LAB A: Integers and Binary Data v0.03

A1. Integer arithmetic (add, addi, sub)

We will begin with explaining how to instruct the RISC-V CPU to do some simple arithmetic, e.g. to calculate the sum of $2+3$. (add)
The add instruction that uses 3 registers ($x 5, \mathrm{x} 6$, and x 7 in the following example) does just that- it sums the 2 integer values in the registers $\times 6$ and $x 7$ and stores the result in register $\times 5$:

```
    add x5, x6, x7
```


(addi)

But how to store the values of 2 and 3 in the registers $\times 6$ and $\times 7$ respectively? The following form of the addi (add immediate) instruction stores the immediate value of 2 , provided as part of the instruction code, into the $\times 6$ register:
addi $x 6, x 0,2$
More precisely, the above addi instruction sums the value stored in the register specified as its second argument (in this case it is $x 0$ which always contains the value of 0) with the immediate value specified as its third argument (2 in this case) and stores the result (2 in this case) in the register $\times 6$.
The assembly code using 3 registers ($x 5, \mathrm{x} 6$, and $\times 7$) to calculate the sum of $2+3$ could, therefore, be as follows:

```
addi x6, x0, 2
addi x7, x0, 3
add x5, x6, x7
```

Save the above example as a file named a1a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x 5 to 0 x 00000000000000055
$x 6$ t1 $0 \times 00000000000000022$
x7 t2 0x00000000000000033
An even shorter version using only 2 registers ($x 5$ and x 6) could be as follows:

$$
\begin{aligned}
& \operatorname{addi} \mathrm{x} 6, \mathrm{x0}, \\
& \text { addi } \mathrm{x} 5, \mathrm{x} 6, \\
& 3
\end{aligned}
$$

Save the above example as a file named a1b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
$x 5$ to $0 \times 00000000000000055$
x6 t1 0x0000000000000002 2
Now let us instruct the RISC-V CPU to calculate the difference 2-3. One can easily obtain the correct result by calculating the sum $2+(-3)$ as follows:

addi	x7, x0,
add	x5, x6, x

Save the above example as a file named a1c.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

x 5	t 0	0xFFFFFFFFFFFFFFF	-1
x	t 1	$0 \times 0000000000000002$	2
x 7	t2	0xFFFFFFFFFFFFFFFD	-3

(sub)

The above approach, however, works only for subtracting constants that are known at compile time. When subtracting values that are obtained at run time, e.g. input values and results of intermediate calculation, etc., the sub (subtract) instruction must be used:

$$
\begin{array}{ll}
\text { addi } x 6, x 0, & 2 \\
\text { addi } x 7, x 0, & 3 \\
\text { sub } x 5, x 6, x 7
\end{array}
$$

Save the above example as a file named a1d.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

```
x5 t0 0xFFFFFFFFFFFFFFFF -1
x6 t1 0x00000000000000002 2
x7 t2 0x0000000000000003 3
```

Exercise aex1a: Use a sequence of two addi instructions to calculate the value of 11-6 and store the result in x 5 . Save your solution as a file named aex1a.asm for possible future use.

Exercise aex1b: Use a sequence of addi instructions and a sub instruction to subtract 11 from 6 and store the result in $\times 5$. Save your solution as a file named aex1b.asm for possible future use.

Exercise aex1c: Calculate the expression (1024-512)-(256-128) and store the result in $\times 5$. Save your solution as a file named aex1c.asm for possible future use.

