
1

LAB C: Integer Multiplication and Division.
Floating Point (FP) Calculations v0.03

C1 Integer multiplication and division (mul, mulh, mulhu,

mulhsu, div, rem)

When 64 bit integers are multiplied, depending on their values, the result can easily take more

than 64 bits.

(mul)
For multiplication of small values, e.g. 11*12=132 that produce a result with up to 64 bits a

single mul (multiply) instruction is sufficient for calculating the lower 64 bits:
 addi x5,x0,11

 addi x6,x0,12

 mul x7,x5,x6

Save the above example as a file named c1a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x000000000000000B 11

x6 t1 0x000000000000000C 12

x7 t2 0x0000000000000084 132

(mulh, mulhu, mulhsu)
For multiplication of larger values that produce a result with more than 64 bits additional mulh

(multiply upper half), mulhu (multiply upper half unsigned), and mulhsu (multiply upper half

signed unsigned), instructions are provided for calculating the upper 64 bits. Note that the mul

instruction is still needed for calculating the lower 64 bits:
v1: DD -2

v2: DD 16

 ld x5, v1(x0)

 ld x6, v2(x0)

 mul x7,x5,x6 ;lower 64 bits

 mulh x8,x5,x6 ;upper 64 bits (signed, signed)

 mulhu x9, x5, x6 ;upper 64 bits (unsigned, unsigned)

 mulhsu x10, x5, x6 ;upper 64 bits (signed, unsigned)

 mulhsu x11, x6, x5 ;upper 64 bits (signed, unsigned)

To illustrate this, in the above example we have chosen as a multiplicand -2 for its simple

hexadecimal representation of 0xfffffffffffffffe. We have then multiplied it by 16

which effectively shifted the hexadecimal digits of the multiplicand by 1 position (4 bits) to the

left. Save the above example as a file named c1b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0xfffffffffffffffe -2

x6 t1 0x0000000000000010 16

x7 t2 0xffffffffffffffe0 -32

x8 s0 0xffffffffffffffff -1

x9 s1 0x000000000000000f 15

x10 a0 0xffffffffffffffff -1

x11 a1 0x000000000000000f 15

Note the different values obtained by the mulh, mulhu, and mulhsu instructions.

2

In the following example we ask the user to i) input the width w and the height h of a rectangle,

ii) use mul to calculate the area a=w*h of the rectangle, and iii) output the calculated result:
s0: DC "Rectangle area calculation.\0"

s1: DC "Enter a:\0"

s2: DC "Enter b:\0"

s3: DC "Rectangle area="

 addi x5, x0, s0

 ecall x0, x5, 4 ;out info

 addi x5, x0, s1

 ecall x1, x5, 4 ;prompt a

 ecall x6, x0, 5 ;inp a

 addi x5, x0, s2

 ecall x1, x5, 4 ;prompt b

 ecall x7, x0, 5 ;inp b

 mul x6, x6, x7 ;area=a*b

 addi x5, x0, s3

 ecall x1, x5, 4 ;out area

 ecall x1, x6, 0 ;out result

Save the above example as a file named c1c.asm for possible future use.
Compile and run the above example. Here is a sample dialog obtained when testing the above
program:
Rectangle area calculation.

Enter a:121

Enter b:200

Rectangle area=24200

(div)
Integer division is carried out by the div (divide) instruction as shown in the following example

where we calculate the value of 1000/20:
 addi x5,x0,1000

 addi x6,x0,20

 div x7,x5,x6

Save the above example as a file named c1d.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x00000000000003E8 1000

x6 t1 0x0000000000000014 20

x7 t2 0x0000000000000032 50

(rem)
The reminder can be obtained by using the rem (reminder) instruction as shown in the

following example where we calculate 67%16:
 addi x5,x0,67

 addi x6,x0,16

 rem x7,x5,x6

Save the above example as a file named c1e.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x0000000000000043 67

x6 t1 0x0000000000000010 16

x7 t2 0x0000000000000003 3

3

In the following example we ask the user to i) input two positive integers a and b, ii) use the

