
1 
 

LAB A: Integers and Binary Data v0.03 
 
A1. Integer arithmetic (add, addi, sub) 

 
We will begin with explaining how to instruct the RISC-V CPU to do some simple arithmetic, 
e.g. to calculate the sum of 2+3. 

(add) 
The add instruction that uses 3 registers (x5, x6, and x7 in the following example) does just 

that- it sums the 2 integer values in the registers x6 and x7 and stores the result in register 
x5: 

add  x5, x6, x7 

(addi) 
But how to store the values of 2 and 3 in the registers x6 and x7 respectively? The following 

form of the addi (add immediate) instruction stores the immediate value of 2, provided as part 

of the instruction code, into the x6 register: 
 addi  x6, x0, 2 

More precisely, the above addi instruction sums the value stored in the register specified as 

its second argument (in this case it is x0 which always contains the value of 0) with the 

immediate value specified as its third argument (2 in this case) and stores the result (2 in this 

case) in the register x6. 

The assembly code using 3 registers (x5, x6, and x7) to calculate the sum of 2+3 could, 

therefore, be as follows: 
 addi  x6, x0, 2 

 addi  x7, x0, 3 

 add  x5, x6, x7 

Save the above example as a file named a1a.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000005 5                    
x6  t1   0x0000000000000002 2                    
x7  t2   0x0000000000000003 3                    

An even shorter version using only 2 registers (x5 and x6) could be as follows: 
 addi  x6, x0, 2 

 addi  x5, x6, 3 

Save the above example as a file named a1b.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000005 5                    

x6  t1   0x0000000000000002 2                    

Now let us instruct the RISC-V CPU to calculate the difference 2-3. One can easily obtain the 
correct result by calculating the sum 2+(-3) as follows: 
 addi  x6, x0, 2 

 addi  x7, x0, -3 

 add  x5, x6, x7 

Save the above example as a file named a1c.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0xFFFFFFFFFFFFFFFF -1                   

x6  t1   0x0000000000000002 2                    

x7  t2   0xFFFFFFFFFFFFFFFD -3                   



2 
 

(sub) 
The above approach, however, works only for subtracting constants that are known at compile 
time. When subtracting values that are obtained at run time, e.g. input values and results of 

intermediate calculation, etc., the sub (subtract) instruction must be used: 
 addi  x6, x0, 2 

 addi  x7, x0, 3 

 sub  x5, x6, x7 

Save the above example as a file named a1d.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0xFFFFFFFFFFFFFFFF -1                   

x6  t1   0x0000000000000002 2                    

x7  t2   0x0000000000000003 3                    

 
Exercise aex1a: Use a sequence of two addi instructions to calculate the value of 11-6 and 

store the result in x5. Save your solution as a file named aex1a.asm for possible future use. 

 
Exercise aex1b: Use a sequence of addi instructions and a sub instruction to subtract 11 

from 6 and store the result in x5. Save your solution as a file named aex1b.asm for possible 

future use. 
 
Exercise aex1c: Calculate the expression (1024-512)-(256-128) and store the result in x5. 

Save your solution as a file named aex1c.asm for possible future use. 

 
A2. Binary shifts (slli, srli, srai) 

 
Now let us instruct the RISC-V CPU to calculate the following multiplication by an integer value 
that is a power of 2: 
 17 × 8 

(slli) 
The instruction slli (shift left logical immediate) below takes the value in register x6 and 

shifts its bits to the left while feeding zeros in the least significant bit. The number of shifts is 
determined by the provided immediate value (the immediate value of 0 produces no shift). The 

immediate value of 2 in our case produces 2 shifts which effectively multiplies the integer in x6 

by 4 (each 1-bit shift to the left multiplies the number by 2) and stores the result in x5. 
 slli x5, x6, 2 

The assembly code to load the value of 17 in x6, and then to multiply it by 4 and store the 

result in x5 could, therefore, be as follows: 
 addi x6, x0, 17 

 slli x5, x6, 2 

Save the above example as a file named a2a.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000044 68                   

x6  t1   0x0000000000000011 17     

(srli) 
In a similar way the instruction srli (shift right logical immediate) can be used for division by a 

power of 2, to calculate for example the following: 
 88 / 8 



3 
 

The corresponding assembly source code could be as follows: 
 addi x6, x0, 88 

 srli x5, x6, 3 

Save the above example as a file named a2b.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x000000000000000B 11                   

x6  t1   0x0000000000000058 88                   

Now let us see what happens when we try to divide a negative value in a similar way: 
 -88 / 8 

