LABL
Hardware Building Blocks

Perform the following groups of tasks:

1. In a previous lab we created the 2-to-1 mux shown in the left part of the figure below
and found that it acts as an if statement.

C

In this lab we will use abstraction to encapsulate this circuit as a reusable component
so that it can be used by someone who doesn't know how it works internally. Let us
adopt the diagram shown in the right part of the figure as an abstraction of what this
circuit does: a box with two doors, labelled 0 and 1, and a control input c. The control
is so named because it actually controls the circuit: if it is =0 then Door-0 would open
and z would be a. Otherwise z would be b. We will call the component yMux1.

2. Create the program yMuxl.v as follows:

module yMux1(z, a, b, ¢);
output z;

input a, b, c;

wire notC, upper, lower;

not my not(notC, c);

and upperAnd(upper, a, notC);
and lowerAnd(lower, c, b);

or my_or(z, upper, lower);

endmodule



Compare this with the testing modules we wrote earlier. Note that the circuit's ports
are listed in the module statement and that a special declaration is used to indicate
their in or out status. Note also the absence of any initial block. In a way, this
module to a testing module is like a library class to an app with a main method.

Create the program LabL1.v that instantiates and tests yMux1. Treat this component
the same as a built-in one. You can do manual testing, via command-line arguments,
or an exhaustive, three-nested-loop test. Compile your program using the command:

iverilog LablLl.v

This command searches for a module that defines yMux1 and compiles it, together
with LabL1.v, to produce a single executable file named a.out. Alternatively, you
can specify the names of the needed modules explicitly on the command line:

iverilog LabLl.v yMuxl.v

Run your program and ensure that the mux behaves as expected.

We seek to enhance our mux so it can handle 2-bit busses instead of 1-bit wires, as
shown in the upper left diagram in the figure below. The control input, c, is still 1-bit
but the two data inputs and the output have become 2-bit each. The diagram in the

lower left side of the figure shows the wires explicitly. Call the new mux yMux2.
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The right side of the figure shows how to build yMux2 using two yMux1's.



6. Argue that the shown circuit of yMux2 does indeed function as expected; i.e. its out-
put z is indeed either a or b depending on whether c is 0 or 1.

7. Create the program yMux2.v as follows:

module yMux2(z, a, b, c);
output [1:0] z;

input [1:0] a, b;

input c;

yMux1l upper(z[0], a[0], b[0], ©);
yMuxl lower(z[1], a[1], b[1], ©);

endmodule

8. Create the program LabL2.v that instantiates and tests yMux2. You can conduct
manual testing, via command-line arguments or an exhaustive one using three-
nested-loop test. Note, however, that the input space has become larger now: there
are 4 possible values for a, 4 for b, and 2 for c, for a total of 32.

9. Compile and run your program and ensure that the mux behaves as expected.

10. Our implementation in yMux2.v is correct but is not scalable because it has as many
instantiation lines as there are wires in the bus. Our next task is to design a 32-bit 2-
to-1 mux and it would be cumbersome to write 32 mux instantiation lines. In order to
overcome this, we switch to array-based instantiation: replace the two yMux1 instan-
tiations with:

yMuxl mine[1:0](z, a, b, ©);

Verilog auto replicates this statement so that the code becomes equivalent to the two
instantiations above. Note that a is replicated as a[ 0] and a[1] whereas c, which is
declared as a single bit, is replicated as copies of itself. Save the program as yMux.v

11. And to further the extensibility of our implementation, let us localize the value of the
bus size rather than keep it hard coded in many places. The parameter statement
(which is similar to, but more powerful than, Java's final statement) achieves this:

module yMux(z, a, b, c);
parameter SIZE = 2;
output [SIZE-1:0] z;
input [SIZE-1:0] a, b;
input c;

yMux1l mine[SIZE-1:0](z, a, b, ¢);
endmodule

This is our final implementation of the 2-to-1 mux. The bus width in it is set to 2 but,
as we shall see next, this implementation works as-is for any bus width.
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The power of the parameter statement lies in the fact that a client of a component
can change the value of the parameter upon instantiation. We can instantiate a 64-
bit, 2-to-1 mux, for example, using the statement:

yMux #(64) my_mux(z, a, b, c);

