 return fib (n - 1) + fib (n - 2);

 }

The corresponding assembly program could be as follows:
 addi sp, x0, 0 ;sp initialization

 addi x6, x0, 1 ;const 1

 addi a0, x0, 8 ;n=5

 jal x1, fib ;call fib

 ebreak x0, x0, 0

fib: blt x6, a0, recu ;if(1<a0)recursion

 blt x0, a0, ret1 ;if(0<a0)return 1

 addi a0, x0, 0 ;if(a0<=0)return 0

 beq x0, x0, ret0

ret1: addi a0, x0, 1 ;if(a0<=)return 0

ret0: jalr x0, 0(x1) ;return

recu: addi sp, sp, -24 ;adjust sp (by 24 instead of 16)

 sd x1, 16(sp) ;push ra

 sd a0, 8(sp) ;push a0

10

 addi a0, a0, -1 ;a0=a0-1

 jal x1, fib ;recursive call

 sd a0, 0(sp) ;push a0

 ld a0, 8(sp) ;pop old a0

 addi a0, a0, -2 ;a0=a0-2

 jal x1, fib ;recursive call

 ld x5, 0(sp) ;pop old a0

 add a0, x5, a0 ;fib(a0)=fib(a0-1)+fib(a0-2)

 ld x1, 16(sp) ;pop ra

 addi sp, sp, 24 ;adjust sp

 jalr x0, 0(x1) ;return

Save the above example as a file named d3c.asm for possible future use.
Note that in the above code the fib procedure is called recursively twice so the intermediate

value of the parameter a0 must be saved in the stack before the call and restored after the call.

The additional space is reserved in the stack (sp decreased by 24 instead of 16) but not used
until the return from the first call to fib.

Exercise dex3a: Implement a recursive procedure gcd(a,b) that uses the Euclid’s algorithm

to find the greatest common divisor of two positive integers a and b. referring to the following

pseudo code:
 gcd (x, y) {

 if (y = 0) return x; else gcd(y, x%y);

 }

Write a main program that i) asks the user to enter two positive integers a and b, ii) calls the

recursive procedure gcd(a,b) to find their greatest common divisor, and iii) outputs the

calculated result. Save your solution as a file named dex3a.asm for possible future use.

Exercise dex3b: Implement the tail recursive version of the Fibonacci procedure
corresponding to the following pseudo code:
fib(n, a = 0, b = 1) {

 if (n == 0) return a;

 if (n == 1) return b;

 return fib(n - 1, b, a + b);

}

Save your solution as a file named dex3b.asm for possible future use.