The corresponding assembly source code could be as follows: 
 addi x6, x0, -88 

 srli x5, x6, 3 

Save the above example as a file named a2c.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x1FFFFFFFFFFFFFF5 2305843009213693941  

x6  t1   0xFFFFFFFFFFFFFFA8 -88                  

(srai) 
The obtained result in the x5 register shown above is obviously wrong. The problem is created 

by the 0 bits fed into the MSB part of the number during the shift. Indeed, the expected result is 

-11, which is a negative number that must have 1 as a most significant bit. Fortunately, this 

problem is easily solved by using the srai (shift right arithmetic immediate) instruction as 

follows: 
 addi x6, x0, -88 

 srai x5, x6, 3 

Save the above example as a file named a2d.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0xFFFFFFFFFFFFFFF5 -11                  

x6  t1   0xFFFFFFFFFFFFFFA8 -88                  

Shift instructions are often used for extracting subsequences of bits. The following source code 
will, for example, move bits [7:4] of the value in x6 to the 4 least significant bits [3:0] of x5 

nullifying all its other bits: 
 addi x6, x0, 0x123 

 slli x7, x6, 56 

 srli x5, x7, 60 

The above code uses slli to move the 4 bits of interest to the MSB part if the register (bits 

[63:60]) followed by a srli to move the 4 bits of interest to the LSB part of the register 

(bits [3:0]), taking advantage of the fact that srli feeds 0 bits in the MSB during the shift to 

clear the bits [63:4] on the left. 

Save the above example as a file named a2e.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000002 2                    

x6  t1   0x0000000000000123 291                  

x7  t2   0x2300000000000000 2522015791327477760  

 
Exercise aex2a: Calculate the value of the expression (888/8-123*4)*2 and store the 

result in x5. Save your solution as a file named aex2a.asm for possible future use. 

 

Exercise aex2b: Store the value of 0xffffffff00000000 in x5 using only addi and slli 

instructions. Save your solution as a file named aex2b.asm for possible future use. 



4 
 

 
Exercise aex2c: Store the value of 0x0000123400000000 in x5 using only addi and slli 

instructions. Save your solution as a file named aex2c.asm for possible future use. 

 
A3. Logical operations (andi, or, xori) 

 
 (andi) 
The following source code will extract bits [7:4] of the value in x6 by directly masking out all 

other bits using the andi (and immediate) instruction. It will then move the bits to the LSB part 

by a srli instruction: 
 addi x6, x0, 0x123 

 andi x7, x6, 0x0f0 

 srli x5, x7, 4  

Save the above example as a file named a3a.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000002 2                    

x6  t1   0x0000000000000123 291                  

x7  t2   0x0000000000000020 32                   

(or) 
Another bitwise instruction, often used to combine subsequences of bits, is the or instruction: 
 addi x6, x0, 0x123 

 andi x6, x6, 0x0f0 

 addi x7, x0, 0x456 

 andi x7, x7, 0xf0f 

 or x5, x6, x7 

In the above example we combine the middle hexadecimal digit of the value 0x123 with the 

1
st and the 3rd hexadecimal digits of the value 0x456 and obtain in result 0x423 in x5. 

Save the above example as a file named a3b.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000426 1062                 

x6  t1   0x0000000000000020 32                   

x7  t2   0x0000000000000406 1030                 

(xori) 
The xori (exclusive or) instruction calculates an exclusive or of its operands and can be used, 

for example, to flip sequences of bits. The following assembly source negates all the bits of the 
value in x6 and stores the result in x5: 
 addi x6, x0, 0x123 

 xori x5, x6, -1 

Save the above example as a file named a3c.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0xFFFFFFFFFFFFFEDC -292                 

x6  t1   0x0000000000000123 291                  

 

Exercise aex3a: Convert -5 to +5 by negating its bits and adding 1. Save your solution as a 

file named aex3a.asm for possible future use. 
 



5 
 

Exercise aex3b: Calculate the value of 1234-(567+89) without using the sub instruction. 

Save your solution as a file named aex3b.asm for possible future use. 
 

Exercise aex3c: Rotate right by 4 bits the value of 0x0000000000000123. The expected 

result is 0x3000000000000012, i.e. all hexadecimal digits move right by one position while 

the rightmost one moves to the front. Save your solution as a file named aex3c.asm for 
possible future use. 

 
A4. Loading larger values (lui, EQU) 

 
Let us try to use the approach described in the previous sections for calculating the sum of 
4098+3. 

