Computing for Math and Stats

Lecture 4



Creating Matrices

* Matrices can be created like arrays.

* We can specify all the elements explicitly arranged Iin
rows

- A=[123;456;789]
* We can specify them implicitly
- A=[1:3; 4.6, 7:9]

- (semicolons can be replaced by newlines, according to
taste)

* We can build them up from submatrices



Building up Matrices

* Consider the following
- A=[1:3; 4:6; 7:9]

* Expression 1:3 looks like a row vector...

* We can put in there whatever row vector we like
- B =1A(3,2); A(2,:); A(1,2)]

* We can do the same with column vectors
- C=[A(,3),A(;,2), A(;,1)]



Building up matrices

* We can build up matrices as a series of rows
separated by semicolons

* We can build up matrices as a series of
columns, separated by commas

* Why not build up matrices as a series of
submatrices separated by either colons or
commas



Building up Matrices

* For example
- C=[AAA]
- D =[AAA]

* WWe can cary the idea further
- G=[A,ones(3,1);ones(1,4)]
- F=[eye(3),0nes(3,1);0nes(1,4)]
- H=[A,AA"A]




Building up Matrices

* These technigues can be used to generate matrices
- for testing

- that are sparse (have many zeros)
- that have some regularity

* These are rather powerful and very elegant techniques

- Test them to make sure that they work the way you think
they work

- Use them with care
- Only when they are the simplest route to solve the problem



Accessing Matrices

* Matrices are accessed with parentheses “(* and
H)”
* This Is different from most programming

languages that use square brackets for array
(matrix, vector) accessing

* Everything in Matlab i1s a matrix (kind of)
- In old languages like lisp everything was a list



Accessing Matrices

Consider the following
- A(1:2,2:3)

his Is a submatrix of A that comprises the first
two rows and the last two columns

Can also write
- A(1:2,))
Saves keystrokes and confuses outsiders



Accessing Matrices

* The expression
- 1:2 Is a row vector

* We can put in there any row vector we want
- A1, 3,3, 1))

* It is quite flexible
e See shuffle2x2.m



Adding More Elements

* Let
- V=[1:2:10]
* V(6) Is undefined
* But
- V(6) = 4 expands the size of the matrix

* V(1,6) Is what?
 Can we now do V(3,2)=12 ?



Deleting Elements

 \We do not need this too often, but useful to
nave

* Let V=[1:10]
e \WWe delete an element with
* V(3)=[]




Usefull Built-in Functions

* We know about eye(), ones(), zeros()

* We laso have
- reshape(A,m,n) to put the elements of a into an m x n matrix
- length(V) the number of elements in vector V
- size(M) returns [m,n] the # of rows and # of columns of M

- diag(V) a diagonal matrix with the elements of V as its
diagonal

- diag(M) the vector of diagonal elements of M

* See playdiag.m, playsize.m



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

