

Page 1 of 12

RVS (RISC-V Visual Simulator)

Assembler Manual v0.10

1. Syntax

Every instruction or assembly command must be on a separate line and cannot be

continued on a new line.

Every line starts with an optional label, followed by an instruction/command mnemonic

code, followed by a comma-separated list of parameters, followed by an optional

comment.

Labels, when defined, are sequences of alphanumeric characters that start with a letter

and are terminated by a colon (the colon is not a part of the label).

The field separators in the list of parameters, depending on the instruction, are commas,

space characters, and open and close parentheses.

Comments are preceded by a semi-colon character (;), a number sign (#), or by two

slash characters (//). The comment always continues to the end of the line. If it starts

at the beginning of the line then the entire line is a comment line.

Page 2 of 12

2. Arrangement of code and data in memory

The assembly begins at the default memory address of 0. This can be changed by the

ORG assembly command.

Each assembled machine instruction takes one word (4 bytes) so the memory pointer is

increased by 4. Machine instructions are automatically aligned at word boundaries (the

address is divisible by 4.)

Each assembled Define directive (DD, DW, DH, DB, DC, DM) takes one or more

double-words so the memory pointer is increased by a multiple of 8 bytes. Define

directives are automatically aligned at double-word boundaries (the address is divisible

by 8). Unused bits are filled with 0s.

There are no restrictions on how the code and data are arranged in the memory as long

as there is no overlapping. In case of overlapping RVS will issue an error message and

stop the source text processing right at the overlapping line.

The default starting address of the assembled program, which is the initial value of the

program counter (PC), is the instruction labeled START. If there is no instruction labeled

START, then the initial value of the PC is the address of the first compiled machine

instruction. The first compiled machine instruction is the first machine instruction seen

by the compiler as it goes through the assembly file.

Page 3 of 12

3. Constants

The following formats can be used for specifying constants.

 Binary: 0b010, 0B10

Starts with 0b or 0B and contains only the characters {01}. An optional sign

can be inserted before the leading 0b or 0B.

 Octal: 010, 017 (10 and 17 are decimal, not octal)

Starts with 0 and contains only the digits {01234567}. An optional sign can be

inserted before the leading 0.

 Decimal: 123, 4567 (0123 and 04567 are octal, not decimal)

Starts with a non-zero digit and contains only the digits {0123456789}. An

optional sign can be inserted before the leading digit.

 Hexadecimal: 0x010, 0X10, 0x1a, 0xCD

Starts with 0x or 0X and contains only the following characters

{0123456789abcdefABCDEF}. An optional sign can be inserted before the

leading 0x or 0X.

 Characters: "101", "0101", "123", "abcd", "Test, test\n\0"

Constitutes a sequence of characters enclosed in double quotes. Each character

is converted to its 8-bit ASCII code. Backslash substitutions are also supported

e.g. "\n" becomes Newline (0xA). Character codes can be specified in octal e.g.

using "\0" for NULL terminated strings. The octal specification "\12"

generates the same value (0xA) as the Newline "\n" specification. Note that the

terminating null character is not inserted automatically; if you want to include

it you must specify it in the string.

Page 4 of 12

4. Integers

If an integer number is given without a sign, or with a positive sign, it is treated as an

unsigned integer (meaning the most significant bit could be 1 if the number is big

enough.) For example if we try to store 65000 in a half-word, it is directly converted to

the hexadecimal value of 0xFDE8 (the MSB is 1, but the number has been treated as

unsigned).

If an integer number is given a negative sign, it is stored in 2’s complement format. For

example, if we try to store -65000 in a half-word the 2's complement of it, which is

0xFFFFFFFFFFFF0218 (in 64-bit format) is calculated. The obtained result is then

truncated to 16 bits and the value of 0x0218 is stored (that is the decimal value of 536).

