
1

LAB B: Memory, Branches, and I/O v0.03

B1 Data in memory (DD, ld, sd, DM, ORG)

(DD)
Constant values can be stored in the memory at compile time using the DD (Define Double)

assembly command:
c: DD 0x1234567811223344

(ld)
Then the constant value can be loaded from the memory to a register at run time using the ld

(load double) instruction:
c: DD 0x1234567811223344

 ld x5, c(x0)

Save the above example as a file named b1b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
 x5 t0 0x1234567811223344 1311768465155175236

Also check the resulting values in the Mem window:
0x0000000000000000 0x1234567811223344 1311768465155175236 c: DD

0x1234567811223344

The advantage of the above approach is that there are no limitations about the bit-size of the
values in memory (e.g. 64 bit values can be specified directly.) Since those values are not part
of the generated instructions (they are not immediate instruction arguments) they can be freely
used at different places in the code as needed. The values stored in memory by the compiler
can also be modified at runtime by appropriate machine instructions.

The value of the label c: in the above example denotes the address (0 in this case) of the

constant stored in memory at runtime by the compiler. This address is then used as an
immediate value in the ld instruction. The actual address is calculated by summing the value

of the base register (in our case x0 which always contains 0) with the offset which is the

immediate value. This provides for very easy access to values stored in the beginning of the
memory e.g. at addresses in the range of [0,4095] that can be represented by the 12 bits of

the offset only.

(sd)
The sd (store double) instruction works in a way opposite to the ld instruction. It stores a

value from a register into the memory at a specified address.
Type the following instruction in the Source window:
 sd x0, 0(x0)

Save the above example as a file named b1c.asm for possible future use.
Compile and run the above example. The following error message appears in the Exec
window:
ERROR: memw: #not data adr=0x0000000000000000 len=8

mem(0x0000000000000000)=sd {x0 x0 0x000} { sd x0, 0(x0)}

The above instruction attempted to write the value of 0 in the memory at address 0, thus
overwriting the compiled code as shown in the Listing window:
0x0000000000000000 S 0000000 00000 00000 011 00000 0100011 sd x0

x0 0x000 sd x0,0(x0) sd x0, 0(x0)

Let us change the memory address to 4 to point exactly after the compiled instruction.
 sd x0, 4(x0)

2

Save the above example as a file named b1d.asm for possible future use.
Compile and run the above example. The following error message appears in the Exec
window:
ERROR: memw: #alignment problem adr=0x0000000000000004 len=8

The above instruction attempted to write an 8-byte word starting at address 4 which is not
divisible by 8 which caused the alignment error.
Let us now change the memory address to 8 to point at the first 8-byte word boundary after the
compiled instruction:
 sd x0, 8(x0)

Save the above example as a file named b1e.asm for possible future use.
Compile and run the above example. Check the resulting value in the Mem window:
0x0000000000000008 0x0000000000000000 0

0.000000E+000

The above line in the Mem window indicates that the value of 0 was stored in the memory at
address 8.

(DM)
In the following example addi stores the value of 0x123 in x5. Then sd stores the value in

x5 to the memory at the address defined by the label c. Storage space of 1 double-word (64

bits) is reserved by the DM (Define Memory) assembly command:
c: DM 1

 addi x5, x0, 0x123

 sd x5, c(x0)

Save the above example as a file named b1f.asm for possible future use.
Compile and run the above example. Check the value of the label c in the Listing window:
0x0000000000000008 START

0x0000000000000000 c

Note the value of the START label (8 in this case) that points to the address of the first
executable instruction.
In the Mem window check the stored value at the address specified by the label c:
0x0000000000000008 0x0000000000000123 291 1.437731E-

321 c: DM 1

(ORG)
Now let us consider the case when some data must be stored at a higher memory address, for
example at 0x10000000 as specified by the ORG (ORIGIN) assembler command below:
 ORG 0x10000000

c: DD 0x1234567811223344

 ld x5, c(x0)

Save the above example as a file named b1g.asm for possible future use.
Compile the above example and check the Mem window to confirm that the constant is
properly stored:
0x0000000010000000 0x1234567811223344 1311768465155175236 c: DD

0x1234567811223344

In the Listing window, however, you will see the following error message:
0x0000000010000008 ERROR: imm OUT OF RANGE [-2048,4095] ld

rd,rs1,imm ld x5,c(x0) ld x5, c(x0)