Type the following instruction in the Source window and press the Compile button: 
 addi x6, x0, 4098 

The following error message is shown in the Listing window: 
0x0000000000000000 ERROR: imm OUT OF RANGE [-2048,4095]     addi    

rd,rs1,imm        addi    x6,x0,4098              addi   x6, x0, 4098          

It indicates that the immediate value we supplied as a third argument (4098 in our case) is out 

of the allowed range. Indeed, as in the addi instruction there are only 12 bits for encoding the 

immediate values (see the bit allocation of the I-type instructions on the “Green Card”) only 
unsigned integers in the range of [0,4095] or signed integers in the range of [-2048,2047] 

could be represented.  
Note that the ALU itself does the addition using 64-bit registers, so all we have to do is to find a 

way for putting the right values in the registers. One possible approach is to use more bits of 
the instruction for encoding larger immediate values. Since some bits are still needed for 

encoding the rd and the opcode, only immediate values represented by up to 20 bits can be 

encoded in this way (see the U-type instruction format in the “Green Card”).  

(lui) 
The lui&addi method can be employed to store in a register a value represented by up to 32 

bits. This method uses a sequence of 2 instructions, namely the lui (load upper immediate) 

instruction (stores the most-significant 20 bits) and the addi instruction (stores the least-

significant 12 bits) as follows: 
 lui x6, 1 

 addi x6, x6, 2 

Save the above example as a file named a4a.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 

x6  t1   0x0000000000001002 4098                 

Here is how we derived the constants 1 and 2 in the above lui and addi instructions. For the 

decimal value of 4098 we have 
 4098 = 4096+2 = (4096×1) +(256×0) + (16×0) + (1×2) = 0x1002 

The 32 bit binary representation of the above hexadecimal value is, therefore, as follows 
 0000 0000 0000 0000 0001 0000 0000 0010 

The most-significant 20 bits of the above value are its first 20 bits from the left which represent 

the value of 1 used in the above lui instruction as an immediate value: 
 0000 0000 0000 0000 0001 

The least-significant 12 bits of the above value are its last 12 bits on the right which represent 

the value of 2 used in the above addi instruction as an immediate value: 



6 
 

 0000 0000 0010 

The assembly code to calculate the sum of 4098+3 could, therefore, be as follows: 
 lui x6, 1 

 addi x6, x6, 2 

 addi  x7, x0, 3 

 add  x5, x6, x7 

Save the above example as a file named a4b.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000001005 4101                 

x6  t1   0x0000000000001002 4098                 

x7  t2   0x0000000000000003 3                    

An even shorter version that uses only 2 registers could be as follows: 
 lui x6, 1 

 addi x6, x6, 2 

 addi  x5, x6, 3 

Save the above example as a file named a4c.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000001005 4101                 

x6  t1   0x0000000000001002 4098                 

What if we try to use the same approach for calculating the sum: 
 6146 + 3 

It seems not to be so obvious how to derive the constants needed for the lui and the addi 

instructions manually, but the RVS can help us. The bitwise shift right operation (>>) can be 

used to extract the most-significant 20 bits of the value as follows: 
 6146 >> 12 

And the bitwise and operation (&) can be used to extract the least-significant 12 bits as follows: 
 6146 & 0xfff 

(EQU) 
Note that the above calculations are carried out by the RVS at compile time so no machine 
instructions are actually generated. The calculated values can, however, be assigned to labels 
for possible future referencing using EQU (EQUIVALENT) assembler commands as follows: 
b20: EQU  6146 >> 12 

b12: EQU 6146 & 0xfff 

Save the above example as a file named a4d.asm for possible future use. 

Compile the above example. Check the resulting values of the labels b12 and b20 in the 

Listing window: 
0x0000000000000802 b12        

0x0000000000000001 b20        

Based on the above values of b20 and b12 we can now easily see that the hexadecimal 

representation of 6146 is 0x1802 and its binary representation will, therefore, be as follows: 
 0000 0000 0000 0000 0001 1000 0000 0010 

The most-significant 20 bits of the above value are its first 20 bits from the left which represent 

the value of 1 to use in the lui instruction as an immediate value: 
 0000 0000 0000 0000 0001 

The least-significant 12 bits of the above value are its last 12 bits on the right which represent 

2050 as an unsigned 12 bit value or -2046 as a signed 12 bit value: 
 1000 0000 0010 

To avoid possible confusion we will use the 12 bit hexadecimal notation (0x802) as an 

immediate value in the addi instruction. 



7 
 

The assembly code to calculate the sum of 6146+3 could, therefore, be as follows: 
 lui x6, 1 

 addi x6, x6, 0x802 

 addi  x7, x0, 3 

 add  x5, x6, x7 

Save the above example as a file named a4e.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000000805 2053                 

x6  t1   0x0000000000000802 2050                 

x7  t2   0x0000000000000003 3                    

The above result is obviously wrong as we got 2053 in x5, instead of 6146+3=6149. 