If a given integer number (positive or negative) does not fit in the space allocated, the

excessive most significant bits will be truncated. For example if we want to store

165000 in a half-word, it clearly will not fit (the largest 16-bit unsigned integer number

is 65335), then since 165000 in hexadecimal is 0x28488, the leading 2 will be

truncated and the value of 0x8488 will be stored (that is the decimal value of 33928).

Page 5 of 12

5. Define directives

The define directives reserve memory space and initialize it with given values. We can

define data of different lengths, e.g. double-word (64 bits), word (32 bits), half-word (16

bits), and bytes and characters (8 bits).

DD (Define Double-words): It reserves memory and initializes 64-bit double-words. The

value could be given in binary (e.g. 0b10101), octal (octal numbers start with 0),

decimal (decimal numbers start with a non-zero digit), and hexadecimal (e.g. 0x12aa).

DD accepts multiple constants separated by commas that are stored in consecutive

64-bit double-words (1 constant per double-word.)

DD 0b010, 010, 10, 17, 0x010, -0b10, -010, -10, -0x10

Memory address Content Decimal

Double word 0

0x0000000000000000 0x0000000000000002 0b010 2

Double word 8

0x0000000000000008 0x0000000000000008 010 8

Double word 16

0x0000000000000010 0x000000000000000a 10 10

Double word 24

0x0000000000000018 0x0000000000000011 17 17

Double word 32

0x0000000000000020 0x0000000000000010 0x010 16

Double word 40

0x0000000000000028 0xfffffffffffffffe -0b10 -2

Double word 48

0x0000000000000030 0xfffffffffffffff8 -010 -8

Double word 56

0x0000000000000038 0xfffffffffffffff6 -10 -10

Double word 64

0x0000000000000040 0xfffffffffffffff0 -0x10 -16

The values are stored at memory addresses in increasing order. The sixth constant

(-0b10) in the above DD directive is stored, for example, at address 0x28 (address 40 in

decimal.) As shown in row 6 of the above table the stored value is the 2’s complement of

0b10 (2 in decimal) which is 0xfffffffffffffffe (-2 in decimal).

Page 6 of 12

DW (Define Words): It reserves memory and initializes 32-bit words. The value could be

given in binary, octal, decimal, or hexadecimal. It accepts multiple constants that are

stored in consecutive 32-bit words (2 constant per double-word in little endian order.)

Every DW directive starts at double-word boundary (multiple of 8) and, if necessary, the

last double-word is padded with 0s.

 DW 0b010, 17, 0x20, 2000000000, 4000000000, -2000000000

Memory Address Content

Double word 0

0x0000000000000000

Word 4 Word 0

0x00000011 00000002

Word 0 contains 0b010.

Word 4 contains 17.

Double word 8

0x0000000000000008

Word 12 Word 8

0x77359400 00000020

Word 8 contains 0x20.

Word 12 contains

2000000000(0x77359400)

as unsigned number.

Double word 16

0x0000000000000010

Word 20 Word 16

0x88ca6c00 ee6b2800

Word 16 contains

4000000000(0xee6b2800)

as unsigned number.

Word 20 contains the

2's complement of

2000000000 (0x77359400)

which is (0x88ca6c00)

in hexadecimal.

Page 7 of 12

DH (Define Half-words): It reserves memory and initializes 16-bit half-words. The value

could be given in binary, octal, decimal, or hexadecimal. It accepts multiple constants

that are stored in consecutive 16-bit half-words (4 constant per double-word in little

endian order.) Every DH directive starts at double-word boundary (multiple of 8) and, if

necessary, the last double-word is padded with 0s.