Obviously, larger addresses that require more than 12 bits have to be loaded in registers. The

following source code illustrates it:
 ORG 0x10000000

c: DD 0x1234567811223344

3

 lui x6, c >> 12

 addi x6, x6, c & 0xfff

 ld x5, 0(x6)

Save the above example as a file named b1h.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x1234567811223344 1311768465155175236

x6 t1 0x0000000010000000 268435456

Also check the Mem window to confirm that the constant is properly stored:
0x0000000010000000 0x1234567811223344 1311768465155175236 c: DD

0x1234567811223344

Another possible approach is to store the (very) large address in the memory at compile time
as follows:
a: DD c

 ORG 0x1000000000000000

c: DD 0x1234567811223344

 ld x6, a(x0)

 ld x5, 0(x6)

Save the above example as a file named b1i.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x1234567811223344 1311768465155175236

x6 t1 0x1000000000000000 1152921504606846976

Also check the Mem window to confirm that the constant is properly stored:
0x0000000000000000 0x1000000000000000 1152921504606846976 a: DD

c

0x1000000000000000 0x1234567811223344 1311768465155175236 c: DD

0x1234567811223344

Exercise bex1a: Instruct the assembler to store the values of 1024, 2048, 4096, 8192 in

the beginning of the memory using the DD assembler command. Sum them, calculate their

average using a shift instruction, and store the result in memory right after the compiled code.
Save your solution as a file named bex1a.asm for possible future use.

Exercise bex1b: Instruct the compiler to store the values of 0x2222333344445555 and

0x1111222233334444 at addresses 0x1000100010001000 and 0x1000100010001100

respectively. At run time load the values in the registers x6 and x7 respectively then calculate

the sum, the difference, and the bitwise or and xor of the two values, storing the results in the

registers x28-x31 respectively. Save your solution as a file named bex1b.asm for possible

future use.

Exercise bex1c: Instruct the compiler to store the values of a=0xAAAABBBBCCCCDDDD and

b=0x4444333322221111 at addresses 0 and 8 respectively. Calculate a+b, a-b, b-a, a

AND b, a OR b, a XOR b, NOT a, NOT b, then store the results in consecutive double words

starting at address 16. Save your solution as a file named bex1c.asm for possible future use.

B2 Branches (bge,beq,bne,jal,jalr,bltu,blt,slt,slti)

(bge)

4

Calculating the absolute value of an integer is carried out by i) checking whether it is negative
and if so ii) negating the value:
 If (i < 0) i = -i

The above can be implemented in assembler through the conditional branch instruction bge

(Branch if Greater or Equal). The following sample code takes an integer value from memory
address 0, calculates its absolute, and stores the result in the memory right after the compiled
code:
src: DD -3

 ld x5, src(x0)

 bge x5, x0, skip

 sub x5, x0, x5

skip: sd x5, dst(x0)

 ebreak x0, x0, 0

dst: DM 1

Save the above example as a file named b2a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Mem window:
0x0000000000000000 0xfffffffffffffffd -3

0x0000000000000020 0x0000000000000003 3

For skipping the negation (implemented by subtraction from 0) the branch instruction bge was

used the code. This instruction has as a parameter a label (named skip in our case) that

denotes the instruction to branch to. Note that the value of the label is an absolute address
which is used by the assembler to calculate the offset to the target instruction as a relative
value with respect to the bge instruction. The offset value of 4 in the compiled code in the

Listing window indicates that the target instruction is 4 pairs of bytes (which is 2 instructions of

4 bytes) after the beq instruction:
0x000000000000000c SB 0000000 00000 00101 101 00100 1100011 bge x5

x0 0x004 bge x5,x0,4 bge x5, x0, skip

(beq)
In the following example we illustrate the use of the beq (Branch if Equal) instruction to

organize a loop. The code reads non-zero integers starting from address 0 in the memory and
copies them to the memory starting right after the compiled code. The copy process finishes
when a 0 value is encountered (the 0 value is not copied):
src: DD -1, 5, -3, 7, 0

 add x6, x0, x0

loop: ld x5, src(x6)

 beq x5, x0, end

 sd x5, dst(x6)

 addi x6, x6, 8

 beq x0, x0, loop

end: ebreak x0, x0, 0

dst: DM 1

Save the above example as a file named b2b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Mem window:
0x0000000000000000 0xffffffffffffffff -1

