EECS 1028 E: Discrete Mathematics for Engineers

Suprakash Datta Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on eClass Sec 1.7-1.8, 5.1-5.2

Key questions:

- Why are proofs necessary?
- What is a (valid) proof?
- What can we assume? In what level of detail and rigour do we prove things?

Caveat: In order to prove a statement, it MUST be True!

Domain: e.g., $\mathbb R$

- Axioms
- Proposition, Lemma, Theorem
- Corollary
- Conjecture

Types of proofs

- Direct proofs (including Proof by cases)
- Proof by contraposition
- Proof by contradiction
- Proof by construction
- Proof by Induction (Ch 5.1-5.2)
- Other techniques

Simplest technique. Two examples:

• The average of any two primes greater than 2 is an integer

• Every prime number greater than 2 can be written as the difference of two squares, i.e. $a^2 - b^2$.

Proposition: The average of any two primes greater than 2 is an integer

• All primes greater than 2 must be odd, because otherwise they would be divisible by 2 and therefore not prime

• The average of 2 odd numbers is an integer because the sum of two odd integers is an even number and thus divisible by 2.

Proposition: Every prime number greater than 2 can be written as the difference of two squares, i.e. $a^2 - b^2$.

- Question: where do we start?
- We know how $a^2 b^2$ factors. Let us start there.
- a² − b² = (a + b)(a − b). We have to assume a > b because a² − b² must be positive. A prime p > 2 only factors as p * 1.
- Equating factors, a b = 1, a + b = p. Solving, $a = \frac{p+1}{2}$, $b = \frac{p-1}{2}$. Since all primes p > 2 are odd (last slide) a, b are integers.

Prove: If *n* is an integer, then $\frac{n(n+1)}{2}$ is an integer

Case 1: *n* is even. or
$$n = 2a$$
, for some integer *a*
So $n(n+1)/2 = 2a * (n+1)/2 = a * (n+1)$, which is
an integer.

Case 2: *n* is odd. So n + 1 is even, or n + 1 = 2a, for an integer *a* So n(n+1)/2 = n * 2a/2 = n * a, which is an integer.

Alternative argument: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. The sum of the first *n* integers must be an integer itself.

This argument is problematic and the correct technique to establish this is mathematical induction (will see later).

Prove q is true by cases.

Case 1: p is true. Prove qCase 2: p is false (i.e., $\neg p$ is true). Prove q

So we have $p \to q$ and $\neg p \to q$.

Rationale 1: Simplify $(p \rightarrow q) \land (\neg p \rightarrow q)$. You will get q

Rationale 2: Apply resolution on $p \rightarrow q$ and $\neg p \rightarrow q$. You can infer q

Logical Basis: Any statement is logically equivalent to its contrapositive

• If
$$\sqrt{pq}
eq (p+q)/2$$
, then $p
eq q$

• Direct proof involves some algebraic manipulation

• Contrapositive: If p = q, then $\sqrt{pq} = (p+q)/2$. Easy: Assuming p = q, we see that $\sqrt{pq} = \sqrt{pp} = \sqrt{p^2} = p = (p+p)/2 = (p+q)/2$. Prove: $\sqrt{2}$ is irrational

Proof: Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = p/q$, $p, q \in \mathbb{Z}, q \neq 0$, such that p, q have no common factors. Squaring and transposing, $p^2 = 2q^2$ (so p^2 is an even number) So, *p* is even (a previous slide) Or p = 2x for some integer x So $4x^2 = 2a^2$ or $a^2 = 2x^2$ So, q is even (a previous slide) So, p, q are both even i.e., they have a common factor of 2. CONTRADICTION So $\sqrt{2}$ is NOT rational.

Proofs by Contradiction: Rationale

- In general, start with an assumption that statement A is true. Then, using standard inference procedures infer that A is false. This is the contradiction.
- Recall: for any proposition $p, p \land \neg p$ must be false.
- Difference between proofs by contradiction, contrapositives: Former proves a statement, latter proves a conditional However we can view proof by contradiction as proving a conditional: to prove p, we show that ¬p → p. This is logically equivalent to p ∨ p ≡ p

Proofs by Contradiction: More Examples

• Pigeonhole Principle: If n + 1 balls are distributed among n bins then at least one bin has more than 1 ball

• Generalized Pigeonhole Principle: If *n* balls are distributed among *k* bins then at least one bin has at least $\lceil n/k \rceil$ balls

Proofs by Construction

aka Existence proofs

- Prove: There exists integers x, y, z satisfying x² + y² = z²
 Proof: x = 3, y = 4, z = 5.
- There exists irrational b, c, such that b^c is rational (page 97). (Nonconstructive) Proof: Consider $\sqrt{2}^{\sqrt{2}}$. Two cases are possible:

$$\sqrt{2}^{\sqrt{2}}$$
 is rational: DONE $(b = c = \sqrt{2})$.
 $\sqrt{2}^{\sqrt{2}}$ is irrational: Let $b = \sqrt{2}^{\sqrt{2}}$, $c = \sqrt{2}$.
Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = (\sqrt{2})^{\sqrt{2}*\sqrt{2}} = (\sqrt{2})^2 = 2$.

• the equation $ax + b = 0, a, b \in \mathbb{R}$, $a \neq 0$ has a unique solution.

