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@ Study if the laws of correct reasoning
@ A formal mathematical “language” for precise reasoning

@ The type of logic depends on a world view and what is being
reasoned about

@ Almost all Western systems assume a 2-valued (True/False) logic
@ There are Eastern systems that use a 4 or 7 valued logic

@ Simple logics are able to express simple facts; more complex
logics are needed for complex facts

@ In all systems of logic, correct/valid laws of inference are given

@ An inferred statement is valid if it uses the laws of inference
correctly
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First Steps in Logic

Propositional Logic = a simple logic for simple statements

@ Start with propositions.

@ Add other constructs like negation, conjunction, disjunction,
Implication etc.

@ All of these are based on ideas we use daily to reason about
things.

@ Later: A more expressive language — Predicate logic
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@ Declarative sentence.

@ Must be either True or False.

@ Examples of propositions:
e York University is in Toronto

e York University is in downtown Toronto

e All students at York are Computer Science majors
@ Examples of statements that are not propositions:
e Do you like this class?

@ [here are n students in this class.

S. Datta (York Univ.) EECS 1028 F 23



@ Truth value: True or False
@ Variables: p,q,r,s, ...
@ Negation: —p (In English, “not p")

@ Truth tables — enumerative definition of propositions

p|—p
T|F
FI T
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Negating Propositions

—p: Literally, “it is not the case that p is true”

@ p: "It rained more than 20 inches in Toronto last month”
@ g: "'John has many iPads”

o Page 14, Q12 (a) r: "“the election is decided"”

Practice: Questions 1-7 page 13.

S. Datta (York Univ.) EECS 1028 F 23




Combining Propositions

Purpose: express more complex statements

@ Conjunction, Disjunction
e Exclusive OR (XOR)
@ Conditionals, Biconditionals

@ Logical Equivalence

S. Datta (York Univ.) EECS 1028 F 23



Conjunctions and Disjunctions

Purpose: combine statements using OR and AND

@ Conjunction (AND): pAq [“p and q"]

@ Disjunction (OR): pV g [“p or q"]

pVgq

F

e
| T T >
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—| M| | M|

—]
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Q13, page 14
p: It is below freezing
g: It is snowing

@ It is below freezing and snowing
@ It is below freezing but not snowing

@ It is either snowing or below freezing (or both)
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Exclusive OR

Notation: p® g

e TRUE if p and g have different truth values, FALSE otherwise

@ Colloquially, we often use OR ambiguously —
e “an entree comes with soup or salad” implies XOR, but

e ‘students can take MATH XXXX if they have taken MATH
2320 or MATH 1019" usually means the normal OR
(so a student who has taken both is still eligible for MATH
XXXX).
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Conditionals

Notation: p — g [“if p then q"]
p: hypothesis, g: conclusion
Examples:

@ “If you turn in a homework late, (then) it will not be graded”

o If you get 100% in this course, (then) you will get an A+"

A conditional is a proposition

@ Tricky question: Is p — g TRUE if p is FALSE?

@ Think of “If you get 100% in this course, you will get an A+" as
a promise — is the promise violated if someone gets 50% and
does not receive an A+7

Q: Similarities with if(...) then ... statement in programming?
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Conditionals - Truth Table

p — qg: When is it False?

Q20, pg 15:

@ Ifl+1=3then2+2=4 TRUE
@ lfl+1=3then2+4+2=5 TRUE
o lfl+1=2then2+2=4 TRUE
o lfl+1=2then2+4+2=5 FALSE

qg| pVgq

—| | ™| T
—| M| | M|

—| =] ]
—| | —|
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English Statements to Conditionals (pg 6)

p — g may be expressed as

A sufficient condition for g is p

g whenever p

g unless —p

Difficult: A necessary condition for p is g
if p happened, g must have happened, i.e., p cannot happen if

we do not have q.

p only if g: not the same as p if g! Same as the previous point,
if p happened, g must have happened
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Logical Equivalence

p — g and —p V g have the truth table:
Does that make them equal? equivalent?

@ p— g and —pV g are logically equivalent
@ Truth tables are the simplest way to prove such facts.

@ We will learn other ways later.
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Biconditionals

Notation: p <> g [“if and only if"]

@ True if p, g have same truth values, false otherwise.

@ Can also be defined as (p — q) A (g — p)

o Example: Pg 15 Q18(c) “141=3 if and only if monkeys can fly".

@ Q: How is this related to XOR?
Plqg|psq|pdg
F|F T F
FI T F T
T|F F T
T|T T F
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Contrapositive

Contrapositive of p — g is =g — —p

@ E.g. The contrapositive of “If you get 100% in this course, you

will get an A+" is “lf you do not get an A+ in this course, you
did not get 100%" .

@ Any conditional and its contrapositive are logically equivalent
(have the same truth table).