The syntax #(n) means the parameter value is to be set to n. If more than one para-
meter is involved, use the syntax: #(.NAME(Nn)). For example:

yMux #(.S1ZE(64)) my mux(z, a, b, c);
A third, more verbose but quite explicit, syntax is available:

defparam my mux.SIZE = 64;
yMux my _mux(z, a, b, c);

The above three variations are equivalent.

Save LabL2.v as LabL3.v and modify it so it instantiates and tests yMux using a bus
width of 32. Remember to change all the [1:0] declarations to [31:0], and the yMux2
instantiation to yMux. And when you instantiate yMux, use any of the above three
syntax variations to set the S1ZE parameter to 32.

Compile and run LabL3. It should work exactly as before.

The input space for LabL3 is so large (=2°°) that it is practically impossible to do an
exhaustive test. We therefore switch to random testing. The $random system task
returns a randomly chosen 32-bit integer. Here is one approach:

repeat (10)

begin
a = $random;
b = $random;
c = $random % 2;
#1;

// compare z with the expected output

end

Note that since c is single-bit, we used the % operator together with the $random
task to generate random 0/1 values.

Complete the above code by adding an oracle. Have the program output PASS or
FAIL depending on whether yMux behaves as expected or not.

Compile and run LabL3.

What is the significance of (10) in the code above? Change it to (500) and modify
the testing code so it does not output anything except if a test fails.



19. We like to design a 32-bit, 4-to1 mux; i.e. a circuit that selects amongst four 32-bit
inputs, a0, al, a2, a3, based on a 2-bit control signal c. For example, if c is 2 (i.e.
10 in binary) then the circuit's output z must be a2. Call it yMux4tol.v.

20. Rather than reinventing the wheel, we can benefit from our existing 32-bit, 2-to-1
yMux. This circuit claims to have the desired functionality:

module yMux4tol(z, a0,al,a2,a3, c);
parameter SIZE = 2;

output [SIZE-1:0] z;

input [SI1ZE-1:0] a0, al, a2, a3;
input [1:0] c;

wire [SIZE-1:0] zLo, zHi;

yMux #(S1ZE) lo(zLo, a0, al, c[O0]);
yMux #(SIZE) hi(zHi, a2, a3, c[0]);
yMux #(SI1ZE) final(z, zLo, zHi, c[1]);

endmodule

21. Draw the circuit's diagram and use it to argue that this implementation does indeed
have the correct functionality of a 4-to-1 mux.

22. Create LablL4.v so it instantiates and tests yMux4tol. Use random testing to create
various test cases and an oracle to verify the functionality. Does the four-way mux
behave as expected?

23. In a previous lab we created the full adder shown in the left part of the figure below
and found that it computes the sum a+b+ci, in {{Cout},Z}.
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We now like to use abstraction to encapsulate this functionality. To that end, we re-
package the adder as a component named yAdder1 and having the block diagram
shown in the right part of the figure (it operates on 1-bit wires and thus the 1 suffix).



24. Create the program yAdderl.v as follows:

25.

26.

27.

28.

29.

module yAdderli(z, cout, a, b, cin);
output z, cout;
input a, b, cin;

xor left xor(tmp, a, b);

xor right_xor(z, cin, tmp);
and left_and(outL, a, b);

and right_and(outR, tmp, cin);
or my_or(cout, outR, outL);

endmodule

Create the program LabL5.v that instantiates and tests yAdder1. Note that the input
space is small: two possibilities for a, two for b, and two for cin, for a total of 8. It is
therefore reasonable to use exhaustive testing. Set up the test so that an output is
generated only if the sum a+b+cin has a MSb that is different from cout or a LSb
that is different from z.