A2. Binary shifts (slli, srli, srai)

Now let us instruct the RISC-V CPU to calculate the following multiplication by an integer value that is a power of 2 :
17×8
(slli)
The instruction slli (shift left logical immediate) below takes the value in register x 6 and shifts its bits to the left while feeding zeros in the least significant bit. The number of shifts is determined by the provided immediate value (the immediate value of 0 produces no shift). The immediate value of 2 in our case produces 2 shifts which effectively multiplies the integer in $\times 6$ by 4 (each 1-bit shift to the left multiplies the number by 2) and stores the result in x 5 .

```
slli x5, x6, 2
```

The assembly code to load the value of 17 in $\times 6$, and then to multiply it by 4 and store the result in $\times 5$ could, therefore, be as follows:

$$
\begin{aligned}
& \text { addi } x 6, x 0,17 \\
& \text { slli } x 5, x 6,2
\end{aligned}
$$

Save the above example as a file named a2a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

$x 5$	t0	$0 x 0000000000000044$	68
$x 6$	t1	$0 x 0000000000000011$	17

(srli)

In a similar way the instruction srli (shift right logical immediate) can be used for division by a power of 2 , to calculate for example the following:
$88 / 8$

The corresponding assembly source code could be as follows:

```
addi x6, x0, 88
srli x5, x6, 3
```

Save the above example as a file named a2b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 $0 \times 000000000000000 \mathrm{~B} 11$
x6 t1 $0 \times 000000000000005888$
Now let us see what happens when we try to divide a negative value in a similar way: -88 / 8
The corresponding assembly source code could be as follows:

$$
\begin{aligned}
& \text { addi } x 6, x 0,-88 \\
& \text { srli } x 5, x 6,3
\end{aligned}
$$

Save the above example as a file named a2c.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

```
x5 t0 0x1FFFFFFFFFFFFFF5 2305843009213693941
x6 t1 0xFFFFFFFFFFFFFFA8 -88
```


(srai)

The obtained result in the $\times 5$ register shown above is obviously wrong. The problem is created by the 0 bits fed into the MSB part of the number during the shift. Indeed, the expected result is -11 , which is a negative number that must have 1 as a most significant bit. Fortunately, this problem is easily solved by using the srai (shift right arithmetic immediate) instruction as follows:

$$
\begin{aligned}
& \text { addi } x 6, x 0,-88 \\
& \text { srai } x 5, x 6,3
\end{aligned}
$$

Save the above example as a file named a2d.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
$\begin{array}{llll}\mathrm{x} 5 & \text { t0 } & 0 \times F F F F F F F F F F F F F F F 5 & -11 \\ \mathrm{x} 6 & \text { t1 } & 0 \times F F F F F F F F F F F F F F A 8 & -88\end{array}$
Shift instructions are often used for extracting subsequences of bits. The following source code will, for example, move bits [7:4] of the value in $\times 6$ to the 4 least significant bits [3:0] of $\times 5$ nullifying all its other bits:

```
addi x6, x0, 0x123
slli x7, x6, 56
srli x5, x7, 60
```

The above code uses slli to move the 4 bits of interest to the MSB part if the register (bits [63:60]) followed by a srli to move the 4 bits of interest to the LSB part of the register (bits [3:0]), taking advantage of the fact that srli feeds 0 bits in the MSB during the shift to clear the bits [63:4] on the left.
Save the above example as a file named a2e.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

```
x5 t0 0x00000000000000002 2
x6 t1 0x0000000000000123 291
x7 t2 0x2300000000000000 2522015791327477760
```

Exercise aex2a: Calculate the value of the expression (888/8-123*4)*2 and store the result in $\times 5$. Save your solution as a file named aex2a.asm for possible future use.

Exercise aex2b: Store the value of $0 x f f f f f f f f 00000000$ in $x 5$ using only addi and slli instructions. Save your solution as a file named aex2b.asm for possible future use.

Exercise aex2c: Store the value of $0 \times 0000123400000000$ in $\times 5$ using only addi and slli instructions. Save your solution as a file named aex2c.asm for possible future use.