• Show that if n is an odd integer, there is a unique integer k such that n is the sum of k-2 and k+3.

• All prime numbers are odd

• Every prime number can be written as the difference of two squares, i.e. $a^2 - b^2$.

• Prove that there are no solutions in positive integers x and y to the equation $2x^2 + 5y^2 = 14$.

• If x^3 is irrational then x is irrational.

• Prove or disprove: if x, y are irrational, x + y is irrational.

• "show A is true if and only if B is true"

• "show that the statements A,B,C are equivalent"

• Try: Q8, 10, 26, 28 on page 95.

• Not to be used frivolously

Example: 3x + 1 conjecture.
 Game: Start from a given integer n. If n is even, replace n by n/2. If n is odd, replace n with 3n + 1. Keep doing this until you hit 1.

e.g.
$$n = 5 \Rightarrow 16 \Rightarrow 8 \Rightarrow 4 \Rightarrow 2 \Rightarrow 1$$

Q: Does this game terminate for all *n*?

3x + 1 conjecture: Yes!

Elegance in proofs

Example: Prove that the only pair of positive integers satisfying ab = a + b is (2, 2).

• Many different proofs exist. What is the simplest one you can think of?

Elegance in proofs

Example: Prove that the only pair of positive integers satisfying ab = a + b is (2, 2).

• Many different proofs exist. What is the simplest one you can think of?

0

$$ab = a + b$$

$$ab - a - b = 0$$

$$ab - a - b + 1 = 1 \text{ adding 1 to both sides}$$

$$(a - 1)(b - 1) = 1 \text{ factoring}$$

Since the only ways to factorize 1 are 1 * 1 and (-1) * (-1), the only solutions are (0, 0), (2, 2).

from https://www.math.upenn.edu/~deturck/probsolv/LP1ans.html

from http://math.rice.edu/~lanius/Lessons/Series/one.gif

from http://www.billthelizard.com/2009/07/six-visual-proofs_25.html

Mathematical Induction:

• Very simple

• Very powerful proof technique

• "Guess and verify" strategy

Hypothesis: P(n) is true for all $n \in \mathbb{N}$

• Base case/basis step (starting value): Show *P*(1) is true.

• Inductive step: Show that $\forall k \in \mathbb{N}(P(k) \rightarrow P(k+1))$ is true.

Induction: Rationale

Formally: $(P(1) \land \forall k \in \mathbb{N}P(k) \rightarrow P(k+1)) \rightarrow \forall n \in \mathbb{N}P(n)$

• Intuition: Iterative modus ponens: $P(k) \land (P(k) \rightarrow P(k+1)) \rightarrow P(k+1)$

Need a starting point (Base case)

• Proof is beyond the scope of this course

Induction: Example 1

$$P(n): 1 + 2 + ... + n = n(n + 1)/2$$

• Base case: $P(1)$.
LHS = 1. RHS = $1(1 + 1)/2$ = LHS

Inductive step:
 Assume P(n) is true. Show P(n+1) is true.
 Note:

$$1+2+\ldots+n+(n+1) = n(n+1)/2+(n+1)$$

= (n+1)(n+2)/2

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Example 2

$$P(n): 1^2 + 2^2 + \ldots + n^2 = n(n+1)(2n+1)/6$$

 Inductive step: Assume P(n) is true. Show P(n+1) is true. Note:

$$1^{2} + 2^{2} + \ldots + n^{2} + (n+1)^{2} = n(n+1)(2n+1)/6 + (n+1)^{2}$$

= (n+1)(n+2)(2n+3)/6

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

Induction: Proving Inequalities

 $P(n): n < 4^n$

- Base case: P(1).
 P(1) holds since 1 < 4.
- Inductive step:
 Assume P(n) is true, show P(n + 1) is true, i.e., show that n + 1 < 4ⁿ⁺¹:

1

$$egin{array}{rcl} n+1 &<& 4^n+1\ &<& 4^n+4^n\ &<& 4.4^n\ &=& 4^{n+1} \end{array}$$

So, by the principle of mathematical induction, $\forall n \in \mathbb{N}, P(n)$.

• Sum of odd integers

• $n^3 - n$ is divisible by 3

• Number of subsets of a finite set

• Base case does not have to be n = 1

• Most common mistakes are in not verifying that the base case holds

• Usually guessing the solution is done first.

• Try simple tricks: e.g. for sums with similar terms: *n* times the average or *n* times the maximum; for sums with fast increasing/decreasing terms, some multiple of the maximum term.

• Often proving upper and lower bounds separately helps.

Sometimes we need more than P(n) to prove P(n+1); in these cases STRONG induction is used. Formally:

 $[P(1) \land \forall k(P(1) \land \ldots \land P(k-1) \land P(k)) \to P(k+1))] \to \forall n P(n)$

Note: Strong Induction is:

• Equivalent to induction - use whichever is convenient

• Often useful for proving facts about algorithms

 Fundamental Theorem of Arithmetic: every positive integer n, n > 1, can be expressed as the product of one or more prime numbers.

• every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

Fallacies/caveats: "Proof" that all Canadians are of the same age! http:

//www.math.toronto.edu/mathnet/falseProofs/sameAge.html