 DH 0b010, 010, 017, 10, 17, 0x010,-0b10,-010,-10,-0x10

Memory Address Content

Double word 0

0x0000000000000000

HW 6 4 2 0

0x000a000f 00080002

HW0=0b10 (=0x0002)

HW2=010(octal 8=0x0008)

HW4=017(=8+7=15=0x000f)

HW6=10 (=0x000a)

Double word 8

0x0000000000000008

HW 14 12 10 8

0xfff8fffe 00100011

HW8=17 (=0x0011)

HW10=0x0010

HW1=-0b10 (-2=0xfffe)

HW14=-010 (=-8=0xfff8)

Double word 16

0x0000000000000010

HW 22 20 18 16

0x00000000 fff0fff6

Padded with 0s

HW16=-10 (=0xfff6)

HW18=-0x10(=-16=0xff00)

HW20 and HW22 are padded

with 0s.

Page 8 of 12

DB (Define Byte): It reserves memory and initializes 8-bit bytes. The value could be

given in binary, octal, decimal, or hexadecimal. It accepts multiple constants that are

stored in consecutive 8-bit bytes (8 constant per double-word in little endian order.)

Every DB directive starts at double-word boundary (multiple of 8) and, if necessary, the

last double-word is padded with 0s

 DB 0b010, 010, 017, 10, 17, 0x010, -0b10, -010, -10, -0x10

Memory Address Content

Double word 0

0x0000000000000000

Byte 6 5 4 3 2 1 0

0xf8fe1011 0a0f0802

Byte 0=2. Byte 1=8.

Byte 2=15. Byte 3=10.

Byte 4=17. Byte 5=16.

Byte 6=-2. Byte 7=-8.

Double word 8

0x0000000000000008

Byte 15..10 9 8

0x00000000 0000f0f6

 Padded with 0s

Byte 8=-10.

Byte 9=-16.

Bytes 15..10 are

padded with 0s.

DC (Define Characters): Accepts a single constant which must be a sequence of

characters enclosed in double quotes. The ASCII codes of the characters are stored in

one or more consecutive 64-bit double-words (8 characters per double-word) in

increasing order of memory addresses. If necessary, the last double-word is padded with

0s. Include a trailing "\0" in the sequence of characters to make sure that it will be

null-terminated irrespectively of its length. Note that the assembler will not

automatically insert the terminating null character; you must specify it yourself.

 DC "0123456789\0"

Memory Address Content

Double word 0

0x0000000000000000

 7 6 5 4 3 2 1 0

0x3736353433323130

Byte 0="0" (=0x30).

Byte 1="1" (=0x31).

...

Double word 8

0x0000000000000008

Padded 0s \0 9 8

0x0000000000003938

Byte 8="8" (=0x38).

Byte 9="9" (=0x39).

Byte 10="\0" (=0x0).

Page 9 of 12

DM (Define Memory in double-words): Initializes the specified number of 64-bit

double-words with all 0s.

 DM 3

Memory Address Content

Double word 0

0x0000000000000000

0x0000000000000000

Double word 8

0x0000000000000008

0x0000000000000000

Double word 16

0x0000000000000010

0x0000000000000000

Page 10 of 12

6. The ORG (Origin) directive

ORG (Origin): Defines the address at which the next assembled data or instruction will

be placed.

ORG 0x1000

DD 1

ORG 0x800

addi x5,x0,1

The ORG 0x1000 changes the current code/data generation address to 0x1000, so the

next data/instruction is be placed in that address. Since the next data is DD 1, the

constant 1 is placed in the double word at the address of 0x1000.

The second ORG 0x800 changes the current code/data generation address to 0x800, so

the next instruction (addi) is placed at the address of 0x800.

An attempt to place any code or data in a memory location that has already been used

triggers a compilation error.

The memory layout of the previous code segment is

ASSEMBLY LISTING

ADDRESS BIN/HEX CODE TEXT SOURCE

0x0000000000000800 I 000000000001 00000 000 00101 0010011 addi x5,x0,1

0x0000000000001000 DD 0x0000000000000001 DD 1

SYMBOL TABLE

0x0000000000000800 START

Since the first compiled executable statement is at location 0x800, the START label is

assigned the value of 0x800.