Euclid’s algorithm to find their greatest common divisor gcd(a,b), and iii) output the

calculated result:
s0: DC "Greatest common divisor.\0"

s1: DC "Enter a:\0"

s2: DC "Enter b:\0"

s3: DC "gcd(a,b)="

 addi x5, x0, s0

 ecall x0, x5, 4 ;out info

 addi x5, x0, s1

 ecall x1, x5, 4 ;prompt a

 ecall x6, x0, 5 ;inp a

 addi x5, x0, s2

 ecall x1, x5, 4 ;prompt b

 ecall x7, x0, 5 ;inp b

loop: rem x8, x6, x7

 add x6, x0, x7

 add x7, x0, x8

 bne x8, x0, loop

 addi x5, x0, s3

 ecall x1, x5, 4 ;out gcd

 ecall x0, x6, 0 ;out result

Save the above example as a file named c1f.asm for possible future use.
Compile and run the above example. Here is a sample dialog obtained when testing the above
program:
Greatest common divisor.

Enter a:12

Enter b:15

gcd(a,b)=3

Exercise cex1a: Write an assembly program that i) inputs a small positive integer, ii)
calculates the factorial of that integer, and iii) outputs the calculated result. Here is a possible
sample dialog (the user entered 5 so 5! was calculated):
n! Enter n:5

5!=120

Compile and test your solution with different input values.
Save your solution as a file named cex1a.asm for possible future use.

Exercise cex1b: Write an assembly program that i) inputs a positive integer n, ii) sums all

positive integers smaller than n in a loop, and iii) outputs the obtained result. For verification

calculate the sum directly using the expression (n*(n-1))/2 and output the resulting value.

Here is a possible sample dialog (the user entered 20):
sum(1..n-1) Enter n:20

sum(1..19)=190

(n*(n-1))/2=190

Compile and test your solution with different input values.
Save your solution as a file named cex1b.asm for possible future use.

4

Exercise cex1c: Write an assembly program that i) inputs a positive integer i, ii) finds all its

divisors, and iii) outputs the calculated result. Here is a possible sample dialog (the user
entered 10):
Find all divisors.

Enter i:10

Divisors:

1

2

5

10

Compile and test your solution with different input values.
Save your solution as a file named cex1c.asm for possible future use.

Exercise cex1d: Modify the program cex1c.asm so that the found divisors are not output but
stored in the memory after the compiled code. Then, depending on the found divisors, output

as a result either “prime” (the only divisors were 1 and the number itself) or “not prime” (other

divisors but 1 and the number itself were found.)

Save your solution as a file named cex1d.asm for possible future use.

C2 Floating Point (FP) calculations (DF, fld, fadd.d, fsub.d,
fmul.d, fdiv.d,fsd, fmin.d, fmax.d, fsqrt.d, fsgnj.d,

fsgnjn.d, fsgnjx.d, fmv.x.d, fmv.d.x, fcvt.l.d,

fcvt.d.l, flt.d, fle.d)

Floating Point (FP) values and calculations in this section are in double precision (64-bit.)

(DF)
Double precision FP values can be created and stored in memory at compile time by the DF

(Define Float) assembler command as follows:
 DF 1.0

Compile the above example and check the result in the Mem window:
0x0000000000000000 0x3ff0000000000000 4607182418800017408

1.0000000000000000E+000 DF 1.0

The normalized double precision FP representation of 1.0 begins with the three hexadecimal

digits of 0x3FF which written in binary format will be 0011 1111 1111 and in decimal format

2
10
-1=1023. This represents a nonnegative FP number as its first bit (the sign bit) is 0. The

exponent of the FP number is 1023-1023=0. The mantissa of the FP number is represented

by the remaining 13 hexadecimal digits on the right of the first three and contains only 0s. The

value of the FP number will therefore be 1.02*2
0
=1.0

Compare the above representation with the representation of -1.0 below:
 DF -1.0

0x0000000000000000 0xbff0000000000000 -4616189618054758400

-1.0000000000000000E+000 DF -1.0

The only difference is in the first bit changing to 1 (0xbff vs. 0x3ff) and, as this is the sign bit,

the number becomes negative.
 DF 2.0

0x0000000000000000 0x4000000000000000 4611686018427387904

2.0000000000000000E+000 DF 2.0

5

Now note that for the FP number 2.0 shown above the exponent field becomes 0x400=1024

so the exponent will be 1024-1023=1 and thus we multiply the mantissa by 21. As 2.0 is a

power of 2, all bits in its mantissa are 0s.
 DF 0.5

0x0000000000000000 0x3fe0000000000000 4602678819172646912

5.0000000000000000E-001 DF 0.5

For the FP number 0.5 shown above the exponent field becomes 0x3FE=1022 so the

exponent will be 1022-1023=-1 and thus we multiply the mantissa by 2-1. Again, as 0.5 is a

power of 2, all bits in its mantissa are 0s.