0x0000000000000008 0x0000000000000005 5

0x0000000000000010 0xfffffffffffffffd -3

0x0000000000000018 0x0000000000000007 7

0x0000000000000020 0x0000000000000000 0

0x0000000000000048 0xffffffffffffffff -1

5

0x0000000000000050 0x0000000000000005 5

0x0000000000000058 0xfffffffffffffffd -3

0x0000000000000060 0x0000000000000007 7

We can easily combine the code from the two previous examples to change the source values
to their absolutes in the process of the copying:
src: DD -1, 5, -3, 7, 0

 add x6, x0, x0

loop: ld x5, src(x6)

 beq x5, x0, end

 bge x5, x0, skip

 sub x5, x0, x5

skip: sd x5, dst(x6)

 addi x6, x6, 8

 beq x0, x0, loop

end: ebreak x0, x0, 0

dst: DM 1

Save the above example as a file named b2c.asm for possible future use.
Compile and run the above example. Check the resulting values in the Mem window:
0x0000000000000000 0xffffffffffffffff -1

0x0000000000000008 0x0000000000000005 5

0x0000000000000010 0xfffffffffffffffd -3

0x0000000000000018 0x0000000000000007 7

0x0000000000000020 0x0000000000000000 0

0x0000000000000050 0x0000000000000001 1

0x0000000000000058 0x0000000000000005 5

0x0000000000000060 0x0000000000000003 3

0x0000000000000068 0x0000000000000007 7

(jal)
The offset based method of encoding the branch targets makes it easy to jump to addresses in
the vicinity of the branch instruction, e.g. in the range [PC-4096,PC+4095] that can be

encoded with the 12 bits of the immediate value. Jumps further away e.g. to offsets encoded

by up to 20 bits can be achieved by the jal (jump and link) instruction:
jal x0, loop

The above instruction, however, is non-conditional but it can be easily combined with
conditional branches to extend their jump range:
 beq x5, x6, target

 add x0, x0, x0

(bne)
The above example could be rewritten using the bne (branch on non-equal) instruction as

follows:
 bne x5, x6, skip

 jal x0, target

skip: add x0, x0, x0

(jalr)
Note that the above approach still limits the jump range to [PC-524288,PC+524287]. For

jumps to even more distant addresses the jalr instruction which takes the destination

address from a register can be used. The jal and jalr instructions are revisited in LabD

where their use for procedure invocation and consequent return is discussed.

6

Addition and subtraction of large values may lead to an overflow (a value too large to fit in 64
bits) We only need, however, just one extra bit to handle such situations.

(bltu)
Overflow checking for unsigned addition requires only a single additional branch instruction
bltu (branch on less than unsigned) after the addition:
 add t0, t1, t2

 bltu t0, t1, overflow

For signed addition, if one operand's sign is known, overflow checking requires only a single

branch instruction blt (branch on less than) after the addition. This covers the common case

of addition with an immediate operand.

(blt)
For a positive immediate value (denoted by +imm) the overflow check could be:
 addi t0, t1, +imm

 blt t0, t1, overflow

And for a negative immediate value (denoted by -imm) the overflow check could be:
 addi t0, t1, -imm

 blt t1, t0, overflow

(slt, slti)
For general signed addition, three additional instructions after the addition are required, leveraging
the observation that the sum should be less than one of the operands if and only if the other
operand is negative.
 add t0, t1, t2

 slti t3, t2, 0

 slt t4, t0, t1

 bne t3, t4, overflow

Exercise bex2a: Given a sequence of non-zero integers followed by 0, find the biggest integer
in the sequence and place the result in x5. Use the DD assembler command to store in the
beginning of the memory the initial test sequence of -1, 55, -3, 7, 0. Save your solution

as a file named bex2a.asm for possible future use.

Exercise bex2b: Given a sequence of non-zero integers followed by 0, find the smallest
integer in the sequence then swap it with the integer in the beginning of the sequence. Use the
DD assembler command to store in the beginning of the memory the initial test sequence of
121, 33, -5, 242, -45, -12, 0. Save your solution as a file named bex2b.asm for

possible future use.

Exercise bex2c: An n-dimensional integer vector can be represented by a sequence of n
integers. Use DD assembler commands to store in the beginning of the memory the sample
sequences 1, 5, -7, 23, -5 and 3, -2, 4, 11, -7. Sum the corresponding two

vectors and store the resulting sequence in the memory right after the code. Save your solution
as a file named bex2c.asm for possible future use.

B3 Input and Output (ecall, DC)

The values that we discussed so far were all constants, known in advance (at compile time).
Generic computations, however, usually employ values that are not known at compile time but

7

will be available later, at runtime. Such values are often provided to the system through some
input facilities such as system calls or memory mapped channels.

