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Proofs

Sec 1.7-1.8, 5.1-5.2

Key questions:

Why are proofs necessary?

What is a (valid) proof?

What can we assume? In what level of detail and rigour do we
prove things?

Caveat: In order to prove a statement, it MUST be True!
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Assertion Types

Domain: e.g., R
Axioms

Proposition, Lemma, Theorem

Corollary

Conjecture
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Types of proofs

Direct proofs (including Proof by cases)

Proof by contraposition

Proof by contradiction

Proof by construction

Proof by Induction (Ch 5.1-5.2)

Other techniques
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Direct proofs

Simplest technique. Two examples:

The average of any two primes greater than 2 is an integer

Every prime number greater than 2 can be written as the
difference of two squares, i.e. a2 − b2.
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Direct Proofs: Example 1

Proposition: The average of any two primes greater than 2 is an
integer

All primes greater than 2 must be odd, because otherwise they
would be divisible by 2 and therefore not prime

The average of 2 odd numbers is an integer because the sum of
two odd integers is an even number and thus divisible by 2.
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Direct Proofs: Example 2

Proposition: Every prime number greater than 2 can be written as
the difference of two squares, i.e. a2 − b2.

Question: where do we start?

We know how a2 − b2 factors. Let us start there.

a2 − b2 = (a + b)(a − b). We have to assume a > b because
a2 − b2 must be positive. A prime p > 2 only factors as p ∗ 1.

Equating factors, a − b = 1, a + b = p. Solving,
a = p+1

2
, b = p−1

2
. Since all primes p > 2 are odd (last slide)

a, b are integers.
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Proof by Cases

Prove: If n is an integer, then n(n+1)
2

is an integer

Case 1: n is even. or n = 2a, for some integer a
So n(n + 1)/2 = 2a ∗ (n + 1)/2 = a ∗ (n + 1), which is
an integer.

Case 2: n is odd. So n + 1 is even, or n + 1 = 2a, for an integer
a So n(n + 1)/2 = n ∗ 2a/2 = n ∗ a, which is an integer.

Alternative argument:
∑n

i=1 i =
n(n+1)

2
. The sum of the first n

integers must be an integer itself.
This argument is problematic and the correct technique to establish this is mathematical induction (will see later).
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Proof by Cases: Logical Basis

Prove q is true by cases.

Case 1: p is true.
Prove q

Case 2: p is false (i.e., ¬p is true).
Prove q

So we have p → q and ¬p → q.

Rationale 1: Simplify (p → q) ∧ (¬p → q). You will get q

Rationale 2: Apply resolution on p → q and ¬p → q. You can infer q
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Proofs by Contrapositive

Logical Basis: Any statement is logically equivalent to its
contrapositive

If
√
pq ̸= (p + q)/2, then p ̸= q

Direct proof involves some algebraic manipulation

Contrapositive: If p = q, then
√
pq = (p + q)/2.

Easy: Assuming p = q, we see that√
pq =

√
pp =

√
p2 = p = (p + p)/2 = (p + q)/2.
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Proofs by Contradiction (seen earlier)

Prove:
√
2 is irrational

Proof: Suppose
√
2 is rational. Then

√
2 = p/q, p, q ∈ Z, q ̸= 0,

such that p, q have no common factors.
Squaring and transposing,
p2 = 2q2 (so p2 is an even number)
So, p is even (a previous slide)
Or p = 2x for some integer x
So 4x2 = 2q2 or q2 = 2x2

So, q is even (a previous slide)
So, p, q are both even i.e., they have a common factor of 2.
CONTRADICTION.
So

√
2 is NOT rational.
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Proofs by Contradiction: Rationale

In general, start with an assumption that statement A is true.
Then, using standard inference procedures infer that A is false.
This is the contradiction.

Recall: for any proposition p, p ∧ ¬p must be false.

Difference between proofs by contradiction, contrapositives:
Former proves a statement, latter proves a conditional
However we can view proof by contradiction as proving a
conditional: to prove p, we show that ¬p → p. This is logically
equivalent to p ∨ p ≡ p
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Proofs by Contradiction: More Examples

Pigeonhole Principle: If n + 1 balls are distributed among n bins
then at least one bin has more than 1 ball

Generalized Pigeonhole Principle: If n balls are distributed
among k bins then at least one bin has at least ⌈n/k⌉ balls
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Proofs by Construction

aka Existence proofs

Prove: There exists integers x , y , z satisfying x2 + y 2 = z2

Proof: x = 3, y = 4, z = 5.

There exists irrational b, c , such that bc is rational (page 97).

(Nonconstructive) Proof: Consider
√
2
√
2
. Two cases are

possible:
√
2
√
2
is rational: DONE (b = c =

√
2).

√
2
√
2
is irrational: Let b =

√
2
√
2
, c =

√
2.

Then bc = (
√
2
√
2
)
√
2 = (

√
2)

√
2∗

√
2 = (

√
2)2 = 2.
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Proofs of Uniqueness

the equation ax + b = 0, a, b ∈ R, a ̸= 0 has a unique solution.

Show that if n is an odd integer, there is a unique integer k such
that n is the sum of k-2 and k+3.
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The Use of Counterexamples

All prime numbers are odd

Every prime number can be written as the difference of two
squares, i.e. a2 − b2.
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Examples

Prove that there are no solutions in positive integers x and y to
the equation 2x2 + 5y 2 = 14.

