EECS 1028 E: Discrete Mathematics for Engineers

Suprakash Datta

Office: LAS 3043

Course page: http://www.eecs.yorku.ca/course/1028 Also on eClass

Administrivia

- Lectures: Mon-Wed-Fri 9:30-10:30 am (VH B, SLH D, LAS A)
- \bullet Tests (35%): 3 tests, 15% each (worst test to be scaled to 5%),
- Final Exam (45%), cumulative
- Homework (8%),
- Tutorials (12%),
- Office hours: Mon-Wed 1030 am 11:30 am or by appointment at LAS 3043

Textbook: Kenneth H. Rosen. Discrete Mathematics and Its Applications, Eighth Edition. McGraw Hill, 2019.

Homework, Grades

- We will be paperless, except for tests, quizzes, final examination.
- All course information online split across eClass and the public course webpage
- All homework MUST be typed. You will get a zero if you submit handwritten solutions. You may use Office, Google Docs, LaTeX, or other packages but all submissions must be in pdf format
- We will use Crowdmark for grading. Follow instructions for re-appraisal requests
- All returned work (quizzes, homework, tests) will be on eClass

Tutorials, Quizzes

- Tutorials (2 hours/week) are mandatory. Attendance will be taken.
- You get 0.5% for each tutorial attended.
- Every other week, there will be a short quiz (10-15 min), mirrored closely after the tutorial problems covered in the last 2 tutorials. Each quiz is worth 2%, but your attendance points are added to it to a maximum of 2%.
- Missed quizzes and tests cannot be made up. If you have a valid medical reason, the weight will be transferred to the final.
- If you have serious non-medical reasons (having work is not one), talk to me. We will deal with those on an ad hoc basis.

S. Datta (York Univ.) EECS 1028 F 23 4/29

To do well in this class

- Study with pen and paper
- Ask for help early
- Practice, practice, practice ...
- Follow along in class rather than take notes
- Ask questions in class or outside class
- Keep up with the class
- Read the book, not just the slides
- Be timely HW submitted late will not be graded

Course Objectives - 1

• We will learn to think differently!

Ask why instead of how

Reason about statements mathematically

Course Objectives - 2

We will focus on two major goals:

- Basic tools and techniques in discrete mathematics
 - Set Theory, Functions and Relations
 - Propositional and Predicate logic
 - Sequences and Series
 - Induction, Recursion
 - Simple Combinatorics
 - Introductory Graph Theory
- Precise and Rigorous Mathematical Reasoning
 - Writing proofs

Mathematical Reasoning

- Why Mathematics?
 - Mathematics as a precise language
 - Precision in definitions
 - Precision in statements
- Motivation (for EECS)
 - Specification (description, modeling)
 - Reasoning (Making precise, rigorous claims)
- Procedure
 - Axioms
 - Inference
 - Facts/Theorems

8 / 29

Examples of Reasoning about Problems

- There exists integers a, b, c that satisfy the equation $a^2 + b^2 = c^2$
- There exists integers a, b, c that satisfy the equation $a^4 + b^4 = c^4$
- There are as many integers as there are rational numbers
- The program that I wrote never hangs (i.e. always terminates)...
- The program that I wrote works correctly for all valid inputs
- There does not exist an algorithm to check if a given program never hangs

Proofs and Similar Structures

• Backing up statements with reasons

• Providing detailed explanations (Amazon, Netflix,...)

• Understanding the basis of eCommerce, Bitcoin, ...

Evidence in data mining systems

Intuitive Proofs

• What?

• Why?

• When?

• How much detail?

Review of Fundamentals

Sets

Number Systems

• Basic algebra

Set Theory Fundamentals

- Unordered collection of elements, e.g.,
 - Single digit integers
 - Non-negative integers
 - Faces of a die
 - Sides of a coin
 - Students who finished EECS1028, W 2018
- Two key aspects of sets:
 - No duplicates
 - No inherent ordering of elements

Set Theory Fundamentals - 2

- ullet $\mathbb N$: the set of natural numbers, $\mathbb R$: the set of real numbers
- Membership Notation: $a \in A, b \notin A$

- Ordered pairs Notation: $(a, b), a \in A, b \in B$
- Equality of sets

Describing Sets

- English description
 - The set of natural numbers between 5 and 8 (inclusive).
 - The set of all students who finished EECS1028 M, W 2018
- Enumeration

•
$$S = \{1, 2, 3\}$$

•
$$S = \{(0,0), (0,1), (1,0), (1,1)\}$$

- Set builder-notation
 - $S = \{x \in \mathbb{N} | x > 3\}$
 - $S = \{(x, y) | x, y \in \{0, 1\}\}$

More on Sets

Special sets

- Universal set U
- Empty set ϕ (How many elements?)

Sets vs Sets of sets

- $\{1,2\}$ vs $\{\{1,\},\{2\}\}$
- $\{\}$ vs $\{\{\}\} = \{\phi\}$

Note:

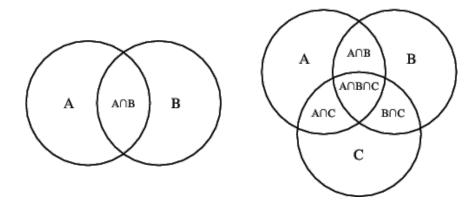
- Connection with data types (e.g., in Java)
- The elements of a set can be sets, pairs of elements, pairs of pairs, triples,...!!