We seek to build a 32-bit adder, a circuit that takes two 32-bit busses, a and b, and
a single-bit cin (which we will set to zero), and produces their sum z and an overall
carry cout (which is the carry out from the MSbh). Take a moment to visualize build-
ing such an adder. Can it be done using thirty two 1-bit full adders?

Here is a skeleton for yAdder.v. Complete its development.

module yAdder(z, cout, a, b, cin);
output [31:0] z;

output cout;

input [31:0] a, b;

input cin;

wire[31:0] in, out;

yAdderl mine[31:0](z, out, a, b, in);

assign in[0]
assign in[1]

cin;
out[0];

When we built the 2-to-1 mux, we used the parameter statement so that the result-
ing mux can work for any size of the input; i.e. the two data inputs can be 1-bit wires,
2-bit busses, 64-bit busses, or indeed any size set upon instantiation. In the case of
the full adder, however, we built one for 1-bit inputs and one for 32-bit inputs. Why?
Why not use the parameter statement so the adder can work with any size input?
Does this have any ramification vis-a-vis the latency of the built component?

Create the program LabL6.v that instantiates and tests yAdder. Use random testing
for a and b and fix cin to zero. Let us avoid the signed/unsigned issue by not testing
cout; i.e. we just ensure that the obtained sum is correct. Here is a template:
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;éé [31:0] expect;
reg ok;

initial
begin

éiﬁect =a+ b + cin;
ok = 0;
if (expect === z) ok = 1;

Does the adder generate the correct sum?

Note that this adder adds bits and, hence, is not concerned with our interpretation of
the inputs as signed or unsigned integers (or anything else). The answer it produces
is correct regardless of interpretation. Issues such as signed or unsigned overflows,

for example, can be settled by examining the circuit's inputs and outputs; they have

no bearing on how the circuit works.

To verify the above remark, let us re-test our adder by interpreting the random inputs
as signed integers. We do that by adding the keyword signed after each reg and
wire declaration.

Save the program LabL6.v as LabL7.v and modify it to show signed integers. All the
multi-bit declarations need to be changed:

module labL;

reg signed [31:0] a, b;
reg signed [31:0] expect;
reg cin;

Run the LabL7 test. Note that the same randomly-generated test cases will appear
but they are now interpreted as signed integers. The correctness of the adder circuit
is independent of interpretation.

We seek to enhance our 32-bit adder so it can also subtract. At first glance, you
may think this will require considerable change since; after all, addition and sub-
traction involve distinct operations. Recall, however, the two's complement identity:

-Xx = (not x) + 1
Let us use this identity to rewrite subtraction as addition:

a—-b=a+ [(hotb) +1] =a + (not b)) +1



This implies that we can subtract by adding twice. First we add a and not b and then
we add 1 to the sum. This seems to imply we need to instantiate two adders in order
to build a subtractor. Can it be done with just one adder?

35. Recall the origin of the cin signal in the adder. We included it in the design in order
to allow the carry to propagate from one bit position to the next. But we don't need it
for bit number 0. That is why we grounded it (set it to 0) when we tested the adder.
But what if we set it to 1 instead? This will effectively add 1 "for free"! The figure
below captures the idea: the left part shows an adder and the middle part shows a
subtractor. What we seek is to build the combined adding/subtracting circuit shown in
the right part of the figure. Let us call it yArith. Its z output is a+b if ctr1=0, and it
isa-b if ctri=1.
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36. Create the program yArith.v as follows:

module yArith(z, cout, a, b, ctrl);
// add if ctrl=0, subtract if ctrl=1
output [31:0] z;

output cout;

input [31:0] a, b;

input ctrl;

wire[31:0] notB, tmp;

wire cin;

// instantiate the components and connect them
// Hint: about 4 lines of code

endmodule
37. Create the program LabL8.v that instantiates and tests yArith.

38. Use random testing for a and b and ctrl, with ctrl generated as follows:

ctrl = $random % 2;

39. Does the yArith behave as expected? Make sure you switch the operation of the
oracle based on the randomly generated value of ctrl.