If x3 is irrational then x is irrational.

Prove or disprove: if x , y are irrational, x + y is irrational.
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Alternative problem statements

“show A is true if and only if B is true”

“show that the statements A,B,C are equivalent”

Try: Q8, 10, 26, 28 on page 95.
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The role of conjectures

Not to be used frivolously

Example: 3x + 1 conjecture.
Game: Start from a given integer n. If n is even, replace n by
n/2. If n is odd, replace n with 3n + 1. Keep doing this until
you hit 1.
e.g. n = 5 ⇒ 16 ⇒ 8 ⇒ 4 ⇒ 2 ⇒ 1
Q: Does this game terminate for all n?
3x + 1 conjecture: Yes!
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Elegance in proofs

Example: Prove that the only pair of positive integers satisfying
ab = a + b is (2, 2).

Many different proofs exist. What is the simplest one you can
think of?

ab = a + b

ab − a − b = 0

ab − a − b + 1 = 1 adding 1 to both sides

(a − 1)(b − 1) = 1 factoring

Since the only ways to factorize 1 are 1 ∗ 1 and (−1) ∗ (−1), the
only solutions are (0, 0), (2, 2).
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Meaningful Diagrams - 1
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Meaningful Diagrams - 2

from https://www.math.upenn.edu/~deturck/probsolv/LP1ans.html
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Meaningful Diagrams - 3

from http://math.rice.edu/~lanius/Lessons/Series/one.gif

S. Datta (York Univ.) EECS 1028 F 23 23 / 35

http://math.rice.edu/~lanius/Lessons/Series/one.gif


Meaningful Diagrams - 3

from http://www.billthelizard.com/2009/07/six-visual-proofs_25.html
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Proofs by Induction (Ch 5.1)

Mathematical Induction:

Very simple

Very powerful proof technique

“Guess and verify” strategy
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Induction: Steps

Hypothesis: P(n) is true for all n ∈ N

Base case/basis step (starting value):
Show P(1) is true.

Inductive step:
Show that ∀k ∈ N(P(k) → P(k + 1)) is true.
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Induction: Rationale

Formally: (P(1) ∧ ∀k ∈ NP(k) → P(k + 1)) → ∀n ∈ NP(n)
Intuition: Iterative modus ponens:
P(k) ∧ (P(k) → P(k + 1)) → P(k + 1)

Need a starting point (Base case)

Proof is beyond the scope of this course
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Induction: Example 1

P(n) : 1 + 2 + . . .+ n = n(n + 1)/2

Base case: P(1).
LHS = 1. RHS = 1(1 + 1)/2 = LHS

Inductive step:
Assume P(n) is true. Show P(n + 1) is true.
Note:

1 + 2 + . . .+ n + (n + 1) = n(n + 1)/2 + (n + 1)

= (n + 1)(n + 2)/2

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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Induction: Example 2

P(n) : 12 + 22 + . . .+ n2 = n(n + 1)(2n + 1)/6

Base case: P(1).
LHS = 1. RHS = 1(1 + 1)(2 + 1)/6 = 1 = LHS

Inductive step:
Assume P(n) is true. Show P(n + 1) is true.
Note:

12 + 22 + . . .+ n2 + (n + 1)2 = n(n + 1)(2n + 1)/6 + (n + 1)2

= (n + 1)(n + 2)(2n + 3)/6

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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Induction: Proving Inequalities

P(n) : n < 4n

Base case: P(1).
P(1) holds since 1 < 4.

Inductive step:
Assume P(n) is true, show P(n + 1) is true, i.e.,
show that n + 1 < 4n+1:

n + 1 < 4n + 1

< 4n + 4n

< 4.4n

= 4n+1

So, by the principle of mathematical induction, ∀n ∈ N,P(n).
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Induction: More Examples

Sum of odd integers

n3 − n is divisible by 3

Number of subsets of a finite set

S. Datta (York Univ.) EECS 1028 F 23 31 / 35



Induction: Facts to Remember

Base case does not have to be n = 1

Most common mistakes are in not verifying that the base case
holds

Usually guessing the solution is done first.
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How can you guess a solution?

Try simple tricks: e.g. for sums with similar terms: n times the
average or n times the maximum; for sums with fast
increasing/decreasing terms, some multiple of the maximum
term.

Often proving upper and lower bounds separately helps.
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Strong Induction (Ch 5.2)

Sometimes we need more than P(n) to prove P(n + 1); in these
cases STRONG induction is used.
Formally:

[P(1) ∧ ∀k(P(1) ∧ . . . ∧ P(k − 1) ∧ P(k)) → P(k + 1))] → ∀nP(n)

Note: Strong Induction is:

Equivalent to induction – use whichever is convenient

Often useful for proving facts about algorithms
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Strong Induction: Examples

Fundamental Theorem of Arithmetic: every positive integer n,
n > 1, can be expressed as the product of one or more prime
numbers.

every amount of postage of 12 cents or more can be formed
using just 4-cent and 5-cent stamps.

Fallacies/caveats: “Proof” that all Canadians are of the same age!
http:

//www.math.toronto.edu/mathnet/falseProofs/sameAge.html
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