A3. Logical operations (andi, or, xori)

(andi)
The following source code will extract bits [7:4] of the value in $\times 6$ by directly masking out all other bits using the andi (and immediate) instruction. It will then move the bits to the LSB part by a srli instruction:

$$
\begin{array}{llll}
\operatorname{addi} & x 6, & \times 0, & 0 \times 123 \\
\text { andi } & x 7, & \times 6, & 0 \times 0 f 0 \\
\text { srli } & \times 5, & \times 7, & 4
\end{array}
$$

Save the above example as a file named a3a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

```
x5 t0 0x0000000000000002 2
x6 t1 0x0000000000000123 291
x7 t2 0x0000000000000020 32
(or)
```

Another bitwise instruction, often used to combine subsequences of bits, is the or instruction:

```
addi x6, x0, 0x123
andi x6, x6, 0x0f0
addi x7, x0, 0x456
andi x7, x7, 0xf0f
or x5, x6, x7
```

In the above example we combine the middle hexadecimal digit of the value 0×123 with the $1^{\text {st }}$ and the $3^{\text {rd }}$ hexadecimal digits of the value 0×456 and obtain in result 0×423 in $\times 5$.
Save the above example as a file named a3b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

x 5	t 0	$0 \times 0000000000004261062$	
x	t 1	$0 \times 0000000000000020$	32
x7	t2	0 x 00000000000004061030	
(xori)			

The xori (exclusive or) instruction calculates an exclusive or of its operands and can be used, for example, to flip sequences of bits. The following assembly source negates all the bits of the value in x 6 and stores the result in x 5 :

$$
\begin{aligned}
& \text { addi } x 6, x 0,0 x 123 \\
& \text { xori } x 5, x 6,-1
\end{aligned}
$$

Save the above example as a file named a3c.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

x5	to	$0 x F F F F F F F F F F F F F E D C$	-292
x6	t1	$0 x 0000000000000123$	291

Exercise aex3a: Convert -5 to +5 by negating its bits and adding 1. Save your solution as a file named aex3a.asm for possible future use.

Exercise aex3b: Calculate the value of $1234-(567+89)$ without using the sub instruction. Save your solution as a file named aex3b.asm for possible future use.

Exercise aex3c: Rotate right by 4 bits the value of $0 \times 0000000000000123$. The expected result is $0 \times 3000000000000012$, i.e. all hexadecimal digits move right by one position while the rightmost one moves to the front. Save your solution as a file named aex3c.asm for possible future use.

A4. Loading larger values (lui, EQU)

Let us try to use the approach described in the previous sections for calculating the sum of 4098+3.
Type the following instruction in the Source window and press the Compile button:
addi x6, x0, 4098
The following error message is shown in the Listing window:

```
0x000000000000000000 ERROR: imm OUT OF RANGE [-2048,4095] addi
rd,rs1,imm addi x6,x0,4098 addi x6, x0, 4098
```

It indicates that the immediate value we supplied as a third argument (4098 in our case) is out of the allowed range. Indeed, as in the addi instruction there are only 12 bits for encoding the immediate values (see the bit allocation of the I-type instructions on the "Green Card") only unsigned integers in the range of [0,4095] or signed integers in the range of [-2048, 2047] could be represented.
Note that the ALU itself does the addition using 64 -bit registers, so all we have to do is to find a way for putting the right values in the registers. One possible approach is to use more bits of the instruction for encoding larger immediate values. Since some bits are still needed for encoding the rd and the opcode, only immediate values represented by up to 20 bits can be encoded in this way (see the U-type instruction format in the "Green Card").
(lui)
The lui\&addi method can be employed to store in a register a value represented by up to 32 bits. This method uses a sequence of 2 instructions, namely the lui (load upper immediate) instruction (stores the most-significant 20 bits) and the addi instruction (stores the leastsignificant 12 bits) as follows:

$$
\begin{array}{ll}
\operatorname{lui} & x 6, \\
\text { addi } & x 6, x 6,2
\end{array}
$$

Save the above example as a file named a4a.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x6 t1 0x00000000000010024098
Here is how we derived the constants 1 and 2 in the above lui and addi instructions. For the decimal value of 4098 we have
$4098=4096+2=(4096 \times 1)+(256 \times 0)+(16 \times 0)+(1 \times 2)=0 \times 1002$
The 32 bit binary representation of the above hexadecimal value is, therefore, as follows 00000000000000000001000000000010
The most-significant 20 bits of the above value are its first 20 bits from the left which represent the value of 1 used in the above lui instruction as an immediate value:

00000000000000000001
The least-significant 12 bits of the above value are its last 12 bits on the right which represent the value of 2 used in the above addi instruction as an immediate value:

000000000010
The assembly code to calculate the sum of $4098+3$ could, therefore, be as follows:

```
lui x6, 1
addi x6, x6, 2
addi x7, x0, 3
add x5, x6, x7
```

Save the above example as a file named a4b.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
x5 t0 0x00000000000010054101
x6 t1 0x0000000000001002 4098
x7 t2 0x0000000000000003 3
An even shorter version that uses only 2 registers could be as follows:

$$
\begin{array}{llll}
\text { lui } & x 6, & 1 \\
\text { addi } & x 6, & x 6, & 2 \\
\text { addi } & x 5, & x 6, & 3
\end{array}
$$

Save the above example as a file named a4c.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
$\begin{array}{llll}\text { x5 } & \text { to } & 0 x 00000000000010054101 \\ \times 6 & \text { t1 } & 0 \times 0000000000001002 & 4098\end{array}$
What if we try to use the same approach for calculating the sum:
$6146+3$
It seems not to be so obvious how to derive the constants needed for the lui and the addi instructions manually, but the RVS can help us. The bitwise shift right operation (>>) can be used to extract the most-significant 20 bits of the value as follows:

6146 >> 12
And the bitwise and operation (δ) can be used to extract the least-significant 12 bits as follows: 6146 \& 0xfff
(EQU)
Note that the above calculations are carried out by the RVS at compile time so no machine instructions are actually generated. The calculated values can, however, be assigned to labels for possible future referencing using EQU (EQUIVALENT) assembler commands as follows:

```
b20: EQU 6146 >> 12
b12: EQU 6146 & 0xfff
```

Save the above example as a file named a4d.asm for possible future use.
Compile the above example. Check the resulting values of the labels b12 and b20 in the Listing window:
$0 \times 0000000000000802$ b12
0×000000000000001 b20
Based on the above values of b20 and b12 we can now easily see that the hexadecimal representation of 6146 is 0×1802 and its binary representation will, therefore, be as follows:

00000000000000000001100000000010
The most-significant 20 bits of the above value are its first 20 bits from the left which represent the value of 1 to use in the lui instruction as an immediate value:

00000000000000000001
The least-significant 12 bits of the above value are its last 12 bits on the right which represent 2050 as an unsigned 12 bit value or -2046 as a signed 12 bit value:

100000000010
To avoid possible confusion we will use the 12 bit hexadecimal notation (0×802) as an immediate value in the addi instruction.

The assembly code to calculate the sum of 6146+3 could, therefore, be as follows:

```
lui x6, 1
addi x6, x6, 0x802
addi x7, x0, 3
add x5, x6, x7
```

Save the above example as a file named a4e.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

x5	t0	$0 \times 0000000000000805$	2053
x6	t1	$0 \times 0000000000000802$	2050
x7	t2	$0 x 0000000000000003$	

The above result is obviously wrong as we got 2053 in $x 5$, instead of $6146+3=6149$.
The origin of the problem seems to be the value in x 6 which is shown as 2050 while it should actually be 6146 . But why did we get 2050 in the register $x 6$? The reason is because in the RISC-V architecture the supplied immediate value in addi and similar instructions is always interpreted as a signed integer and is thus sign-extended accordingly. In our case, irrespectively of the way we specify the value, e.g. 2050, -2046 , or 0×802, it will always be treated as -2046 . Therefore, the first 2 instructions calculated the following expression which gave the actually obtained value in the $x 6$ register:
$4096-2046=2050$
In our case, what we really want is the 12 bit immediate value to be treated as an unsigned integer so that no sign extension is carried out and bits [31-12] are set to 0 but the RISC-V instruction set does not allow it. Adding 1 to $\times 5$, however, solves the problem (see the explanations on p. 114 of the course textbook) so the first line of the source code could be changed as follows:

```
lui x6, 2
addi x6, x6, 0x802
addi x7, x0, 3
add x5, x6, x7
```