We will use now the FP number 3.0 which is not a power of 2 to illustrate how the mantissa

bits work.
 DF 3.0

0x0000000000000000 0x4008000000000000 4613937818241073152

3.0000000000000000E+000 DF 3.0

The mantissa of the FP number 3.0 above begins with the hexadecimal digit of 0x8 followed

by all 0s. This means the mantissa has only its leftmost bit set to 1 with all other bits set to 0.

Recall that we had the same exponent bits when analyzing the FP number 2.0 above and we

obtained an exponent value of 1. We can, therefore, calculate the value of this FP number as

1.1*2
1
=1*2

1
+1*2

0
=2+1=3.0.

(fld)
Through the fld (FP load double) instruction FP values in the memory can be loaded into FP

registers:
d1: DF 2.0

d2: DF 3.0

 fld f1, d1(x0)

 fld f2, d2(x0)

Save the above example as a file named c2a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0x4000000000000000 2.0000000000000000E+000

f2 0x4008000000000000 3.0000000000000000E+000

(fadd.d, fsub.d, fmul.d, fdiv.d)
Here is an example of FP addition, subtraction, multiplication, and division:
d1: DF 2.0

d2: DF 3.0

 fld f1, d1(x0)

 fld f2, d2(x0)

 fadd.d f3,f1,f2 ;2.0+3.0= 5.0

 fsub.d f4,f1,f2 ;2.0-3.0= -1.0

 fmul.d f5,f1,f2 ;2.0*3.0= 6.0

 fdiv.d f6,f1,f2 ;2.0/3.0= 0.(6)

Save the above example as a file named c2b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0x4000000000000000 2.0000000000000000E+000

f2 0x4008000000000000 3.0000000000000000E+000

f3 0x4014000000000000 5.0000000000000000E+000

f4 0xbff0000000000000 -1.0000000000000000E+000

f5 0x4018000000000000 6.0000000000000000E+000

f6 0x3fe5555555555555 6.6666666666666663E-001

6

Note that since FP numbers are approximations of real numbers and the FP arithmetic has a
limited precision, in some cases obtained results may differ, depending on the order of the
calculations. We will use the following sample program to illustrate this effect:
v1: DF -1.1e17

v2: DF 1.1e17

v3: DF 3.0

 fld f1, v1(x0)

 fld f2, v2(x0)

 fld f3, v3(x0)

 fadd.d f4, f1, f2

 fadd.d f4, f4, f3

 fadd.d f5, f2, f3

 fadd.d f5, f1, f5

Save the above example as a file named c2c.asm for possible future use.
The above code calculates the following two sums:
f4 = (v1+v2) + v3

f5 = v1 + (v2+v3)

Since addition is associative we would expect to obtain the same resulting values the FP
register f4 and f5.

Now compile and run the above example. Check the resulting values in the Regs window:
f1 0xc3786cc6acd4b000 -1.1000000000000000E+017

f2 0x43786cc6acd4b000 1.1000000000000000E+017

f3 0x4008000000000000 3.0000000000000000E+000

f4 0x4008000000000000 3.0000000000000000E+000

f5 0x0000000000000000 0.0000000000000000E+000

The resulting values in f4 and f5 shown above are clearly different which illustrates that,

depending on the employed values, FP addition may not be associative.
Note that we will obtain a different result if we change the first two lines in the above program
as follows:
v1: DF -1.1e15

v2: DF 1.1e15

v3: DF 3.0

 fld f1, v1(x0)

 fld f2, v2(x0)

 fld f3, v3(x0)

 fadd.d f4, f1, f2

 fadd.d f4, f4, f3

 fadd.d f5, f2, f3

 fadd.d f5, f1, f5

Save the modified example as a file named c2d.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0xc30f438daa060000 -1.1000000000000000E+015

f2 0x430f438daa060000 1.1000000000000000E+015

f3 0x4008000000000000 3.0000000000000000E+000

f4 0x4008000000000000 3.0000000000000000E+000

f5 0x4008000000000000 3.0000000000000000E+000

The resulting values in f4 and f5 shown above are now the same. The demonstrated effect is

due to loss of precision. Indeed, since the mantissa of the double precision FP values contains
52 bits, it can represent up to 15 decimal digits without rounding. This is just enough to obtain

7

the correct result in the second case where the operands differ by about 1015 but is clearly not

sufficient in the first case where the operands differ by about 1017.