The origin of the problem seems to be the value in x6 which is shown as 2050 while it should 

actually be 6146. But why did we get 2050 in the register x6? The reason is because in the 

RISC-V architecture the supplied immediate value in addi and similar instructions is always 

interpreted as a signed integer and is thus sign-extended accordingly. In our case, 

irrespectively of the way we specify the value, e.g. 2050, -2046, or 0x802, it will always be 

treated as -2046. Therefore, the first 2 instructions calculated the following expression which 

gave the actually obtained value in the x6 register: 
 4096 – 2046 = 2050 

In our case, what we really want is the 12 bit immediate value to be treated as an unsigned 

integer so that no sign extension is carried out and bits [31-12] are set to 0 but the RISC-V 

instruction set does not allow it. Adding 1 to x5, however, solves the problem (see the 

explanations on p.114 of the course textbook) so the first line of the source code could be 
changed as follows: 
 lui x6, 2 

 addi x6, x6, 0x802 

 addi  x7, x0, 3 

 add  x5, x6, x7 

Save the modified source as a file named a4f.asm for possible future use. 
Compile and run it. Check the resulting values in the Regs window: 
x5  t0   0x0000000000001805 6149                 

x6  t1   0x0000000000001802 6146                 

x7  t2   0x0000000000000003 3                    

The values calculated by the RVS can be directly referenced in the source as follows: 
b20: EQU  6146 >> 12 

b12: EQU 6146 & 0xfff 

 lui x6, b20 + 1 

 addi x6, x6, b12 

 addi  x7, x0, 3 

 add  x5, x6, x7 

Save the above example as a file named a4g.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x0000000000001805 6149                 

x6  t1   0x0000000000001802 6146                 

x7  t2   0x0000000000000003 3                    

An even shorter version could be as follows: 
 lui x6, (6146 >> 12) +1 

 addi x6, x6, 6146 & 0xfff 

 addi  x5, x6, 3 

Save the above example as a file named a4h.asm for possible future use. 



8 
 

Compile and run the above example. Check the resulting values in the Regs window. 
x5  t0   0x0000000000001805 6149                 

x6  t1   0x0000000000001802 6146                 

x7  t2   0x0000000000000003 3                    

The last 2 examples illustrate how the assembler can relieve us from some manual 
calculations in the source text. Further enhancements are possible by introducing conditional 

assembly which could allow, for example, automating the process of adding 1 to the argument 

of the lui instruction depending on the sign of the value represented by the least significant 

12 bits of the supplied constant. 

Finally, what about constants that are represented by more than 32 bits?  To load a 64 bit 

constant, for example, we could first split it into two 32 bit values, then employ lui to load the 

values into registers, and finally combine the two 32 bit values in one register. 
c: EQU 0x1234567811223344 

 lui x6, (c & 0xffffffff) >> 12 

 addi x6, x6, c & 0xfff   

 lui x7, c >> 44 

 addi x7, x7, (c & 0xfff00000000) >> 32 

 slli x7, x7, 32 

 or x5, x6, x7 

Save the above example as a file named a4i.asm for possible future use. 
Compile and run the above example. Check the resulting values in the Regs window: 
x5  t0   0x1234567811223344 1311768465155175236  

x6  t1   0x0000000011223344 287454020            

x7  t2   0x1234567800000000 1311768464867721216 

The value in the x7 register was obtained by loading the necessary value in its lower 32 bits 

and then shifting the x7 register bits to the left for 32 times through the slli  instruction. The 

final value in the x5 register was obtained by bitwise or of the values in the registers x6 and 

x7. 

The above example clearly shows that loading very large constants into registers by employing 
immediate constants embedded into the instructions is not quite trivial. In addition, the above 
code will require further modifications to account for the cases when the constant breaks into 
negative values. 
 

Exercise aex4a: Use the lui and addi instructions to store the value of 8000 in x6, and then 

use the addi instruction to calculate the value of 8000-10 and store the result in x5. Save 

your solution as a file named aex4a.asm for possible future use. 
 

Exercise aex4b: Use the lui and addi instructions to store the value of -8000 in x6, and 

then use the addi instruction to calculate the value of -8000+10 and store the result in x5. 

Save your solution as a file named aex4b.asm for possible future use. 
 
Exercise aex4c: Use the lui and addi instructions to store the value of 23456 in x6 and the 

value of 12345 in x7. Then use the sub instruction to calculate the value of 23456-12345 

and store the result in x5. Save your solution as a file named aex4c.asm for possible future 

use. 
 
Exercise aex4d: Use only addi, lui, slli and add instructions to store in x5 the value of 

0x1234587811223344. Save your solution as a file named aex4d.asm for possible future 

use. 


