

Computing for Math and Stats

Lecture 4

Creating Matrices

● Matrices can be created like arrays.
● We can specify all the elements explicitly arranged in

rows
– A = [1 2 3; 4 5 6; 7 8 9]

● We can specify them implicitly
– A = [1:3; 4:6; 7:9]
– (semicolons can be replaced by newlines, according to

taste)

● We can build them up from submatrices

Building up Matrices

● Consider the following
– A = [1:3; 4:6; 7:9]

● Expression 1:3 looks like a row vector…
● We can put in there whatever row vector we like

– B = [A(3,:); A(2,:); A(1,:)]

● We can do the same with column vectors
– C = [A(:,3), A(:,2), A(:,1)]

Building up matrices

● We can build up matrices as a series of rows
separated by semicolons

● We can build up matrices as a series of
columns, separated by commas

● Why not build up matrices as a series of
submatrices separated by either colons or
commas

Building up Matrices

● For example
– C = [A,A,A]
– D = [A;A;A]

● We can cary the idea further
– G=[A,ones(3,1);ones(1,4)]
– F=[eye(3),ones(3,1);ones(1,4)]
– H=[A,A';A',A]

Building up Matrices

● These techniques can be used to generate matrices
– for testing
– that are sparse (have many zeros)
– that have some regularity

● These are rather powerful and very elegant techniques
– Test them to make sure that they work the way you think

they work
– Use them with care
– Only when they are the simplest route to solve the problem

Accessing Matrices

● Matrices are accessed with parentheses “(“ and
“)”

● This is different from most programming
languages that use square brackets for array
(matrix, vector) accessing

● Everything in Matlab is a matrix (kind of)
– In old languages like lisp everything was a list

Accessing Matrices

● Consider the following
– A(1:2,2:3)

● This is a submatrix of A that comprises the first
two rows and the last two columns

● Can also write
– A(1:2,:)

● Saves keystrokes and confuses outsiders

Accessing Matrices

● The expression
– 1:2 is a row vector

● We can put in there any row vector we want
– A([1, 3],[3, 1])

● It is quite flexible
● See shuffle2x2.m

Adding More Elements

● Let
– V=[1:2:10]

● V(6) is undefined
● But

– V(6) = 4 expands the size of the matrix

● V(1,6) is what?
● Can we now do V(3,2)=12 ?

Deleting Elements

● We do not need this too often, but useful to
have

● Let V=[1:10]
● We delete an element with
● V(3)=[]

Usefull Built-in Functions

● We know about eye(), ones(), zeros()
● We laso have

– reshape(A,m,n) to put the elements of a into an m x n matrix
– length(V) the number of elements in vector V
– size(M) returns [m,n] the # of rows and # of columns of M
– diag(V) a diagonal matrix with the elements of V as its

diagonal
– diag(M) the vector of diagonal elements of M

● See playdiag.m, playsize.m

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