(fsd)
The calculated FP results are always placed in FP registers. From there they can be stored in
the memory by using the fsd (FP store double) instruction as shown in the following example

which calculates (3.0+3.0)/(3.0*3.0) and stores the result in a memory location right

after the program:
d: DF 3.0

 fld f1, d(x0)

 fadd.d f2, f1, f1

 fmul.d f3, f1, f1

 fdiv.d f4, f2, f3

 fsd f4, m(x9)

m: DM 1

Save the above example as a file named c2e.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0x4008000000000000 3.0000000000000000E+000

f2 0x4018000000000000 6.0000000000000000E+000

f3 0x4022000000000000 9.0000000000000000E+000

f4 0x3fe5555555555555 6.6666666666666663E-001

Also check the stored values in the Mem window:
0x0000000000000000 0x4008000000000000 4613937818241073152

3.0000000000000000E+000 d: DF 3.0

0x0000000000000020 0x3fe5555555555555 4604180019048437077

6.6666666666666663E-001 m: DM 1

(fmin.d, fmax.d)
While getting the minimum or the maximum of two integers values requires several instructions,
the minimum or the maximum of two FP values, could be obtained with a single instruction.
Indeed, the fmin.d (FP minimum) instruction finds the minimum of the values in its source

registers fs1 and fs2 and stores the result in its destination register fd. Respectively, the

fmax.d (FP maximum) instruction can be used for the maximum FP value. Here is a usage

example:
fc1: DF 1.0

fc2: DF 2.0

 fld f1, fc1(x0)

 fld f2, fc2(x0)

 fmin.d f3, f1, f2

 fmax.d f4, f1, f2

Save the above example as a file named c2f.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0x3ff0000000000000 1.0000000000000000E+000

f2 0x4000000000000000 2.0000000000000000E+000

f3 0x3ff0000000000000 1.0000000000000000E+000

f4 0x4000000000000000 2.0000000000000000E+000

(fsqrt.d)
The fsqrt.d (FP square root) instruction calculates the square root of the value in the single

source register fs and places the result in the destination register fd:
d: DF 2.0

 fld f1, d(x0)

8

 fsqrt.d f2, f1

Save the above example as a file named c2g.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0x4000000000000000 2.0000000000000000E+000

f2 0x3ff6a09e667f3bcd 1.4142135623730951E+000

(fsgnj.d, fsgnjn.d, fsgnjx.d)
The sign injection FP instructions fsgnj.d (FP sign inject), fsgnjn.d (FP sign inject NOT),

and fsgnjx.d (FP sign inject XOR) transfer the value of fs1 to fd and adjust the sign of the

result (produced result takes all bits except the sign bit from fs1.) More precisely, fsgnj.d

sets the sign of fd to the sign of the value in fs2, fsgnjn.d sets the sign of fd to the

opposite sign of the value in fs2, and fsgnjx.d sets the sign of fd to the XOR of the sign

bits of fs1 and fs2. As shown below, sign injection instructions can be used to transfer a

value, to transfer the negate of a value, and to transfer the absolute of a value:
fc1: DF -2.0

fc2: DF 3.0

 fld f1, fc1(x0)

 fld f2, fc2(x0)

 fsgnj.d f3, f1, f1 ;f3=f1

 fsgnjn.d f4, f1, f1 ;f3=-f1

 fsgnjx.d f5, f1, f1 ;f3=abs(f1)

Save the above example as a file named c2h.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
f1 0xc000000000000000 -2.0000000000000000E+000

f2 0x4008000000000000 3.0000000000000000E+000

f3 0xc000000000000000 -2.0000000000000000E+000

f4 0x4000000000000000 2.0000000000000000E+000

f5 0x4000000000000000 2.0000000000000000E+000

(fmv.x.d, fmv.d.x)
The fcvt.x.d (FP move double to long) and fcvt.d.x (FP move long to double)

instructions move data between the FP and the integer registers without conversion:
d: DF 2.0

 fld f0, d(x0)

 fmv.x.d x30, f0

 addi x31, x0, -1

 fmv.d.x f1, x31

Save the above example as a file named c2i.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x30 t5 0x4000000000000000 4611686018427387904

x31 t6 0xFFFFFFFFFFFFFFFF -1

f0 0x4000000000000000 2.0000000000000000E+000

f1 0xffffffffffffffff -NaN(7ffffffffffff)