(ecall)
In RVS an ecall (environment call) can be used to input an integer value (see the RVS-

IOsyscalls manual for more details) as follows:
ecall x5, x0, 5 ;integer

The generic source code that sums 2 values input by the user at runtime could, therefore, be
as follows:

ecall x6, x0, 5 ;integer

ecall x7, x0, 5 ;integer

add x5, x6, x7

Save the above example as a file named b3a.asm for possible future use.
Compile and run the above example. The following data as shown in the OUT window was
used for testing:
1

2

And here are the resulting values in the Regs window:
x5 t0 0x0000000000000003 3

x6 t1 0x0000000000000001 1

x7 t2 0x0000000000000002 2

The above source code placed the resulting sum in the x5 register, so we could check the

result in the Regs window as shown above. Another way would be to output the x5 value so

that the user can see it directly in the OUT window as follows:
ecall x6, x0, 5 ;integer

ecall x7, x0, 5 ;integer

add x5, x6, x7

ecall x0, x5, 0

Save the above example as a file named b3b.asm for possible future use.
Compile and run the above example. The following data as shown in the OUT window was
used for testing:
1

2

3

Note that the result is now shown directly on the last line in the OUT window as shown above,
so we don’t need to look for it in the Regs window.
The above code inputs 2 values, calculates their sum, outputs it, and finishes. To run it again,

just press the START button in the Listing window of the RVS. Repeated running of the code in
a loop can be organized using the beq instruction in the following way:
loop: ecall x6, x0, 5 ;integer

 ecall x7, x0, 5 ;integer

 add x5, x6, x7

 ecall x0, x5, 0

 beq x0, x0, loop

Save the above example as a file named b3c.asm for possible future use.
Compile and run the above example.

(DC)
The simple summation code demonstrated so far provides no information to the user about its
purpose and use. Such information could be provided through messages (sequences of

8

characters or strings) shown in the OUT window. A sequence of characters can be defined
using the DC (Define Characters) assembler commands as follows:
c1: DC "integer:"

c2: DC "sum:"

s1: DC "Inputs two integers\nand prints the sum.\0"

The first 2 sequences of characters above are short enough to fit in a 64 bit register (up to 8

bytes) and can thus be used as prompts in the Read Services (e.g. the read_integer ecall)

and printed by the print_characters ecall. The third sequence of characters which is longer

than 8 bytes and can be printed only by the print_string ecall.

The source code below extends the previous example with information messages and
prompts:
c1: DC "integer:"

c2: DC "sum:"

s1: DC "Inputs two integers\nand prints the sum.\0"

 ld x28, c1(x0)

 ld x29, c2(x0)

 addi x30, x0, s1

 ecall x0, x30, 4 ;info string

loop: ecall x6, x28, 5 ;integer

 ecall x7, x28, 5 ;integer

 add x5, x6, x7

 ecall x1, x29, 3 ;"sum:"

 ecall x0, x5, 0 ;the result

 beq x0, x0, loop

Save the above example as a file named b3d.asm for possible future use.
Compile and run the above example.
Here is a sample dialog:
Inputs two integers

and prints the sum.

integer:7

integer:-2

sum:5

integer:4

integer:3

sum:7

integer:Cancelled

Exercise bex3a: Ask the user for his name then greet him as per the following dialog:
What is your name?

John

Hello John!

Save your solution as a file named bex3a.asm for possible future use.

Exercise bex3b: Create a program that i) asks the user to enter an integer value, ii) asks the
user to enter a memory address, and then it iii) stores the entered integer value in the memory
at the entered address. The above process continues in a loop until cancelled. Save your
solution as a file named bex3b.asm for possible future use.

Exercise bex3c: A simple telephone directory can be constructed by DC assembler
commands as follows:

9

dir: DC "John"

 DC "11111"

 DC "Nick"

 DC "22222"

 DC "Sara"

 DC "11111"

 DC "Nick"

 DC "33333"

 DD 0

Create a program that i) asks the user to enter a phone or a name, ii) searches the directory,
and iii) reports the found entries. The above process continues in a loop until cancelled.
The dialog could be as follows:
Enter a phone or a name

to search for:John

John 11111

Enter a phone or a name

to search for:11111

John 11111

Sara 11111

Enter a phone or a name

to search for:Nick

Nick 22222

Nick 33333

Enter a phone or a name

to search for:Cancelled

Save your solution as a file named bex3c.asm for possible future use.