Page 11 of 12

List of supported RISC-V instructions

31 27 26 25 24 20 19 15 14 12 11 7 6 0

 funct7 rs2 rs1 funct3 rd opcode R-type

 imm[11:0] rs1 funct3 rd opcode I-type

 imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

 imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode B-type
 imm[31:12] rd opcode U-type

 imm[20|10:1|11|19:12] rd opcode J-type

 RV32I Base Instruction Set

 imm[31:12] rd 0110111 LUI

 imm[31:12] rd 0010111 AUIPC

 imm[20|10:1|11|19:12] rd 1101111 JAL
 imm[11:0] rs1 000 rd 1100111 JALR

 imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ
 imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE
 imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT
 imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE
 imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU
 imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

 imm[11:0] rs1 000 rd 0000011 LB

 imm[11:0] rs1 001 rd 0000011 LH

 imm[11:0] rs1 010 rd 0000011 LW

 imm[11:0] rs1 100 rd 0000011 LBU
 imm[11:0] rs1 100 rd 0000011 LHU

 imm[11:5] rs2 rs1 000 imm[4:0] 0100011 SB

 imm[11:5] rs2 rs1 001 imm[4:0] 0100011 SH

 imm[11:5] rs2 rs1 010 imm[4:0] 0100011 SW

 imm[11:0] rs1 000 rd 0010011 ADDI

 imm[11:0] rs1 010 rd 0010011 SLTI

 imm[11:0] rs1 011 rd 0010011 SLTIU

 imm[11:0] rs1 100 rd 0010011 XORI

 imm[11:0] rs1 110 rd 0010011 ORI

 imm[11:0] rs1 111 rd 0010011 ANDI

 0000000 shamt rs1 001 rd 0010011 SLLI

 0000000 shamt rs1 101 rd 0010011 SRLI

 0100000 shamt rs1 101 rd 0010011 SRAI

 0000000 rs2 rs1 000 rd 0110011 ADD

 0100000 rs2 rs1 000 rd 0110011 SUB

 0000000 rs2 rs1 001 rd 0110011 SLL

 0000000 rs2 rs1 010 rd 0110011 SLT

 0000000 rs2 rs1 011 rd 0110011 SLTU

 0000000 rs2 rs1 100 rd 0110011 XOR

 0000000 rs2 rs1 101 rd 0110011 SRL

 0100000 rs2 rs1 101 rd 0110011 SRA

 0000000 rs2 rs1 110 rd 0110011 OR

 0000000 rs2 rs1 111 rd 0110011 AND

 0000 pred succ 00000 000 00000 0001111 FENCE

 0000 0000 0000 00000 001 00000 0001111 FENCE.I

 000000000000 00000 000 00000 1110011 ECALL

 000000000001 00000 000 00000 1110011 EBREAK

Page 12 of 12

31 27 26 25 24 20 19 15 14 12 11 7 6 0

 funct7 rs2 rs1 funct3 rd opcode R-type

 imm[11:0] rs1 funct3 rd opcode I-type

 imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

 RV64I Base Instruction Set (in addition to RV32I)

 imm[11:0] rs1 110 rd 0000011 LWU

 imm[11:0] rs1 011 rd 0000011 LD

 imm[11:5] rs2 rs1 011 imm[4:0] 0100011 SD

 000000 shamt rs1 001 rd 0010011 SLLI

 000000 shamt rs1 101 rd 0010011 SRLI

 010000 shamt rs1 101 rd 0010011 SRAI

 RV32M Standard Extension

 0000001 rs2 rs1 000 rd 0110011 MUL

 0000001 rs2 rs1 001 rd 0110011 MULH

 0000001 rs2 rs1 010 rd 0110011 MULHSU

 0000001 rs2 rs1 011 rd 0110011 MULHU

 0000001 rs2 rs1 100 rd 0110011 DIV

 0000001 rs2 rs1 101 rd 0110011 DIVU
 0000001 rs2 rs1 110 rd 0110011 REM
 0000001 rs2 rs1 111 rd 0110011 REMU

