EECS 1028 E: Discrete Mathematics for Engineers

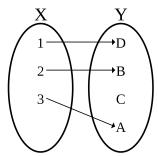
Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on eClass

Relations - Intuition

Generalizations of Functions:



Why do we need such a concept?

- "Is a brother of", over a set of people
- "Is greater than", over a set of integers

Relations - Definition

Ch 9.1 in the text

- A relation R from A to B is a subset of $A \times B$
 - no restriction that all elements in the domain are covered
 - no restriction that one element map to exactly one element
- A relation R on a set X is a subset of $X \times X$
 - easier to visualize as a "relationship" between elements in the same set than as a mapping
- Notation: xRy OR $(x, y) \in R$ OR "x is related to y"

Relations: Examples

- A = All EECS students in W 2018
 B = All EECS courses in W 2018
 aRb: Student a is enrolled in course b
- A = Universities in Ontario
 B = All degrees offered in Ontario
 aRb: University a offers degree b
- A = All current EECS faculty members
 B = All current IEEE Journals
 aRb: Professor a has published at least one paper in journal b
- A = All EECS students in W 2018
 aRb: Student a and student b are both enrolled in at least one EECS course

Properties of Relations over a Set - 1

A relation on a set X is

- Reflexive: aRa for all $a \in X$
 - Example of a reflexive relation: < over \mathbb{R}
 - Example of a non-reflexive relation: < over \mathbb{R}

- Symmetric: aRb implies bRa for all $a, b \in X$
 - Example of a symmetric relation: "is a sibling of" over a set of people
 - Example of a non-symmetric relation: "is a brother of" over a set of people

Properties of Relations over a Set - 2

A relation on a set X is

- Transitive: aRb and bRc imply aRc for all $a, b, c \in X$
 - Example of a transitive relation: "is a sibling of" over a set of people
 - Example of a non-transitive relation: "in the same class as" over a set of students
- Equivalence relation: The relation is reflexive, symmetric and transitive.

Notation: $a \equiv b$ or $a \sim b$.

- Example of an equivalence relation: "is in the same engineering major as" over a set of Lassonde BEng students
- Example of a non-equivalence relation: "divides" over the set of natural numbers

Q: How does it relate to the notion of equality?

Representations of Relations

• Matrices: If R is a relation from $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$, then M is a $m \times n$ matrix with $m_{ij} = 1$ if $a_i R b_i$ and $m_{ij} = 0$ otherwise.

Directed graphs (will be covered at the end of the course)

7 / 12

Equivalence Relations

Ch 9.5 of the text

Recall: A function R is an equivalence relation if it is reflexive, symmetric and transitive

Examples of Equivalence Relations:

- $R \subseteq \mathbb{W} \times \mathbb{W}$, mRn if $m \mod 2 = n \mod 2$
- $R \subseteq \mathbb{W} \times \mathbb{W}$, mRn if $m \mod k = n \mod k$ Also expressed as $m \equiv n \pmod k$
- A = set of EECS students, aRb if a, b have the same major

Not Equivalence Relations:

- \mathbb{Z} , aRb if $|a-b| \leq 5$
- \mathbb{N} , aRb if a < b

8 / 12

Equivalence Classes

- Consider the relation $R \subseteq \mathbb{W} \times \mathbb{W}$, mRn if $m \equiv n \pmod{k}$ Every element of \mathbb{W} is in one of k disjoint sets, "induced" by R
- Consider the equivalence relation "is in the same engineering major as" over a set of Lassonde BEng students
 Every member of that et of Lassonde BEng students is in one of several disjoint sets (possible BEng majors plus "undecided"), "induced" by the relation
- Define for any equivalence relation R on A: $[a]_R$ = the set of all elements equivalent to a
 - Q: Does A get partitioned into a disjoint set of subsets, induced by R?

A: Yes, and these subsets are called **equivalence classes**

Results on Equivalence Classes

- Theorem 1 (pg 612) If R is an equivalence relation on A, the following are equivalent
 - aRb
 - $[a]_R = [b]_R$
 - $[a]_R \cap [b]_R \neq \emptyset$

• Theorem 2 (pg 613) If R is an equivalence relation on S, the equivalence classes of R form a partition of S. Conversely, given a partition of S, there is an equivalence relation that corresponds to the partition sets.

10 / 12

Operations on Relations

If R, S are equivalence relations on A,

• $R \cup S$: the set union of R, S

• $R \cap S$: the set intersection of R, S

• Composition ($T = S \circ R$): aTc if there exists $b \in A$ such that aRb and bSc

EECS 1028 F 23 11/12

Connections to Databases

- Consider some practical examples of databases:
 - Password database: Sets of **tuples** of the form ⟨login-name, encrypted-passwd, timestamp of last change⟩
 - YorkU Student database: Sets of **tuples** of the form $\langle name, SID, Address, ... \rangle$
- These are examples of relations
- The initial databases were designed as Relational Databases
- Computations on relational databases were made more efficient by thinking of properties of relations

S. Datta (York Univ.) EECS 1028 F 23 12 / 12