40. The last component that we like to build is the arithmetic-logic unit, the ALU, whose

41.

42.

diagram is shown below. This is a versatile unit that performs a variety of operations
based on a control input op (see the table in the diagram). In addition to z, the ALU
also generates a number of exception signals (or flags) to indicate exceptions, such
as a zero result, a carry, or a signed overflow. These exceptions are meaningful only
for certain operations and then only for signed or unsigned input interpretation.
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Let us build this unit in increments. We will for now ignore the st operation and not
support any exception.

Building the ALU is easier than one might initially think because we already have all
the needed components. We have built-in components for the and / or operations

and we have just built own yArith. Hence, all we need is to put these components
together and select the output based on op, as outlined in this diagram:
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As you can see in the diagram, we used the most significant bit of op, i.e. op[2], as
a control signal for the adder / subtractor. The other two bits, i.e. op[1:0], are used
to control the mux—to select the component whose output is to emerge as the output
of the ALU.

43. Create the program yAlu.v as follows:

module yAlu(z, ex, a, b, op);
input [31:0] a, b;

input [2:0] op;

output [31:0] z;

output ex;

assign slt = 0; // not supported

assign ex = 0; // not supported

// instantiate the components and connect them
// Hint: about 4 lines of code

44, Create the program LabL9.v that instantiates and tests yAlu. Use random testing for
a and b and use a command-line argument to read op. Here is a template:

module labL;

reg [31:0] a, b;
reg [31:0] expect;
reg [2:0] op;

wire ex;

wire [31:0] z;

reg ok, flag;

yAlu mine(z, ex, a, b, op);
initial
begin
repeat (10)
begin
a = $random;
b = $random;
flag = $value$plusargs(*op=%d"™, op);
// The oracle: compute "expect" based on *op"
#1;

// Compare the circuit®s output with "expect"”
// and set "ok'™ accordingly
// Display ok and the various signals

$finish;
end

endmodule
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Does the ALU behave as expected for all four operations? If not, debug your circuit
for the ALU (perhaps by adding $display or $monitor statements to see intermediate
signals) until the problem is isolated and fixed.

We like to add support for skt in our ALU. Recall that this instruction assumes that
its operands are signed integers. Its logic can be represented as follows:

slt = (a<b) 21 :0;

Hence, all we need to do is determine whether the signed value in a is less than that
in b. This seems trivial: why don't we subtract the two and check the sign? This is not
always correct. In computing a-b, it could be that a is positive and very large (say 2
billion) and b is negative and also very large in magnitude (say minus 2 billion). The
subtraction leads to an answer which does not fit in 32 bits as a signed integer and,
hence, we cannot rely on the answer.

We observe that a-b will overflow the signed range only if a is positive and b is
negative, or if a is negative and b is positive. But in these two cases it is obvious
which value is less: the negative one!

The above leads to the following algorithm for supporting slt:

if (a and b have different signs)
slt =1 ifa<0elseO

else
st =1 if (a-b) < 0 else O
The above can be rewritten as follows:
if (a[31] !'= b[31])
st = a[31]
else
slt = (a-b)[31]
But how do we generate the following condition via hardware?
(a[31] !'= b[31])
Answer: We generate this 0/1 signal using xor:

xor(condition, a[31], [31]);

Re-factor your yAlu.v so that it supports st through the above algorithm. Note that
st is a 32-bit signal and that the algorithm determines whether its least significant
bit is O or 1 signal. The upper bits, i.e. bits 1 through 31, are 0 in both cases. Hence,
the new yAlu module would set sIt along the following lines:



module yAlu(z, ex, a, b, op);
input [31:0] a, b;

input [2:0] op;

output [31:0] z;

output ex;

assign slt[31:1] 0; // upper bits are always 0
assign ex = 0; // not supported for now

// instantiate a circuit to set slt[0]
// Hint: about 2 lines of code

// Same code as before

51. Save your LabL9.v as LabL10.v and add an oracle for slt:

else if (op == 3"bl1ll)
expect = (a<b) ?1: 0;

Note that you must declare a and b as signed for the comparison (a < b) to work
as expected in the oracle.