S. Datta (York Univ.) EECS 1028 F 23 16/29

Set Operations

- Subsets: $A \subseteq B$: each element of A is in B
- Union: $A \cup B = \{x | (x \in A) \text{ or } (x \in B)\}$
- Intersection: $A \cap B = \{x | (x \in A) \text{ and } (x \in B)\}$
- Difference: $A B = \{x | (x \in A) \text{ and } (x \notin B)\}$
- Complement: A^c or $\overline{A} = \{x | x \notin A\} = U A$
- Cartesian product: $AxB = \{(a, b) | a \in A, b \in B\}$
 - "Set of ordered pairs"
 - $\mathbb{R} \times \mathbb{R} = \{(x,y) | x \in \mathbb{R}, y \in \mathbb{R}\}$, "Coordinate plane" or "the real plane" Sometimes called \mathbb{R}^2 .

Venn Diagrams



More on Sets

• Cardinality - number of (distinct) elements

• Finite set - cardinality some finite integer *n*

• Infinite set - a set that is not finite

• Power set - Set of all subsets; Notation $\mathcal{P}(S) = \{A | A \subseteq S\}$, sometimes written 2^S

S. Datta (York Univ.) EECS 1028 F 23

19 / 29

Laws on Set operations

Page 130

Associative laws

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Distributive laws:

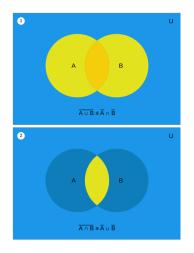
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

De Morgan's laws

$$\frac{\overline{A \cup B}}{\overline{A \cap B}} = \frac{\overline{A} \cap \overline{B}}{\overline{A} \cup \overline{B}}$$

Proofs of Laws of Set Operations

Proofs can be done with Venn diagrams.



By Teknad - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=36768081

Number Systems

- Natural numbers, \mathbb{N} : $\{1, 2, 3, \dots\}$.
- Whole numbers, $W : \{0, 1, 2, 3,\}$.
- Integers, \mathbb{Z} : $\{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$ Notation: \mathbb{Z}^+ = positive integers = \mathbb{N}
- Real numbers, \mathbb{R} Notation: \mathbb{R}^+ = positive reals
- Complex numbers, $\mathbb{C} = \{x + iy | x, y \in \mathbb{R}, i^2 = -1\}.$
- Co-ordinates on the plane, \mathbb{R}^2 .
- Rational numbers, $\mathbb{Q} = \{ \frac{m}{n} | m, n \in \mathbb{Z}, n \neq 0 \}.$
- Irrational numbers, $\mathbb{R} \mathbb{Q}$: all real numbers that are not rational. Examples: $\pi, e, \sqrt{2}$.

Number Systems - Questions

- How do we know $\pi, e, \sqrt{2}$ are not rational?
- How are real numbers represented on a computer?
- Do all rational numbers have finite decimal representations?
 Counterexample: 1/3
- If a number has an infinite decimal representation, can we conclude it is irrational?

Basic Algebra (please review)

- Operations with exponents: Theorem 1, pg A-7
 - $b^{x} * b^{y} = b^{x+y}$
 - $b^{x}/b^{y} = b^{x-y}$
 - $(b^{x})^{y} = b^{xy}$
- Logarithms: Theorem 2, pg A-8
 - Logarithm of products, powers
 - Change of bases
- Operations with polynomials
- Solving linear and quadratic equations

Check your understanding

Let
$$A = \{0, 1\}$$
.

- What is $\emptyset A$?
- **2** What is $A \times \emptyset$?
- **3** What is $\emptyset \times \emptyset$?
- What is $\mathcal{P}(\emptyset)$?

Answer key:

- 1. 0
- 2. Ø
- 3 0
- 4. {∅}

A Simple Proof

Note: You may recognize that $x = \frac{9}{10} + \frac{9}{100} + \dots$ This is a geometric series and we computed the sum above.

Another Example

<u>Claim</u>: Let $n \in \mathbb{N}$. If n^2 is even, then n is even.

<u>Proof:</u> Suppose this is false. Then n is odd. But $n^2 = n * n$ must be odd because the product of 2 odd numbers is odd. That is a contradiction!

Why? We assumed that n^2 is even but now it turns out that n^2 is odd.

Something went wrong! Our algebra was correct, so our original assumption (that n is odd) is incorrect.

Therefore n cannot be odd, and so it must be even.

This is a proof by contradiction

Note: There are several other ways to prove this.

Proof that $\sqrt{2}$ is not rational

Proof by contradiction:

Let's suppose the statement is false; i.e., $\sqrt{2}$ is a rational number. Then

 $\sqrt{2} = a/b$ where a, b are integers, $b \neq 0$.

We ALSO assume that a/b is simplified to lowest terms, i.e., gcd(a,b)=1. So,

$$\sqrt{2} = a/b$$

 $2 = a^2/b^2$, squaring
 $a^2 = 2b^2$

So a^2 is even implying that a is also even (from the last slide) Since a is even, then a=2k for some integer k.

Proof that $\sqrt{2}$ is not rational - Continued

Substituting a = 2k we get:

$$a^{2} = 2b^{2}$$

$$4k^{2} = 2b^{2}$$

$$b^{2} = 2k^{2}$$

So b^2 is even, implying b is even (again from the last claim we proved).

We assumed that gcd(a, b) = 1 but now it turns out that a, b are both even, so $gcd(a, b) \ge 2$. That is a contradiction.

So our original assumption (that $\sqrt{2}$ is rational) is incorrect.

Therefore $\sqrt{2}$ cannot be rational.