Pla|P—4q| G| -p|~q—p
FIF[ T | T[T T
FIT] T | F T T
T|F| F | T|F F
T|T| T | F|F T
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Proof using Contrapositive

Prove: If x° is even, then x is even

@ Proof 1: Using contradiction, seen before.

@ Proof 2:
x° = 23 for some integer a. Since 2 is prime, 2 must divide x.

(Uses knowledge of primes)

@ Proof 3:
if x is not even, then x is odd. Therefore x? is odd. This is the

contrapositive of the original assertion.
(Uses only facts about odd and even numbers)
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Converse and Inverse

Converseof p —>qgis g — p
Converse of p — g is = p — —q

@ Converse examples:

o “If you get 100% in this course, you will get an A+", converse
“If you get an A+ in this course, you scored 100%" .

e "If you won the lottery, you are rich”, converse “If you are rich,
you (must have) won the lottery”.

@ Neither is logically equivalent to the original conditional
P|q|pP—q|q—>p| p—>7q
F | F T T T
F| T T F F
T|F F T T
T T T T T
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Tautology and Logical Equivalence

Tautology: A (compound) proposition that is always TRUE,
e.g. gV g

@ Logical equivalence redefined: p, g are logical equivalences
(Symbolically p = q) if p <> g is a tautology. .

@ Intuition: p <+ g is true precisely when p, g have the same truth
values.
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Compound Propositions: Precedence

Example: pA gV r: Could be interpreted as (pAq)Vror pA(qVr)

@ precedence order: =, A\, V, —, <>
(Overruled by brackets)

@ We use this order to compute truth values of compound
propositions.
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Translating English Sentences to Propositional

Logic statements

Pages 17-18:

@ | will remember to send you the address only if you send me an
email message

@ [ he beach erodes whenever there is a storm
@ John will go swimming unless the water is too cold

@ Getting elected follows from knowing the right people.
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Readings and Notes

@ Read pages 1-12.

@ [ hink about the notion of truth tables.

@ Master the rationale behind the definition of conditionals.

@ Practice translating English sentences to propositional logic
statements.
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Manipulating Propositions (Sec 1.3)

@ Compound propositions can be
simplified by using simple rules.

Read page 27 - 32.

@ Some are obvious, e.g. ldentity,
Domination, ldempotence,
Negation, Double negation,
Commutativity, Associativity

@ Less obvious: Distributive, De
Morgan's laws, Absorption
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TABLE 6 Logical Equivalences.

Equivalence Name

A= p Identity laws
pvF=p

pvT=T Domination laws
pAE=F

pVp=p [dempotent laws
pPAPEPD

"i(‘-‘l)) =1)s]

Double negation law

NG =qN.p
PAG=qAp

Commutative laws

V@ Vr=pv@Vvr)
PAQATr=pA(@AT)

Associative laws

pV@AN=PVgaAPVTr)
pA@vVr)=pPAgQV@PAT)

Distributive laws

“PAg)=-pVq
“(pVg=pAg

De Morgan’s laws

pV(pAg) =p Absorption laws
pApVg=p

pvV-p=T Negation laws
pAp=F




Distributive Laws

o pA(gVr)=(pAq)V(pATr)
Intuition (not a proof!) - For the LHS to be true: p must be
true and g or r must be true. This is the same as saying p and g
must be true or p and r must be true.

o pV(gAr)=(pPVaq)A(pVr)
Intuition (less obvious) - For the LHS to be true: p must be true
or both g and r must be true. This is the same as saying p or g
must be true and p or r must be true.

Proof: use truth tables.
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De Morgan's Laws

@ ~(qVr)=-qgA-r
Intuition - For the LHS to be true: neither g nor r can be true.
This is the same as saying g and r must both be false.

@ 7(gAr)=—-qV r
Intuition - For the LHS to be true: g A r must be false. This is
the same as saying that g or r must be false.

Proof: use truth tables.
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Negating Conditionals

The negation of p — g is NOT —p — —qg or any other conditional

@ Easiest to negate the logically equivalent form of p — ¢, viz.,
—pVq.
So—~(p—q)=-(-pVqg)=pA—q

@ Relate to the truth table of p — g

plglp—q|~(p—q)|PNg
FIF|] T F F
FIT] T F F
TIF| F T T
TIT|] T F F
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Using the laws

Q:Is p — (p — q) a tautology?
@ Can use truth tables

plg|lp—>qg|p—(p—q)
FIF| T T
FIT ! T T
TIF F F
TITI T T

@ Can write a compound proposition and simplify:

—pV(=pVaq)
-pV-pVgq

—pVq

p—(p—q)

This is False when p is True and g is False
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Using the laws - 2

Q: Simplify (p — q) — —q.
@ We need to use analytic means simplify:

=(p — q) V —q equivalent form of —

(p—q) = g

—(—p V q) V 0q equivalent form of —

(p A —q) V —q De Morgan’s Law

—q Absorption

@ Check using truth tables

plg|p—q|(p—q)—q
FIF| T T
FIT| T F
TIF| F T
TIT] T F
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