(fcvt.l.d, fcvt.d.l)
The fcvt.l.d (FP convert double to long) and fcvt.d.l (FP convert long to double)

instructions conduct FP to integer and vise versa conversions. In the following example we first

calculate the approximate value of π by an FP division (22.0/7.0) and then convert the

obtained result to an integer:
 addi x5, x0, 22

 addi x6, x0, 7

 fcvt.d.l f5, x5 ;from 64bit int

9

 fcvt.d.l f6, x6

 fdiv.d f7, f5, f6 ;22.0/7.0= 3.1428...

 fcvt.l.d x7, f7 ;to 64bit int

Save the above example as a file named c2j.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x0000000000000016 22

x6 t1 0x0000000000000007 7

x7 t2 0x0000000000000003 3

f5 0x4036000000000000 2.2000000000000000E+001

f6 0x401c000000000000 7.0000000000000000E+000

f7 0x4009249249249249 3.1428571428571428E+000

(flt.d, fle.d)
Comparing double precision FP values is carried out by the flt.d (FP less than) and fle.d

(FP less or equal) instructions. To illustrate their use we will create an assembly program
corresponding to the following pseudo-code:
if (x<a) x=b elsif (b<=x) x=a

The values of a and b are stored in the memory at compile time. The value of x is provided by

the user at run time. The following assembly program will prompt the user to enter a value for x,

then will calculate the new value of x as per the above pseudo-code, and finally will output the

result. These three steps will be repeated in a loop until the program execution is cancelled.
s1: DC "Enter x:\0"

s2: DC "Result:\0"

c0: DF 0.0

a: DF 3.0

b: DF 5.0

 fld f0, c0(x0)

 fld f1, a(x0)

 fld f2, b(x0)

loop: addi x5, x0, s1

 ecall x1, x5, 4 ;out info

 ecall f3, x0, 6 ;inp x

 flt.d x1, f3, f1

 beq x1, x0, cont

 fadd.d f3, f0, f2

 beq x0, x0, done

cont: fle.d x1, f2, f3

 beq x1, x0, done

 fadd.d f3, f0, f1

done: addi x5, x0, s2

 ecall x1, x5, 4 ;out x

 ecall x0, f3, 1 ;out res

 beq x0, x0, loop

Save the above example as a file named c2k.asm for possible future use.
Compile and run the above example. Here is an example of a possible dialog:
Enter x:0

Result:5.0

Enter x:2

Result:5.0

Enter x:3

Result:3.0

10

Enter x:4

Result:4.0

Enter x:3.5

Result:3.5

Enter x:4.99

Result:4.99

Enter x:5

Result:3.0

Enter x:6

Result:3.0

Enter x:Cancelled

Exercise cex2a: Write an assembly program for calculating the dot product of two vectors.
Use DD assembler commands to store in the beginning of the memory two sample vectors, e.g.

1.21, 5.85, -7.3, 23.1, -5.55 and 3.14, -2.1, 44.2, 11.0, -7.77. Calculate

the corresponding dot product and store the resulting value (-3.392210E+001) in the

memory right after the code. Test your program with different sample vectors.
Save your solution as a file named cex2a.asm for possible future use.

Exercise cex2b: Create an assembly program that approximates the value of e by summing

1.0/0!+1.0/1!+1.0/2!+1.0/3!+...+1.0/n!. Run the program with different values of n

and compare the results. Determine the properly calculated digits in each case using the

following reference value: e=2.71828182845904523536.

Save your solution as a file named cex2b.asm for possible future use.

Exercise cex2c: Create an assembly program for calculating the square root of a given FP

number a using the bisection method for root finding. Essentially you will have to iterate to find

an approximation of the root of x*x–a=0 with a given precision. Note that the root can be

found in the interval (a,1) for a<1 and in the interval (1,a) for a>1.

Compile and test your solution with different precisions.
Save your solution as a file named cex2c.asm for possible future use.