Save the modified source as a file named a4f.asm for possible future use.
Compile and run it. Check the resulting values in the Regs window:

```
x5 t0 0x00000000000018056149
x6 t1 0x00000000000018026146
x7 t2 0x0000000000000003 3
```

The values calculated by the RVS can be directly referenced in the source as follows:

0	EQU	6146 >> 12
b12:	EQU	6146 \& $0 x f f f$
	lui	$\mathrm{x} 6, \mathrm{~b} 20$ + 1
	addi	x6, x6, b12
	addi	x7, x0, 3
	add	x5, x6, x7

Save the above example as a file named a4g.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:

x 5	t 0	$0 \times 00000000000018056149$	
x	t 1	$0 \times 00000000000018026146$	
x 7	t2	$0 \times 0000000000000003$	3

An even shorter version could be as follows:

```
lui x6, (6146 >> 12) +1
addi x6, x6, 6146 & 0xfff
addi x5, x6, 3
```

Save the above example as a file named a4h.asm for possible future use.

Compile and run the above example. Check the resulting values in the Regs window.

x 5	to	$0 \times 0000000000001805$	6149
x	t 1	$0 \times 0000000000001802$	6146
x 7	t2	0×000000000000003	3

The last 2 examples illustrate how the assembler can relieve us from some manual calculations in the source text. Further enhancements are possible by introducing conditional assembly which could allow, for example, automating the process of adding 1 to the argument of the lui instruction depending on the sign of the value represented by the least significant 12 bits of the supplied constant.
Finally, what about constants that are represented by more than 32 bits? To load a 64 bit constant, for example, we could first split it into two 32 bit values, then employ lui to load the values into registers, and finally combine the two 32 bit values in one register.

```
c: EQU 0x1234567811223344
    lui x6, (c & 0xffffffff) >> 12
    addi x6, x6, c & Oxfff
    lui x7, c >> 44
    addi x7, x7, (c & 0xfff00000000) >> 32
slli x7, x7, 32
or x5, x6, x7
```

Save the above example as a file named a4i.asm for possible future use.
Compile and run the above example. Check the resulting values in the Regs window:
$x 5$ to $0 \times 12345678112233441311768465155175236$
x6 t1 0x0000000011223344 287454020
x7 t2 0x1234567800000000 1311768464867721216
The value in the $x 7$ register was obtained by loading the necessary value in its lower 32 bits and then shifting the $x 7$ register bits to the left for 32 times through the slli instruction. The final value in the $\times 5$ register was obtained by bitwise or of the values in the registers $\times 6$ and $x 7$.
The above example clearly shows that loading very large constants into registers by employing immediate constants embedded into the instructions is not quite trivial. In addition, the above code will require further modifications to account for the cases when the constant breaks into negative values.

Exercise aex4a: Use the lui and addi instructions to store the value of $8000 \mathrm{in} \times 6$, and then use the addi instruction to calculate the value of $8000-10$ and store the result in $\times 5$. Save your solution as a file named aex4a.asm for possible future use.

Exercise aex4b: Use the lui and addi instructions to store the value of -8000 in $\times 6$, and then use the addi instruction to calculate the value of $-8000+10$ and store the result in $\times 5$. Save your solution as a file named aex4b.asm for possible future use.

Exercise aex4c: Use the lui and addi instructions to store the value of 23456 in $\times 6$ and the value of $12345 \mathrm{in} \mathrm{x7}$. Then use the sub instruction to calculate the value of 23456-12345 and store the result in $x 5$. Save your solution as a file named aex4c.asm for possible future use.

Exercise aex4d: Use only addi, lui, slli and add instructions to store in x 5 the value of $0 \times 1234587811223344$. Save your solution as a file named aex4d.asm for possible future use.