52. We like to add support for a zero flag exception; i.e. name the ex signal zero and
set it to 1 whenever the ALU output z is zero (regardless of op). To do this, let us or
all 32 wires of z and not the result. Think about this algorithm and argue that it leads
to an answer that is 1 only if all 32 bits of z are 0.

53. You don't have to do this or'ing sequentially. Instead, either use the unary reduction
operator or proceed in a merge-sort manner and benefit from array instantiation:

or orl6[15:0] (zi16, z[15:0], z[31:16]);
or or8[7:0] (z8, z16[7:0], z16[15:8]);

The first line above or's the left half of z with its right half and culminates in a 16-bit
bus. The second line or's the two halves of this bus and culminates in an 8-bit bus.
Complete the above circuit. Hint: 4 more lines are needed.

54. Save your LabL10.v as LabL11.v and add an oracle for zero:
zero = (expect == 0) ? 1 : O;

55. In order to trigger test cases in which the ALU output is indeed zero, make the two
operands occasionally equal supply 111 (subtraction) for op. Here is one way :

a $random;

b $random;

tmp = $random % 2;
if (tmp == 0) b = a;
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The components that you created in this lab will be needed in later labs. Rather than
keeping them in separate files, and be forced to copy them one by one later, we like
to combine them all in one file named cpu.v. Use your operating system commands,
or your editor, to concatenate all seven components into one file. For example, here
is one way to do this under Linux:

cat yMuxl.v yMux.v yMux4tol.v > cpu.v
cat yAdderl.v yAdder.v >> cpu.v
cat yArith.v yAlu.v >> cpu.v

To verify that your library was created correctly, create a new directory and copy to it
cpu.v and any testing module that uses it such as LabL9.v. After wards, switch to
the newly created directory and issue the command:

iverilog LabL9.v cpu.v

Note that in addition to specifying the name of the tester module, you also need to
specify the library filename (we did not need to do that before because we had one
component per file and the two had the same name).

Make sure you include cpu.v in your prelab submission. The test exercise for this
lab (as well as all the following labs) assumes that you have this file available.



LABL
Notes

This lab demonstrates that, starting with a few primitive gates, one can build a variety
of components such as a mux or an adder. These components can in turn be used to
build more elaborate units such as the ALU. This approach to constructing circuits is
known as structural modeling.

In structural modeling, a component module never uses operators, such as + or <, to
implement a functionality. It only uses instantiation and assign; i.e. it implements its
functionality by merely creating and connecting subcomponents.

You must use structural modeling in all your component modules.

The components built in this lab are known as combinational. The key characteristic
of a combinational component is that it has no memory—its output depends only on
its input. A sequential component, on the other hand, does have memory—it stores
something, a state, and its output depends not only on its input but also on is state.
We will introduce sequential components in the next lab.

Some ALU implementations generate a carry flag exception. This 1-bit signal is 1 if
a carry was generated out of the MSb of the arithmetic unit. This flag is quite trivial to
implement: simply feed the cout output of yArith to the ex output of yAlu.

Some ALU implementations generate an overflow flag exception. This 1-bit signal
is 1 if the operands of yArith are interpreted as signed integers and the result of
the addition or subtraction does not fit in the representation size (e.g. requires more
than 32 bits as a signed integer). Overflow does not occur if the two operands have
different signs and we are adding or have the same sign and we are subtracting.

Some ALU implementations generate a zero flag exception. This 1-bit signal is 1 if
the output z is O (i.e. all its bits are 0) and is 0 otherwise. It is very useful after a sub-
traction to detect equality.

In order to accommodate multiple exceptions, we can treat ex (or zero) as a multi-
bit signal; e.g. ex[0] is a zero flag, ex[1] is a carry flag, and so on.

Unlike a built-in component such as and, a user-defined component must have an
instance name upon instantiation; i.e. the name is not optional.



