Homework Assignment #10 Due: December 5, 2023 at 7:00 p.m.

[3] 1. The goal of this question is to show that the context-free languages are closed under the Kleene star operator. Suppose $G = \langle V, \Sigma, R, S \rangle$ is a grammar for some language L. Give a precise definition of a grammar $G' = \langle V', \Sigma', R', S' \rangle$ for L^* .

You do not have to formally prove that your answer is correct, but you should give a brief explanation of why G' is a CFG for L^* .

2. Consider the following context-free grammar G with starting symbol S and terminals 0 and 1.

$$\begin{array}{ccc} S & \rightarrow & 0S \mid 1A \\ A & \rightarrow & 1S \mid 0B \mid \varepsilon \\ B & \rightarrow & 0A \mid 1B \end{array}$$

[2] (a) Fill in the following table with yes/no answers to say whether each 4-bit string is generated by G or not.

801101000	, cı	$\sim_{\mathcal{J}}$	\circ	OI	110
string	g	gen	era	tec	1?
0000					
0001					
0010					
0011					
0100					
0101					
0110					
0111					
1000					
1001					
1010					
1011					

- [2] **(b)** If x is a binary string, let val(x) be the number represented by x in binary. For example, val(10110) = 22. What simple property of val(x) determines whether x is generated by G or not? You do not have to prove your answer is correct.
- [2] (c) Draw a DFA with three states that accepts the language generated by G. Hint: looking back at an earlier assignment might be helpful here.
- [2] (d) Relabel the states of your DFA as S, A, B. Describe the connection between your DFA and G.